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Proof that |tr(M)| equals the number of MZM’s

Using {H,M} = 0, we know that for any given eigenstate |u〉 of M with eigenvalue ±1, H|u〉, if not a null vector,
must be an eigenstate of M with the eigenvalue ∓1. Denote by N± the number of eigenvalues of M that have
eigenvalues +1 and −1 respectively, and assume that N+ > N−. The corresponding eigenstates are denoted by |u±i 〉,
forming subspaces Ψ±. Obviously, since any nonzero H |u+i 〉 for i = 1, ..., N+ is a state in Ψ−, there must be at least
N+−N− of them that are null vectors, i.e., N+−N− eigenstates of H of zero eigenvalue. The same argument proceeds
for the case N− > N+, leading to the result that there must be at least N− −N+ eigenstates of H of zero eigenvalue.

MZM’s in a general TCI having mirror Chern number Cm with induced superconductivity

In the main text, we explicitly show that on the (001)-surface of mirror TCI SnTe, there are two MZM’s protected
by MT . Here we extend to all TCI’s having (i) mirror Chern number Cm, (ii) TRS, (iii) Cooper pairing that preserves
the above two symmetries and (iv) same sign of pairing amplitude on all pieces of the Fermi surface. All these make
the system have both M and T , so that when there is vortex, their combination MT is preserved, while they are no
longer symmetries separately.

Given a mirror plane, a 3D BZ may have one (e.g., FCC) or two (e.g., simple cubic) mirror symmetric subspaces.
For a surface termination that preserves the mirror symmetry, i.e., perpendicular to the mirror plane(s), there are
one or two mirror symmetric lines in its SBZ. On a mirror symmetric line, bands with opposite mirror eigenvalues
(±i in spinful systems) can cross each other, leaving a set of Dirac points in the SBZ. On a mirror symmetric line in
SBZ, TRS sends a right going mode to a left going mode while changing the mirror eigenvalue, making the number
of right/left going modes with eigenvalue +i exactly equals the number of left/right going modes with eigenvalue −i.

We now make an assumption that there is only one, instead of two, mirror symmetric plane in 3D BZ, or one mirror
symmetric line in the SBZ. We will relax the assumption at a later stage. The mirror Chern number is defined as

Cm = n+

R − n+

L + n−
L − n−

R, where n
+/−
L/R is the number of left/right going modes with eigenvalue +i/ − i. We can

adiabatically tune the system such that (i) if Cm > 0, all right going modes have M = +i and all left going ones
have −i or (ii) if Cm < 0, all right going modes have M = −i and all left going ones have +i. Along the mirror
symmetric line in SBZ, the Dirac points are symmetric about the origin. A Dirac point can be located either at a
TRS momentum or a generic point, and we denote it by D0 and D, respectively.

The pairing amplitude at k is defined as

δ(k) = 〈Ω|∆̂ψ(k)T̂ ψ(k)T̂−1 |Ω〉, (1)

where ∆̂ ≡ ∆̃αβc
†
α(k)c

†
β(−k) + h.c. is the pairing operator, ψ(k) is the eigenstate annihilation operator in the normal

state at k, and |Ω〉 is the Fermi liquid ground state (non-superconducting). This amplitude is well defined for any
non-degenerate k-point. Using TRS[? ], it can be proved that δ(k) = δ(−k) ∈ real. To the lowest order of pairing
strength, the Bougliubov excitation at k has energy

√

(ǫ(k) − µ)2 + δ(k)2. This means δ(k) cannot change sign on
any connected FS in a gapped superconductor. At the same time, if there are multiple disjoint FS’s, then two FS’s may
have opposite signs, unless they are related to each other by TRS. Sign changes between disjoint FS’s usually implies
unconventional pairing mechanisms. The 1111-family of iron-based superconductors belongs to this special class. For
simplicity, let us for now assume that all FS’s have the same sign of pairing amplitude, and the generalization to the
generic case is made in Sec..

Surface Hamiltonians in the normal state

We first write down the effective theory (k · p-model) for each D0 and D without superconductivity. For D0, the
little group is generated by M and T , represented by iσy and K(iσy). So the effective theory reads:

h0(q) = −µσ0 + v1σyqx + (v2σx + v3σz)qx + O(|q|2). (2)

At D, the little group is generated by only M = iσy, so

h(q) = (v0qx − µ)σ0 + v1σyqx + (v2σx + v3σz)qx + O(|q|2). (3)
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Bulk superconductivity for a Dirac cone centered at TRIM

Next we consider a homogeneous onsite BCS pairing. Since D0 is a TRS momentum, the Cooper pairing is intra-
pocket. The BdG Hamiltonian in general looks

H0(q) =

(

h0(q) ∆̃

∆̃† −hT0 (−q)

)

. (4)

The form of ∆̃ is determined by the symmetry constraints, namely,

(iσy)
T ∆̃(iσy) = ∆̃ from mirror symmetry and (5)

(iσy)
T ∆̃∗(iσy) = ∆̃ from TRS.

These constraints require

∆̃ = ∆2σ0 + i∆1σy, (6)

where ∆1,2 ∈ Real. Diagonalizing the homogeneous Hamiltonian exactly, we obtain

E(q) = ±

√

v21q
2
x + (v22 + v23)q

2
y +∆2

1 +∆2
2 + µ2 ± 2

√

q2xv
2
1µ

2 + q2y(v
2
2 + v23)(∆

2
2 + µ2). (7)

It is straightforward to show that the dispersion in Eq.(7) is always gapped as far as ∆2
1 + ∆2

2 6= 0. This means the
surface state around D0 is always gapped, against any parameter change. On this gapped FS, we can calculate the
sign of the pairing amplitude: sign(δ(q)) = sign(∆1).

Bulk superconductivity for two Dirac cones centered at ±D

For a Dirac cone around D, there must be another around −D due to TRS. The gauge at D is chosen such that

M̂f+,τ (q)M̂
−1 = (iσy)ττ′f+,τ′ (Mq), (8)

where f+,τ (q) is the electron annihilation operator at D+q. We can thus fix the gauge at −D−q by TRS symmetry,

i.e., f−,τ (q) ≡ T̂ f+,τ (−q)T̂−1. Since [M̂, T̂ ] = 0, at −D (q = 0), we also have the representation of the mirror
symmetry as M = iσy. In this gauge, the k · p-model for the cone centered at −D is

h−(q) = −(v0qx − µ)σ0 + v1qxσy − (v2σx + v3σz)qy. (9)

We have assumed that Cooper pairs have zero momentum, so the pairing is only between f+(q) and f−(−q), leading
to the following BdG Hamiltonian:

H(q) =









h+(q) 0 0 ∆̃

0 h−(q) −∆̃T 0

0 −∆̃∗ −hT+(−q) 0

∆̃† 0 0 −hT−(−q)









. (10)

Eq.(10) is in a block-diagonalized form, and the pairing matrix ∆̃ is constrained by

(iσy)
T ∆̃(iσy) = ∆̃, (11)

∆̃† = ∆̃.

The only possible form of ∆̃ is then ∆̃ = ∆1σ0 +∆2σy, where ∆1,2 ∈ real. Eq.(10) can also be exactly diagonalized,
giving the dispersion:

E2(q) = v21q
2
x + (v22 + v23)q

2
y + (µ± v0qx)

2 +∆2
1 +∆2

2 ± 2
√

[±qxv1(±v0qx − µ) + ∆1∆2]2 + q2y(v
2
2 + v23)[(v0qx ± µ)2 +∆2

2].
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Tedious algebra shows that when |∆1| > |∆2| ≥ 0, the spectrum is fully gapped and when |∆2| > |∆1| ≥ 0, we have
four band crossings at zero energy, namely:

(qx, qy) = (±
∆1µ

v0∆1 − v1∆2

,±

√

(∆2
2 −∆2

1)[(v0∆1 − v1∆2)2 + µ2v21 ]

|v0∆1 − v1∆2|(v
2
2 + v23)

).

This surface superconducting phase has four nodes in four quadrants respectively, and two nodes related by mirror
symmetry have opposite winding numbers of d-vectors leaving the total winding number zero. But this is not our
current interest which is fully gapped surface superconductivity. Therefore, we take |∆1| > |∆2|, and the dispersion is
always gapped against any change in parameters. We can also calculate the sign of the pairing amplitude, obtaining
sign(δ(q)) = sign(∆1).

Superconducting vortex bound states for a Dirac cone centered at TRIM

We are now ready to consider a vortex in the Cooper pairing. In principle, a vortex in real space will induce
Cooper pairing between Dirac cones that are not opposite to each other in the momentum space, but we will for now
ignore this effect, which means that r0δD ≫ 1, where r0 is the size of the vortex and δD is the distance in k-space
between nearest Dirac cones. After we calculate, under this working assumption, the number of symmetry protected
MZM’s, we then can argue that so far as the bulk gap is open, this symmetry protected quantum number remains
the same under any perturbation that we ignore during the calculation, although the explicit wavefunctions of the
MZM’s generically vary.

First we study the surface states around D0. The vortex is introduced by replacing ∆1,2 in Eq.(4) by ∆1,2(r)e
−iθ,

where ∆1,2(0) = 0 and ∆(∞) = ∆1,2 > 0. Since H0 is gapped for any parameter set, we can always adiabatically
tune the parameters to v1 = −v2 ≡ v, v0 = v3 = µ = 0 and ∆2 = 0. The number of MZM’s for this set of parameters
is the same as the number of MZM’s for the original parameters, since the surface remains fully gapped during the
change. Solving the Schrodinger equation









0 −ve−iθ(∂r −
i∂θ

r ) 0 ∆1(r)e
−iθ

veiθ(∂r +
i∂θ

r
) 0 −∆1(r)e

−iθ 0

0 −∆1(r)e
iθ 0 veiθ(∂r +

i∂θ

r )

∆1(r)e
iθ 0 −ve−iθ(∂r −

i∂θ

r
) 0

















ψ1

ψ2

ψ∗
1

ψ∗
2









= 0, (12)

we obtain one MZM mode

γ = i

∫

d2r[f†↓ (r)− f↓(r)]e
−

∫
r

0
|
∆1(r′)

v
|dr′ , if v∆1 > 0; (13)

γ =

∫

d2r[f†↓ (r) + f↓(r)]e
−

∫
r

0
|
∆1(r′)

v
|dr′ , if v∆1 < 0. (14)

Using T = iσyK and M = iσy, it is easy to verify that

M̂TγM̂
−1

T = sign(v1∆1)γ. (15)

Superconducting vortex bound states for Dirac cones centered at ±D

For the Cooper pairing between the surface electrons around D and −D, the Schrodinger equation can be block
diagonalized into two equations, namely









0 −ve−iθ(∂r −
i∂θ

r ) ∆1(r)e
−iθ 0

veiθ(∂r +
i∂θ

r
) 0 0 ∆1(r)e

−iθ

∆1(r)e
iθ 0 0 veiθ(∂r −

i∂θ

r )

0 ∆1(r)e
iθ −ve−iθ(∂r −

i∂θ

r ) 0

















ψ1

ψ2

ψ3

ψ4









= 0, (16)

and








0 −veiθ(∂r +
i∂θ

r ) −∆1(r)e
−iθ 0

ve−iθ(∂r −
i∂θ

r
) 0 0 −∆1(r)e

−iθ

−∆1(r)e
iθ 0 0 veiθ(∂r +

i∂θ

r )

0 −∆1(r)e
iθ −ve−iθ(∂r −

i∂θ

r ) 0

















ψ∗
3

ψ∗
4

ψ∗
1

φ∗
2









= 0, (17)
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where we have used that MZM must be invariant under PHS. Also, since MT is a symmetry, the combination P ×MT

is also a symmetry that anti-commutes with the Hamiltonian. A MZM must also be an eigenstate of P ×MT with
eigenvalue being either +1 or −1. This places constraints on ψ1,2,3,4, namely, ψ1 = ±ψ4 and ψ2 = ∓ψ3. Solving the
equations analytically, we have two MZM solutions:

γ1 =

∫

dr2[f†
+,↓(r) − f−,↑(r) + h.c.]e−

∫
r

0
|
∆1(r′)

v
|dr′ , (18)

γ2 = i

∫

dr2[f†
+,↓(r)− f−,↑(r) − h.c.]e−

∫
r

0
|
∆1(r′)

v
|dr′ ,

if sign(v∆1) > 0 and

γ1 =

∫

dr2[f†
+,↓(r) + f−,↑(r) + h.c.]e−

∫
r

0
|
∆1(r′)

v
|dr′ , (19)

γ2 = i

∫

dr2[f†
+,↓(r) + f−,↑(r) − h.c.]e−

∫
r

0
|
∆1(r′)

v
|dr′ ,

if sign(v∆1) < 0. It is straightforward to verify:

M̂T γ1,2M̂
−1

T = sign(v∆1)γ1,2. (20)

Total number of MZM’s

From the analysis, we see that there is one MZM from a Dirac cone centered at a TRIM, and two MZM’s from a
pair of Dirac cones centered at ±D. Due to our assumption that there is no sign change between pairing amplitudes
on different FS’s, ∆1 has the same sign for all Dirac cones, therefore, every MZM transforms under MT as

M̂T γi=1,...,|Cm|M̂
−1

T = sign(Cm∆1). (21)

In the basis of γi’s, the symmetry operationMT is simply M = sign(Cm∆1)I|Cm|×|Cm|, so |tr(M)| = |Cm|. Therefore,
there are exactly |Cm| MZM’s protected by MT .

If there are two mirror symmetric planes in the 3D BZ, then there are two mirror Chern numbers denoted by Cm0

and Cmπ . There are two mirror symmetric lines in the SBZ, along which there are |Cm0| and |Cmπ | Dirac points,
respectively. An analysis same as the above and the result in Eq.(21) apply to Dirac cones on both lines. The total
number of protected MZM’s is hence

NMZM = |Cm0 + Cmπ|. (22)

It is easy to generalize to cases where the different surface Fermi pockets have different signs of pairing amplitude.
There are in total |Cm| Fermi pockets on the surface, and the pairing signs are symmetric about the origin due to
TRS. The total number of MZM is simply the sum of the signs of all the pockets, namely

NMZM = |
∑

m

sign(∆m)|, (23)

where sign(∆m) is the pairing sign of the m-th Fermi pocket.

The two ‘semi’-Majorana modes in pure samples

Out of the four MZM’s in Eq.(10) of the main text, two can be gapped out by the following perturbation

δH = iλ(γ1γ2 + γ2γ3 + γ3γ4 + γ4γ1) (24)

= iλ(γ1 − γ3)(γ2 − γ4).

From Eq.(10) in the main text, we can see that γ1 − γ3 is composed of electrons from Dirac cones centered at D1,3,
and γ2 − γ4 is composed of electrons from Dirac cones centered at D2,4. Since D1,3 ± D2,4 ∼ (π, π), all terms in
Eq.(24) carry large momentum scattering or large momentum pairing. Large momentum scattering is suppressed if
the impurity potential is smooth; large momentum pairing is suppressed if the vortex size is much larger than the
lattice constant. When both effects are suppressed, the coefficient λ in Eq.(24) must be very small. Since Eq.(24) is
the only allowed hybridization term, there are four, instead of two MZM’s.


