Proof that |[tr(M)| equals the number of MZM’s

Using {H, M} = 0, we know that for any given eigenstate |u) of M with eigenvalue £1, H|u), if not a null vector,
must be an eigenstate of M with the eigenvalue F1. Denote by N1 the number of eigenvalues of M that have
eigenvalues +1 and —1 respectively, and assume that Ny > N_. The corresponding eigenstates are denoted by |u§t>,
forming subspaces W.. Obviously, since any nonzero H |u;L> fori=1,..., Ny is a state in W_, there must be at least
Ny — N_ of them that are null vectors, i.e., Ny — N_ eigenstates of H of zero eigenvalue. The same argument proceeds
for the case N_ > N, leading to the result that there must be at least N_ — N eigenstates of H of zero eigenvalue.

MZM'’s in a general TCI having mirror Chern number C,, with induced superconductivity

In the main text, we explicitly show that on the (001)-surface of mirror TCI SnTe, there are two MZM’s protected
by Mrp. Here we extend to all TCI’s having (i) mirror Chern number C,, (ii) TRS, (iii) Cooper pairing that preserves
the above two symmetries and (iv) same sign of pairing amplitude on all pieces of the Fermi surface. All these make
the system have both M and T, so that when there is vortex, their combination My is preserved, while they are no
longer symmetries separately.

Given a mirror plane, a 3D BZ may have one (e.g., FCC) or two (e.g., simple cubic) mirror symmetric subspaces.
For a surface termination that preserves the mirror symmetry, i.e., perpendicular to the mirror plane(s), there are
one or two mirror symmetric lines in its SBZ. On a mirror symmetric line, bands with opposite mirror eigenvalues
(42 in spinful systems) can cross each other, leaving a set of Dirac points in the SBZ. On a mirror symmetric line in
SBZ, TRS sends a right going mode to a left going mode while changing the mirror eigenvalue, making the number
of right /left going modes with eigenvalue +i exactly equals the number of left/right going modes with eigenvalue —i.

We now make an assumption that there is only one, instead of two, mirror symmetric plane in 3D BZ, or one mirror
symmetric line in the SBZ. We will relax the assumption at a later stage. The mirror Chern number is defined as
Cp = nf —nf +n; —ng, where nﬂg is the number of left/right going modes with eigenvalue +i/ —i. We can
adiabatically tune the system such that (i) if C,, > 0, all right going modes have M = +i and all left going ones
have —i or (ii) if C,, < 0, all right going modes have M = —i and all left going ones have +i. Along the mirror
symmetric line in SBZ, the Dirac points are symmetric about the origin. A Dirac point can be located either at a
TRS momentum or a generic point, and we denote it by Dy and D, respectively.

The pairing amplitude at k is defined as

5(k) = (AP () Tw(k)T|9), (1)

where A = A, ¢, (k)c}s(—k) + h.c. is the pairing operator, 1 (k) is the eigenstate annihilation operator in the normal
state at k, and |Q2) is the Fermi liquid ground state (non-superconducting). This amplitude is well defined for any
non-degenerate k-point. Using TRS[? |, it can be proved that d(k) = d(—k) € real. To the lowest order of pairing
strength, the Bougliubov excitation at k has energy +/(e(k) — )2 + 6(k)2. This means 6(k) cannot change sign on
any connected F'S in a gapped superconductor. At the same time, if there are multiple disjoint FS’s, then two FS’s may
have opposite signs, unless they are related to each other by TRS. Sign changes between disjoint FS’s usually implies
unconventional pairing mechanisms. The 1111-family of iron-based superconductors belongs to this special class. For
simplicity, let us for now assume that all FS’s have the same sign of pairing amplitude, and the generalization to the
generic case is made in Sec..

Surface Hamiltonians in the normal state

We first write down the effective theory (k - p-model) for each Dy and D without superconductivity. For Dy, the
little group is generated by M and T, represented by io, and K (ioy). So the effective theory reads:

ho(q) = —po0 + v10yGe + (V204 + v302)qz + O(|g]?). (2)
At D, the little group is generated by only M = io,, so

h(Q) = (v0gz — p)T0 + V10yqe + (V204 + v302) gz + O(|ql?). (3)



Bulk superconductivity for a Dirac cone centered at TRIM

Next we consider a homogeneous onsite BCS pairing. Since Dy is a TRS momentum, the Cooper pairing is intra-
pocket. The BdG Hamiltonian in general looks

- (49 i)

The form of A is determined by the symmetry constraints, namely,

(io,)"Aio,) = A from mirror symmetry and (5)
(io,)TA*(io,) = A from TRS.

These constraints require
A:AQU()—F’L'Alo'y, (6)

where A 5 € Real. Diagonalizing the homogeneous Hamiltonian exactly, we obtain

E(q) = i\/v%qg% + (v3 +v3)2 + AT+ A+ p? + 2\/q§v%u2 +q2(v3 +v3) (A5 + p?). (7)

It is straightforward to show that the dispersion in Eq.(7) is always gapped as far as A? + A2 # 0. This means the
surface state around Dy is always gapped, against any parameter change. On this gapped FS, we can calculate the
sign of the pairing amplitude: sign(d(q)) = sign(Aq).

Bulk superconductivity for two Dirac cones centered at +D

For a Dirac cone around D, there must be another around —D due to TRS. The gauge at D is chosen such that

M fy (@M = (i0y)rr f4. (Ma), 8)

where f4 (q) is the electron annihilation operator at D4 q. We can thus fix the gauge at —D —q by TRS symmetry,
ie, fo.(q) = Tfi(—q)T~1. Since [M,T] = 0, at =D (q = 0), we also have the representation of the mirror
symmetry as M = ioy,. In this gauge, the k - p-model for the cone centered at —D is

h—(q) = —(voge — p)o0 + V1¢z0y — (V204 + V302)qy. 9)

We have assumed that Cooper pairs have zero momentum, so the pairing is only between f4(q) and f_(—q), leading
to the following BAG Hamiltonian:

hi(a) 0 0 A

0 h_(q —AT 0
H(q) = X 10
D=0 A wa) o =

Af 0 0 —hT(—q)
Eq.(10) is in a block-diagonalized form, and the pairing matrix A is constrained by
(ioy)" Alio,) = A, (11)
AT = A

The only possible form of A is then A = Ajog + Ayoy, where Ay 5 € real. Eq.(10) can also be exactly diagonalized,
giving the dispersion:

E2(q) = v3g + (08 + 03)a% + (1 £ v0g:)* + A + A3 £ 2, /[Egevn (Hv0gs — 1) + A1 D]? + ¢2(03 + 03)[(v0ga & )2 + A3].



Tedious algebra shows that when |A;| > |As] > 0, the spectrum is fully gapped and when |Ag| > [A4| > 0, we have
four band crossings at zero energy, namely:

A (A3 — AD)[(voAr — v1A2)% 4 p2v]]
x> - :l: 5:|:
(q Qy) ( ’U()Al — 'UlAQ \/ |’U()A1 — ’UlA2|(’Ug —+ ’Ug)

).

This surface superconducting phase has four nodes in four quadrants respectively, and two nodes related by mirror
symmetry have opposite winding numbers of d-vectors leaving the total winding number zero. But this is not our
current interest which is fully gapped surface superconductivity. Therefore, we take [A1| > |As|, and the dispersion is
always gapped against any change in parameters. We can also calculate the sign of the pairing amplitude, obtaining

sign(d(q)) = sign(Ay).

Superconducting vortex bound states for a Dirac cone centered at TRIM

We are now ready to consider a vortex in the Cooper pairing. In principle, a vortex in real space will induce
Cooper pairing between Dirac cones that are not opposite to each other in the momentum space, but we will for now
ignore this effect, which means that rod D > 1, where rg is the size of the vortex and dD is the distance in k-space
between nearest Dirac cones. After we calculate, under this working assumption, the number of symmetry protected
MZM’s, we then can argue that so far as the bulk gap is open, this symmetry protected quantum number remains
the same under any perturbation that we ignore during the calculation, although the explicit wavefunctions of the
MZM'’s generically vary.

First we study the surface states around Dg. The vortex is introduced by replacing A 5 in Eq.(4) by Ay a(r)e%,
where A 2(0) = 0 and A(co) = Ay 2 > 0. Since Hy is gapped for any parameter set, we can always adiabatically
tune the parameters to v1 = —vy = v, vg = v3 = u = 0 and As = 0. The number of MZM’s for this set of parameters
is the same as the number of MZM’s for the original parameters, since the surface remains fully gapped during the
change. Solving the Schrodinger equation

0 —ve~ (9, — %) 0 Aq(r)e~ U1
ve'? (0, + %) 0 —Aq(r)e” 0 _ o | 0 (12)
0 —Aq(r)e?? 0 _ ve'? (0, + %) (2
Aq(r)e?? 0 —ve™ (9, — ) 0 V3
we obtain one MZM mode
v =i / dr[ff(x) = fu(0)e 51T ipua > 0; (13)
- / dr{fi () + £ (o) I 1B g, <o, (14)
Using T' = ioy K and M = ioy, it is easy to verify that
MTval = sign(v1Aq)7. (15)

Superconducting vortex bound states for Dirac cones centered at +D

For the Cooper pairing between the surface electrons around D and —D, the Schrodinger equation can be block
diagonalized into two equations, namely

0 @) Ay 0 wl
el (9, + 1) 0 0 Ay(r)e? v2| _ (16)
Al(r)ew 0 0 . vew(&« - %) Y|
0 Aq(r)et? —ve (0, — %) 0 W
and
0 —ve'? (0, + %) —Aq(r)e” 0 V3
ve (0r %) 0 0 —Al(r)efw il - 0 (17)
—AL(r)e? 0 0 vel? (0, + 1) i
0 ~A)e? e (@, — )0 2



where we have used that MZM must be invariant under PHS. Also, since My is a symmetry, the combination P x Mp
is also a symmetry that anti-commutes with the Hamiltonian. A MZM must also be an eigenstate of P x Mp with
eigenvalue being either +1 or —1. This places constraints on 1 2 3 4, namely, 11 = %4 and 2 = F1)3. Solving the
equations analytically, we have two MZM solutions:

" = / dr?[fl | (r) - Fon () + hoee S5 155 (18)

Y = i/dTQ[fLi(r)—f,ﬁ(r) — hee]e S 155

if sign(vA;) > 0 and
n = / (1) + fop () + hueem I8 15 (19)

Y2 = i/dT2[fL¢(r) + f77¢(r) — h.c]e” 18 |d’”/,
if sign(vA7) < 0. It is straightforward to verify:
MT")/LQMEI = sign(vA1)7172. (20)

Total number of MZM’s

From the analysis, we see that there is one MZM from a Dirac cone centered at a TRIM, and two MZM’s from a
pair of Dirac cones centered at +=D. Due to our assumption that there is no sign change between pairing amplitudes
on different F'S’s; A; has the same sign for all Dirac cones, therefore, every MZM transforms under Mr as
(Ot M7t = sign(CrAr). (21)

Mry;—1

In the basis of v;’s, the symmetry operation My is simply M = sign(Cy,A1)]|c,, | x|Cpnl> 5O [tr(M)| = |Cpn|. Therefore,
there are exactly |C),| MZM’s protected by Mp.

If there are two mirror symmetric planes in the 3D BZ, then there are two mirror Chern numbers denoted by Ciyo
and C,,r. There are two mirror symmetric lines in the SBZ, along which there are |Cy,0| and |C,,| Dirac points,
respectively. An analysis same as the above and the result in Eq.(21) apply to Dirac cones on both lines. The total
number of protected MZM’s is hence

Nyzym = |Cmo + Conr|. (22)

It is easy to generalize to cases where the different surface Fermi pockets have different signs of pairing amplitude.
There are in total |C,,| Fermi pockets on the surface, and the pairing signs are symmetric about the origin due to
TRS. The total number of MZM is simply the sum of the signs of all the pockets, namely

Nuzy =1 sign(An), (23)

where sign(A,,) is the pairing sign of the m-th Fermi pocket.

The two ‘semi’-Majorana modes in pure samples

Out of the four MZM’s in Eq.(10) of the main text, two can be gapped out by the following perturbation

0H = iA(11v2 +v2v3 +¥374 + 7471) (24)
= iA1= 73) (72 — )

From Eq.(10) in the main text, we can see that v; — 3 is composed of electrons from Dirac cones centered at Dy 3,
and 72 — 74 is composed of electrons from Dirac cones centered at Dg 4. Since Dy 3+ Dgyy ~ (m,7), all terms in
Eq.(24) carry large momentum scattering or large momentum pairing. Large momentum scattering is suppressed if
the impurity potential is smooth; large momentum pairing is suppressed if the vortex size is much larger than the
lattice constant. When both effects are suppressed, the coefficient A in Eq.(24) must be very small. Since Eq.(24) is
the only allowed hybridization term, there are four, instead of two MZM’s.



