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Abstract

Prediction of protein subcellular localization is an important yet challenging problem. Recently, several computational methods

based on Gene Ontology (GO) have been proposed to tackle this problem and have demonstrated superiority over methods based

on other features. Existing GO-based methods, however, do not fully use the GO information. This paper proposes an efficient GO

method called GOASVM that exploits the information from the GO term frequencies and distant homologs to represent a protein

in the general form of Chou’s pseudo amino acid composition. The method first selects a subset of relevant GO terms to form a

GO vector space. Then for each protein, the method uses the accession number (AC) of the protein or the ACs of its homologs to

find the number of occurrences of the selected GO terms in the Gene Ontology annotation (GOA) database as a means to construct

GO vectors for support vector machines (SVMs) classification. With the advantages of GO term frequencies and a new strategy to

incorporate useful homologous information, GOASVM can achieve a prediction accuracy of 72.2% on a new independent test set

comprising novel proteins that were added to Swiss-Prot six years later than the creation date of the training set. GOASVM and

Supplementary Materials are available online at http://bioinfo.eie.polyu.edu.hk/mGoaSvmServer/GOASVM.html.
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1. Introduction

As an essential and indispensable topic in proteomics re-

search and molecular cell biology, protein subcellular local-

ization is critically important for protein function annotation,

drug target discovery, and drug design (Chou and Shen, 2007b;

Lubec et al., 2005). To tackle the exponentially growing num-

ber of newly found protein sequences in the post-genomic era,

many efficient and reliable computational methods have been

developed to replace or assist the biological experiments such

as fluorescent microscopy imaging. Recent years have wit-

nessed an incredibly fast development in protein subcellular lo-

calization prediction.

Prediction of subcellular localization can be roughly divided

into sequence-based and Gene Ontology (GO) based. The for-

mer only uses the amino-acid sequences of query proteins as

input. They can be further classified into three groups: (1)

composition-based methods, (2) sorting-signal based methods

and (3) homology-based methods.

Composition-based methods use the relationship between

subcellular locations and the composition information embed-

ded in the amino acid sequences, such as amino-acid composi-

tions (AA) (Nakashima and Nishikawa, 1994; Chou and Cai,

2005), amino-acid pair compositions (PairAA) (Nakashima
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and Nishikawa, 1994), gapped amino-acid pair compositions

(GapAA) (Park and Kanehisa, 2003; Lee et al., 2006), and

pseudo amino-acid composition (PseAA) (Chou, 2001; Chou

and Shen, 2006b; Chou and Cai, 2003, 2004, 2005). Sorting-

signal based methods – such as PSORT (Nakai and Kane-

hisa, 1991), WoLF PSORT (Horton et al., 2006), and TargetP

(Emanuelsson et al., 2000) – predict the localization via the

recognition of N-terminal sorting signals in amino acid se-

quences. Homology-based methods – such as Proteome Ana-

lyst (Lu et al., 2004), PairProSVM (Mak et al., 2008), and other

predictors (Nair and Rost, 2002; Mott et al., 2002; Scott et al.,

2004) – rely on the fact that homologous sequences are more

likely to reside in the same subcellular location. Sequence-

based methods are general in that they can be applied to any

newly discovered proteins. However, their performance is usu-

ally poor, especially for datasets containing sequences with

low-similarity. Annotation-based methods, on the contrary, are

superior.

GO-based methods make use of the well-organized bio-

logical knowledge about genes and gene products in the GO

databases. The GO-based methods can be viewed from the fol-

lowing two perspectives:

1. GO-Terms Extraction. There are three methods to ex-

tract GO terms from annotation databases. The first method

uses a program called InterProScan (Zdobnov and Apweiler,

2001) to search against a set of protein signature databases to

look for relevant GO terms (Chou and Cai, 2004; Blum et al.,

2009; Wan et al., 2011; Mei et al., 2011). This method can

be applied to all protein sequences; but usually they can re-
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trieve only a small number of GO terms, which may not be suf-

ficient for accurate prediction of subcellular localization. The

second method uses the accession numbers (ACs) of proteins to

search against the Gene Ontology Annotation (GOA) database1

to retrieve GO terms. Typical predictors using this approach

include Euk-OET-PLoc (Chou and Shen, 2006c), Hum-PLoc

(Chou and Shen, 2006a), Euk-mPLoc (Chou and Shen, 2007a)

and Gneg-PLoc (Chou and Shen, 2006b). These predictors per-

form better than the ones based on InterProScan, but they are

not applicable to proteins that have not been functionally anno-

tated. The third method uses BLAST (Altschul et al., 1997) to

obtain the ACs of homologs of the query proteins and then uses

these ACs to search against the GOA database. Typical predic-

tors include ProLoc-GO (Huang et al., 2008), iLoc-Virus (Xiao

et al., 2011b), and Cell-PLoc 2.0 (Chou and Shen, 2010a). This

method is applicable to all protein sequences and is able to re-

trieve more GO terms, which are essential for good prediction

performance.

2. GO-Vector Construction. From this perspective, GO-

based methods can be classified into three categories. The first

category considers each GO term as a canonical basis of a Eu-

clidean space where the coordinates can be equal to either 0

or 1. Representative methods include Euk-OET-PLoc (Chou

and Shen, 2006c), Hum-PLoc (Chou and Shen, 2006a), Gneg-

PLoc (Chou and Shen, 2006b) and Gpos-PLoc (Shen and Chou,

2007). Recently, a modified binary feature vector construction

method is proposed to deal with many sets of GO terms for one

protein (Chou and Shen, 2010a,b). This category provides a

large coverage of GO terms, but it could introduce many irrel-

evant GO terms. The second category uses genetic algorithms

to select the most informative GO terms, such as ProLoc-GO

(Huang et al., 2008) and PGAC (Huang et al., 2009). One prob-

lem of this type of methods is that it may select only a small

number of GO terms, increasing the chance of having a null GO

vector for a test protein. The third method designs an implicit

kernel function to measure the semantic similarity between two

GO terms (Lei and Dai, 2006).

This paper proposes a GO-based method called GOASVM,

which is based on protein homology, gene ontology, and sup-

port vector machines. GOASVM is different from other GO-

based predictors in that (1) it constructs the GO vectors by us-

ing the frequency of occurrences of GO terms instead of using

1-0 values for indicating the presence or absence of some pre-

defined GO terms; (2) it adopts a new strategy to incorporate

richer and more useful information from more distant homologs

instead of using only the top homologs; and (3) it constructs a

GO vector subspace from the full GO vector space by selecting

a set of relevant GO terms. In addition to these algorithmic per-

spectives, our work is different from previous works in that the

training and testing sets used in our experiments are six years

apart, whereas in other studies, the training and testing sets were

created at the same time. This long time-separation between the

training and testing sets ensures that the accuracy achieved by

GOASVM is unbiased. This paper also investigates how the

1http://www.ebi.ac.uk/GOA

updated information in the GOA database affects the prediction

performance of GO-based methods and in turn demonstrates the

superiority of GOASVM over other GO-based methods. Exper-

iments on a new eukaryotic dataset comprising novel proteins

demonstrate the practicality and effectiveness of our proposed

predictor.

GOASVM is designed for predicting single-label eukaryotic

or human proteins. Actually, there are many papers (Chou and

Shen, 2006c; Wang et al., 2010; Mak et al., 2008; Emanuelsson

et al., 2000) focusing on single-label protein subcellular local-

ization. It is well known that most proteins stay only at one

subcellular location (Hu et al., 2012). Therefore, predicting

the subcellular localization of single-label proteins is of great

significance. For how to tackle proteins with both single and

multiple location sites, see iLoc-Plant (Wu et al., 2011), iLoc-

Hum (Chou et al., 2012), iLoc-Gpos (Wu et al., 2012), iLoc-

Euk (Chou et al., 2011), iLoc-Gneg (Xiao et al., 2011a), and

iLoc-Virus (Xiao et al., 2011b), as well as Cell-PLoc (Chou

and Shen, 2008).

2. Gene Ontology for Subcellular Localization

As a result of the Gene Ontology (GO)2 Consortium anno-

tation effort, the GOA database has become a large and com-

prehensive resource for proteomics research (Camon et al.,

2003). The database provides structured annotations to non-

redundant proteins from many species in UniProt Knowledge-

base (UniProtKB) (Apweiler et al., 2004) using standardized

GO vocabularies through a combination of electronic and man-

ual techniques. The large-scale assignment of GO terms to

UniProtKB entries (or ACs) was done by converting a pro-

portion of the existing knowledge held within the UniProKB

database into GO terms (Camon et al., 2003). The GOA

database also includes a series of cross-references to other

databases. Thus, the systematic integration of GO annotations

and UniProtKB database can be exploited for subcellular lo-

calization. Specifically, given the accession number of a pro-

tein, a set of GO terms can be retrieved from the GOA database

file.3 In UniProKB, each protein has a unique accession num-

ber (AC), and in the GOA database, each AC may be associated

with zero, one or more GO terms. Conversely, one GO term

may be associated with zero, one, or many different ACs. This

means that the mappings between ACs and GO terms are many-

to-many.

For those who are skeptical about the GO-based prediction

methods, the following question is prone to be raised: If a

protein has already been annotated by cellular component GO

terms, is it still necessary to predict its subcellular localization?

This sounds like a legitimate question because the GO terms

already suggest the subcellular localization and therefore it is

merely a procedure of converting the annotation into another

format. In other words, all we need is to create a lookup ta-

ble (hash table) using the cellular component GO terms as the

2http://www.geneontology.org
3ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UNIPROT/
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keys and the component categories as the hashed values. To

answer this question, let us provide some facts here. Most of

the existing ‘non-GO predictors’ were established based on the

proteins in the Swiss-Prot database in which the subcellular lo-

cations are experimentally determined. Is it logical to consider

that all of these methods have nothing to predict? Obviously,

it is not. Fairly speaking, as long as the input is a query pro-

tein sequence and the output is its subcellular location(s), the

predictor is deemed to be a valid protein subcellular-location

predictor. In fact, most of the existing GO predictors, such as

iLoc-Euk (Chou et al., 2011) and iLoc-Hum (Chou et al., 2012),

use protein sequence information only to predict the subcellular

locations, without adding any GO information to the input. That

is to say, these GO predictors use the same input as the non-GO

predictors. Therefore, GO-based predictors should also be re-

garded as valid predictors. According to a Nature Protocols pa-

per (Chou and Shen, 2008), the good performance of GO-based

methods is due to the fact that the features vectors in the GO

space can better reflect their subcellular locations than those in

the Euclidean space or any other simple geometric space.

Here, we explain why the simple table-lookup method men-

tioned above is undesirable. Although the cellular component

ontology is directly related to the subcellular localization, we

cannot simply use its GO terms to determine the subcellular lo-

cations of proteins. The reason is that some proteins do not have

cellular component GO terms. Even for proteins annotated with

cellular-component GO terms, it is inappropriate to use these

terms only to determine their subcellular localizations. The

reason is that a protein could have multiple cellular-component

GO terms that map to different subcellular localizations. An-

other reason is that, according to Chou and Shen (2006a), pro-

teins with annotated subcellular localization in Swiss-Prot may

still be marked as ‘Cellular Component Unknown’ in the GO

database. Because of this limitation, it is necessary to use the

other two ontologies as well because they are also relevant (al-

though not directly) to the subcellular localization of proteins.

The problem of table-lookup is further exemplified in Appendix

A.

3. Methods

According to a recent comprehensive review (Chou, 2011),

the establishment of a statistical protein predictor involves the

following five steps: (i) construction of a valid dataset for train-

ing and testing the predictor; (ii) formulation of effective math-

ematical expressions for converting proteins’ characteristics to

feature vectors that are relevant to the prediction task; (iii)

development of classification algorithm for discriminating the

feature vectors; (iv) evaluation of cross-validation tests for mea-

suring the performance of the predictor; and (v) deployment

of a user-friendly, publicly accessible web-server for other re-

searchers to use and validate the prediction method. These steps

are further elaborated below.

The GOASVM predictor uses either accession numbers

(ACs) or amino acid (AA) sequences as input. The prediction

process is divided into two stages: feature extraction (vector-

ization) and pattern classification. For the former, the query

proteins are “vectorized” to high-dim GO vectors. For the lat-

ter, the GO vectors are classified by one-vs-rest linear SVMs.

3.1. Retrieval of GO Terms

Given a query protein, GOASVM can handle two possible

cases: (1) the AC is known and (2) the AA sequence is known.

For proteins with known ACs, their respective GO terms are

retrieved from the GOA database using the ACs as the searching

keys. For a protein without an AC, its AA sequence is presented

to BLAST (Altschul et al., 1997) to find its homologs, whose

ACs are then used as keys to search against the GOA database.

While the GOA database allows us to associate the AC of a

protein with a set of GO terms, for some novel proteins, neither

their ACs nor the ACs of their top homologs have any entries in

the GOA database; in other words, the GO vectors constructed

in Section 3.2 will contain all-zero, which are meaningless for

further classification. In such case, the ACs of the homolo-

gous proteins, as returned from BLAST search, will be succes-

sively used to search against the GOA database until a match

is found. With the rapid progress of the GOA database (Barrel

et al., 2009), it is reasonable to assume that the homologs of the

query proteins have at least one GO term (Mei, 2012). Thus, it

is not necessary to use back-up methods to handle the situation

where no GO terms can be found. The procedures are outlined

in Fig. 1.

3.2. Construction of GO Vectors

According to Eq. 6 of Chou (2011), the characteristics of

any proteins can be represented by the general form of Chou’s

pseudo amino acid composition (Chou, 2001, 2005):

pi = [φi,1, . . . , φi,u, . . . , φi,Ω]T, (1)

where T is a transpose operator, Ω is a number representing the

dimension of the feature vector pi, and the definitions of the Ω

feature components φi,u (u = 1, . . . ,Ω) depend on the feature

extraction approaches elaborated below.

Given a dataset, we used the procedure described in Sec-

tion 3.1 to retrieve the GO terms of all of its proteins. Then, we

determined the number of distinct GO terms corresponding to

the dataset. SupposeΩ distinct GO terms were found; these GO

terms form a GO Euclidean space with Ω dimensions. For each

protein in the dataset, we constructed a GO vector by matching

its GO terms to all of the Ω GO terms. We have investigated

four approaches to determining the elements of the GO vectors.

1. 1-0 value. In this approach, each of the Ω GO terms rep-

resents one canonical basis of a Euclidean space, and a

protein is represented by a point in this space with coordi-

nates equal to either 0 or 1. Specifically, the GO vector of

the i-th protein is denoted as:

pi =
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where ai,u =

{

1 , GO hit

0 , otherwise
(2)
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Figure 1: Procedures of retrieving GO terms.

where ‘GO hit’ means that the u-th GO term appears in the

GOA-search result using the AC of the i-th protein as the

searching key.

2. Term-Frequency (TF). This approach is similar to the 1-

0 value approach in that a protein is represented by a point

in the Ω-dim Euclidean space. However, unlike the 1-0

approach, it uses the number of occurrences of individual

GO terms as the coordinates. Specifically, the GO vector

pi of the i-th protein is defined as:

pi =
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where bi,u =

{

fi,u , GO hit

0 , otherwise
(3)

where fi,u is the number of occurrences of the u-th GO

term (term-frequency) in the i-th protein. The rationale is

that the term-frequencies may also contain important in-

formation for classification and therefore should not be

quantized to either 0 or 1. Note that bi,u’s are analogous

to the term-frequencies commonly used in document re-

trieval.

3. Inverse Sequence-Frequency (ISF). In this approach, a

protein is represented by a point with coordinates de-

termined by the existence of GO terms and the inverse

sequence-frequency (ISF). Specifically, the GO vector pi

of the i-th protein is defined as:

pi =
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ci,Ω



















































, ci,u = ai,u log

(

N

|{k : ak,u , 0}|

)

(4)

where N is the number of protein sequences in the training

dataset. The denominator inside the logarithm is the num-

ber of GO vectors (among all GO vectors in the dataset)

having a non-zero entry in their u-th element, or equiv-

alently the number of sequences with the u-th GO term

as determined in Section 3.1. Note that the logarithmic

term in Eq. 4 is analogous to the inverse document fre-

quency commonly used in document retrieval. The idea

is to emphasize (resp. suppress) the GO terms that have

a low (resp. high) frequency of occurrences in the protein

sequences. The reason is that if a GO term occurs in every

sequence, it is not very useful for classification.

4. Term-Frequency–Inverse Sequence-Frequency (TF-

ISF). This approach combines term-frequency (TF) and

inverse sequence frequency (ISF) mentioned above.

Specifically, the GO vector pi of the i-th protein is defined
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as:

pi =
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di,Ω



















































, di,u = bi,u log

(

N

|{k : bk,u , 0}|

)

(5)

where bi,u is defined in Eq. 3.

By correlating Eqs. 2–5 with the general form of pseudo

amino acid composition (Eq. 1), we notice thatΩ is the number

of distinct GO terms of the given dataset, and φi,u’s in Eq. 1

correspond to ai,u, bi,u, ci,u and di,u in Eqs. 2–5, respectively.

Fig. 2 and Fig. 3 illustrate the prediction process of

GOASVM using protein accession numbers (ACs) and protein

sequences as input, respectively.

3.3. Multi-class SVM Classification

GO vectors are used for training one-vs-rest SVMs. Specifi-

cally, for an M-class problem (here M is the number of subcel-

lular locations), M independent SVMs are trained, one for each

class. Denote the GO vector created by using the true AC of the

i-th query protein as qi,0 and the GO vectors created by using

the AC of the k-th homolog as qi,k, k = 1, . . . , n, where n is the

number of homologs retrieved by BLAST with the default pa-

rameter setting. Then, given the i-th query protein Qi, the score

of the m-th SVM is:

sm(Qi) =
∑

r∈Sm

αm,rym,rK(pr,qi,k) + bm, (6)

where Sm is the set of support vector indexes corresponding to

the m-th SVM, ym,r ∈ {−1,+1} are the class labels, αm,r are the

Lagrange multipliers, and K(·, ·) is a kernel function. In this

work, linear kernels were used, i.e., K(pr,qi,k) = ⟨pr,qi,k⟩. The

predicted class of the query protein is given by

m∗ =
M

arg max
m=1

sm(Qi). (7)

Note that pr’s in Eq. 6 represent the GO training vectors, which

may include the GO vectors created by using the true ACs of

the training proteins or their homologous ACs. We have the

following two cases:

1. If the true ACs are available, pr’s represent the GO training

vectors created by using the true ACs only.

2. If only the AA sequences are known, then only the ACs

of the homologous sequences can be used for training the

SVM and for scoring. In that case, pr’s represent the

GO training vectors created by using the homologous ACs

only.

4. Results and Discussions

4.1. Datasets

Two benchmark datasets (EU16 (Chou and Shen, 2006c) and

HUM12 (Chou and Shen, 2006a)) and a novel dataset were used

to evaluate the performance of GOASVM.

Table 1: Breakdown of the novel eukaryotic-protein dataset used in this work.

The dataset contains proteins that were added to Swiss-Prot created between

08-Mar-2011 and 18-Apr-2012. The sequence identity of the dataset is below

25%. ∗: no new proteins were found in the corresponding subcellular location.

Label Subcellular Location No. of sequences

1 Cell Wall 2

2 Centriole 0∗

3 Chloroplast 51

4 Cyanelle 0∗

5 Cytoplasm 77

6 Cytoskeleton 4

7 Endoplasmic reticulum 28

8 Extracellular 103

9 Golgi apparatus 14

10 Lysosome 1

11 Mitochondrion 73

12 Nucleus 57

13 Peroxisome 6

14 Plasma membrane 169

15 Plastid 5

16 Vacuole 18

Total 608

The EU16 dataset and HUM12 dataset were created from

Swiss-Prot 48.2 in 2005 and Swiss-Prot 49.3 in 2006, respec-

tively. The EU16 comprises 4150 eukaryotic proteins (2423

in the training set and 1727 in the independent test set) with

16 classes and the HUM12 has 2041 human proteins (919 in

the training set and 1122 in the independent test set) with 12

classes. Both datasets were cut off at 25% sequence similarity

by a culling program (Wang et al., 2003). See Supplementary

Materials for more information of the two datasets. These two

datasets are good benchmarks for performance comparison, be-

cause none of the proteins in either dataset has more than 25%

sequence identity to any other proteins in the same subcellular

location. However, the training and testing sets of these two

datasets were constructed at the same period of time. There-

fore, the training and testing sets are likely to share similar GO

information, causing over-estimation in the prediction accuracy.

To avoid over-estimating the prediction performance and

to demonstrate the effectiveness of GOASVM, a eukaryotic

dataset containing novel proteins was constructed by using the

criteria specified in (Chou and Shen, 2006c). To ensure that

the proteins are really novel to GOASVM, the creation dates of

these proteins should be significantly later than the training pro-

teins (from EU16) and also later than the GOA database. Be-

cause EU16 was created in 2005 and the GOA database used

was released on 08-Mar-2011, we selected the proteins that

were added to Swiss-Prot between 08-Mar-2011 and 18-Apr-

2012. Moreover, only proteins with a single subcellular loca-

tion that falls within the 16 classes of the EU16 dataset were

selected. After limiting the sequence similarity to 25%, 608

eukaryotic proteins distributed in 14 subcellular locations (see

Table 1) were selected. This dataset can be downloaded from
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Figure 2: Flowchart of GOASVM that uses protein accession numbers (AC) only as input.

Figure 3: Flowchart of GOASVM that uses protein sequences only as input. AC: Accession Number.

the GOASVM web server.

4.2. Cross Validation and Independent Tests

We used the training set of EU16 to train the GOASVM and

used the new testing set to evaluate its performance. For exper-

iments in which EU16 and HUM12 were used, leave-one-out

cross-validation (LOOCV) (Hastie et al., 2001) and indepen-

dent tests were used for performance evaluation. In each fold

of LOOCV, a protein of the training dataset (suppose there are

N proteins) was singled out as the test protein and the remaining

(N − 1) proteins were used as the training data. This procedure

was repeated N times, and in each fold a different protein was

selected as the test protein. This ensures that every sequence in

the dataset will be tested.

4.3. Performance Metrics

Several performance measures were used, including the over-

all accuracy (ACC), overall Mathew’s correlation coefficient

(OMCC) (Mak et al., 2008) and weighted average Mathew’s

correlation (WAMCC) (Mak et al., 2008). The latter two mea-

sures are based on Mathew’s correlation coefficient (MCC)

(Matthews, 1975). MCC can overcome the shortcoming of ac-

curacy on imbalanced data and have the advantage of avoid-

ing the performance to be dominated by the majority classes.

For example, a classifier which predicts all samples as posi-

tive cannot be regarded as a good classifier unless it can also

predict negative samples accurately. In this case, the accuracy

and MCC of the positive class are 100% and 0%, respectively.

Therefore, MCC is a better measure for imbalanced classifi-

cation. Details of the performance measures are specified in

Supplementary Materials.

4.4. Prediction of Novel Proteins

Because the novel proteins were recently added to Swiss-

Prot, many of them have not been annotated in the GOA

database. As a results, if we used the accession numbers of

these proteins to search against the GOA database, the corre-

sponding GO vectors will contain all zeros. This suggests that

we should use the ACs of their homologs as the searching keys,

i.e., the procedure shown in Fig. 3 should be adopted. How-

ever, we observed that for some novel proteins, even the top

homologs do not have any GO terms annotated to them. In

particular, in the new dataset, there are 169 protein sequences

whose top homologs do not have any GO terms (2-nd row of

Table 2), causing GOASVM unable to make any predictions.

As can be seen from Table 2, by using only the first homolog,

the overall prediction accuracy of GOASVM is only 57.07%

(347/608). To overcome this limitation, the following strategy

was adopted. For the 169 proteins (2-nd row of Table 2) whose

top homologs do not have any GO terms in the GOA database,

we used the second-top homolog to find the GO terms; simi-

larly, for the 112 proteins (3-rd row of Table 2) whose top and
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Table 2: Performance of GOASVM on the novel-protein dataset denoted in Table 1. The 2nd column represents the upper bound of k in qi,k shown in Fig 1. For

example, when kmax = 2, only the AC of the 1st- or 2nd homolog will be used for retrieving the GO terms. No. of sequences without GO terms means the number

of protein sequences for which no GO terms can be retrieved. OMCC: Overall MCC; WAMCC: Weighted average MCC; ACC: Overall accuracy. See Supplementary

Materials for the definition of these performance measures. Note for fair comparison, the Baseline shown here is the best performance we obtained, which also

adopts the same procedure as GOASVM to obtain GO terms from homologs. ∗: Since the web-server of Euk-OET-PLoc is not available now, we implemented it

according to Chou and Shen (2006c).

Method kmax No. of sequences without GO terms OMCC WAMCC ACC

GOASVM

1 169 0.5421 0.5642 57.07%

2 112 0.5947 0.6006 62.01%

3 12 0.6930 0.6834 71.22%

4 7 0.6980 0.6881 71.71%

5 3 0.7018 0.6911 72.04%

6 3 0.7018 0.6911 72.04%

7 0 0.7035 0.6926 72.20%

Baseline∗ (Euk-OET-PLoc) 7 0 0.5246 0.5330 55.43%

2-nd homologs do not have any GO terms, the third-top ho-

molog was used; and so on until all the query proteins can cor-

respond to at least one GO term. In the case where BLAST fails

to find any homologs (although this case rarely happens) the de-

fault E-value threshold (the -e option) can be relaxed. Detailed

descriptions of this strategy can be found in Section 3.1.

Table 2 shows the prediction performance of GOASVM on

the 608 novel proteins. As explained earlier, to ensure that

these proteins are novel to GOASVM, 2423 proteins extracted

from the training set of EU16 were used for training the clas-

sifier. For fair comparison, Euk-OET-PLoc (Chou and Shen,

2006c) also uses the same version of the GOA database (08-

Mar-2011) to retrieve GO terms and adopts the same procedure

as GOASVM to obtain GO terms from homologs. In such case,

for Euk-OET-PLoc, it is unnecessary to use the PseAA(Chou,

2001) as a backup method because a valid GO vector can be

found for every protein in this novel dataset. Also, according

to Euk-OET-PLoc (Chou and Shen, 2006c), several parameters

are optimized and only the best performance is shown here (See

the last row of Table 2). As can be seen, GOASVM performs

significantly better than Euk-OET-PLoc (72.20% vs 55.43%),

demonstrating that GOASVM is more capable of predicting

novel proteins than Euk-OET-PLoc. Moreover, results clearly

suggest that when more distant homologs are allowed to be used

for searching GO terms in the GOA database, we have a higher

chance of finding at least one GO terms for each of these novel

proteins, thus improving the overall performance. In particular,

when the most distant homolog has a rank of 7 (kmax = 7),

GOASVM is able to find GO terms for all of the novel proteins

and the accuracy is also the highest, which is almost 15% (ab-

solute) higher than that using only the top homolog. Given the

novelty of these proteins and the low sequence similarity (below

25%), an accuracy of 72.2% is fairly high, suggesting that the

homologs of novel proteins can provide useful GO information

for protein subcellular localization.

Note that the gene association file that we downloaded from

the GOA database does not provide any subcellular localization

labels. This file only allows us to create a hash table storing

the association between the accession numbers and their corre-

sponding GO terms. This hash table covers all of the accession

numbers in the GOA database released on 08-Mar-2011, mean-

ing that it will cover the EU16 (dated in 2005) but not the ac-

cession numbers in the novel eukaryotic dataset. It is important

to emphasize that given a query protein, having a match in this

hash table does not mean that a subcellular-localization assign-

ment can be obtained. In fact, having a match only means that a

non-null GO vector can be obtained. After that, the SVMs play

an important role in classifying the non-null GO vector.

4.5. Comparing GO Vector Construction Methods

Table 3 shows the performance of different GO-vector con-

struction methods on the novel-protein dataset denoted in Ta-

ble 1. Linear SVMs were used for all cases, and the penalty

factor was set to 0.1. Also, the 2423 proteins in the train-

ing set of the EU16 dataset was used for training the classi-

fier, which was subsequently used to classify proteins in the

novel dataset. Evidently, term-frequency (TF) performs the best

among these four methods, which demonstrates that the fre-

quencies of occurrences of GO terms provide additional infor-

mation for subcellular localization. The results also suggest that

inverse sequence-frequency (ISF) is detrimental to classifica-

tion performance, despite its proven effectiveness in document

retrieval. This may be due to the differences between the fre-

quency of occurrences of common GO terms in our datasets and

the frequency of occurrences of common words in document re-

trieval. In document retrieval, almost all documents contain the

common words; as a result, the inverse document frequency is

effective in suppressing the influence of these words in the re-

trieval. However, the common GO terms do not appear in all of

the proteins in our datasets. In fact, even the most commonly

occurred GO term appears only in one-third of the proteins in

EU16. We conjecture that this low-frequency of occurrences

of common GO terms makes ISF not effective for subcellular

localization.

Many existing GO-based methods use the 1-0 value approach

to constructing GO vectors, including ProLoc-GO (Huang

et al., 2008), Euk-OET-PLoc (Chou and Shen, 2006c), and

Hum-PLoc (Chou and Shen, 2006a). Table 3 shows that
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Table 3: Performance of different GO-vector construction methods on the novel-protein dataset. TF: term-frequency; ISF: inverse sequence-frequency; TF-ISF:

term-frequency inverse sequence frequency. OMCC: Overall MCC; WAMCC: Weighted average MCC; ACC: Overall accuracy. See Supplementary Materials for

the definition of these performance measures.

GO Vector Construction Method OMCC WAMCC ACC

1-0 value 0.6877 0.6791 70.72%

TF 0.7035 0.6926 72.20%

ISF 0.6386 0.6256 66.12%

TF-ISF 0.6772 0.6626 69.74%

term-frequency (TF) performs almost 2% better than 1-0 value

(72.20% vs 70.72%). Similar conclusions can be also drawn

from the performance of GOASVM based on leave-one-out

cross validation on the EU16 training set and the HUM12 train-

ing set (See Supplementary Materials). The results are biologi-

cally relevant because proteins of the same subcellular localiza-

tion are expected to have a similar number of occurrences of the

same GO term. In this regard, the 1-0 value approach is inferior

because it quantizes the number of occurrences of a GO term to

0 or 1. Recently, we found that an approach similar to the TF

approach had also been used in iLoc-Euk (Chou et al., 2011),

iLoc-Hum (Chou et al., 2012), iLoc-Plant (Wu et al., 2011),

iLoc-Gpos (Wu et al., 2012), iLoc-Gneg (Xiao et al., 2011a),

and iLoc-Virus (Xiao et al., 2011b).

4.6. Compare with State-of-the-Art GO Methods

To further demonstrate the superiority of GOASVM over

other state-of-the-art GO methods, we also did experiments on

the EU16 dataset and the HUM12 dataset, respectively. Ta-

ble 4 compares the performance of GOASVM against three

state-of-the-art GO-based methods on the EU16 dataset and the

HUM12 dataset, respectively. As Euk-OET-PLoc and Hum-

PLoc could not produce valid GO vectors for some proteins

in EU16 and HUM12, both methods use PseAA as a backup.

ProLoc-GO uses either the ACs of proteins as searching keys

or uses the ACs of homologs returned from BLAST as search-

ing keys. GOASVM also uses BLAST to find homologs, but

unlike ProLoc-GO, GOASVM uses more than the top-ranked

homologs.

Table 4 shows that for ProLoc-GO, using ACs as input per-

forms better than using sequences (ACs of homologs) as input.

However, the results for GOASVM are not conclusive in this

regard because under LOOCV, using ACs as input performs

better than using sequences, but the situation is opposite un-

der independent tests. Table 4 also shows that no matter using

ACs as input or sequences as input, GOASVM performs better

than Euk-OET-PLoc and ProLoc-GO, for both the EU16 and

HUM12 datasets.

To show that the high performance of GOASVM is not

purely attribute to the homologous information obtained from

BLAST, we used BLAST directly as a subcellular localization

predictor. Specifically, the subcellular location of a query pro-

tein is determined by the subcellular location of its closest ho-

molog as determined by BLAST using Swiss-Prot 2012 04 as

the protein database. The subcellular location of the homologs

were obtained from their CC field in Swiss-Prot. Results in Ta-

ble 4 show that the performance of this approach is significantly

poorer than that of other machine learning approaches, suggest-

ing that homologous information alone is not sufficient for sub-

cellular localization prediction. Briesemeister et al. (2009) also

used BLAST to find the subcellular locations of proteins. Their

results also suggest that using BLAST alone is not sufficient for

reliable prediction.

Although all the datasets mentioned in this paper were cut

off at 25% sequence similarity, the performance of GOASVM

increased from 72.20% (Table 2) on the novel dataset to more

than 90% (Table 4) on both the EU16 dataset and the HUM12

dataset. This is mainly because in Table 4, the training and test-

ing sets were constructed at the same time, whereas there are

6 years apart between the creation of the training set and the

testing set in Table 2, which causes the latter to have less sim-

ilarity in GO information between the training set and test sets

than the former. This in turn implies that the performance of

GOASVM on our novel dataset (Table 2) can more objectively

reflect the classification capabilities of the predictors.

4.7. GOASVM Using Old GOA Database

The newer the version of GOA database, the more annota-

tion information it contains. To investigate how the updated in-

formation affects the performance of GOASVM, we performed

experiments using an earlier version (published in Oct. 2005)

of the GOA database and compared the results with Euk-OET-

PLoc on the EU16 dataset. Comparison between the last and

second last rows of Table 5 reveals that using newer versions

of the GOA database can achieve better performance than us-

ing older versions. This suggests that annotation information

is very important to the prediction. The results also show that

GOASVM significantly outperforms Euk-OET-PLoc, suggest-

ing that the GO vector construction method and classifier (term-

frequency and SVM) in GOASVM are superior to the those

used in Euk-OET-PLoc (1-0 value and K-NN).

5. Conclusion

This paper proposes a GO-based method – GOASVM – to

predict subcellular locations of proteins. The accession num-

bers (ACs) of query proteins are used as keys to search against

the GOA database to find the GO terms. For proteins with-

out an AC, BLAST is used to find their homologs and the ACs

of these homologs are used as the searching keys. Then, GO
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Table 4: Comparing GOASVM with state-of-the-art GO-based methods on (a) the EU16 dataset and (b) the HUM12 dataset. S: Sequences; AC: accession number;

LOOCV: leave-one-out cross-validation. m(n): m means the accuracy; n means the WAMCC. See Supplementary Materials for the definition of WAMCC. (–) means

the corresponding references do not provide the WAMCC.

Method Input Data Feature
Accuracy (WAMCC)

LOOCV Independent Test

ProLoc-GO (Huang et al., 2008) S GO (using BLAST) 86.6% (0.7999) 83.3% (0.706)

ProLoc-GO (Huang et al., 2008) AC GO (No BLAST) 89.0% (–) 85.7% (0.710)

Euk-OET-PLoc (Chou and Shen, 2006c) S + AC GO + PseAA 81.6% (–) 83.7% (–)

GOASVM S GO (usig BLAST) 94.68% (0.9388) 93.86% (0.9252)

GOASVM AC GO (No BLAST) 94.55% (0.9379) 94.61% (0.9348)

BLAST (Altschul et al., 1997) S – 56.75% 60.39%

(a) Performance on the EU16 dataset

Method Input Data Feature
Accuracy (WAMCC)

LOOCV Independent Test

ProLoc-GO (Huang et al., 2008) S GO (using BLAST) 90.0% (0.822) 88.1% (0.661)

ProLoc-GO (Huang et al., 2008) AC GO (No BLAST) 91.1% (–) 90.6% (0.724)

Hum-PLoc (Chou and Shen, 2006a) S + AC GO + PseAA 81.1% (–) 85.0% (–)

GOASVM S GO (usig BLAST) 91.73% (0.9033) 94.21% (0.9346)

GOASVM AC GO (No BLAST) 91.51% (0.9021) 94.39% (0.9367)

BLAST (Altschul et al., 1997) S – 68.55% 65.69%

(b) Performance on the HUM12 dataset

Table 5: Performance of GOASVM based on different versions of the GOA database on the EU16 training dataset. The 2nd column specifies the publication year of

the GOA database being used for constructing the GO vectors. For proteins without a GO term in the GOA database, pseudo amino-acid composition (PseAA) was

used as the backup feature. When the latest GOA database is used (last row), only one protein in the dataset does not have a GO term. Therefore, we assigned ‘0’ to

all of the elements in the GO vector of this protein instead of using PseAA. LOOCV: leave-one-out cross validation. Note for fair comparison, GOASVM here only

uses the ACs as input and thus the backup method is needed.

Method
Feature Accuracy

Main Backup LOOCV Independent Test

Euk-OET-PLoc (Chou and Shen, 2006c) GO (GOA2005) PseAA 81.6% 83.7%

GOASVM GO (GOA2005) PseAA 86.42% 89.11%

GOASVM GO (GOA2011) – 94.55% 94.61%

terms are used to construct the GO vectors, which are sub-

sequently classified by SVMs. Comparing with the existing

GO-based methods, GOASVM has the following advantages:

(1) it constructs the GO vectors by using the frequency of oc-

currences of GO terms instead of 1-0 value; (2) it adopts a

new strategy to incorporate more useful homologous GO in-

formation for classification; and (3) it selects a relevant GO-

vector subspace by finding distinct GO terms instead of using

the full GO-vector space. Results on a novel eukaryotic dataset

and two benchmark datasets demonstrate that GOASVM out-

performs the homology-based method and methods based on

amino acid compositions, and GOASVM may play a comple-

mentary role to the existing state-of-the-art predictors such as

iLoc-Euk (Chou et al., 2011) and iLoc-Hum (Chou et al., 2012).

It was found that the frequency of occurrences of GO terms

provides useful information for classification. The high per-

formance of GOASVM on a latest eukaryotic dataset shows its

practicality and effectiveness on the prediction of subcellular

locations of proteins.

Because one of the future directions for subcellular localiza-

tion prediction is to develop user-friendly and publicly acces-

sible web-servers (Chou and Shen, 2009), we have provided a

web-server for GOASVM at http://bioinfo.eie.polyu.

edu.hk/mGoaSvmServer/GOASVM.html.

Our method can be extended to multi-label proteins (Chou

et al., 2011, 2012). The extension from single-label protein pre-

diction to multi-label protein prediction is a research topic in

machine learning (Godbole and Sarawagi, 2004; Elisseeff and

Weston, 2001) and we will address this in our future work.
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Appendix A

To exemplify the discussion in Section 2, we created a lookup

table (Table 6) and developed a table-lookup procedure to pre-

dict the subcellular localization of the proteins in the EU16
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Table 6: Explicit GO terms for the EU16 dataset. Explicit GO terms include essential GO terms and their child terms that appear in the proteins of the dataset. The

definition of essential GO terms can be found in (Huang et al., 2008). Here the relationship only includes ‘is a’ and ‘part of’, because only cellular component GO

terms are analyzed here. Relationship: the relationship between child terms and their parent essential GO terms; No. of Terms: the total number of explicit GO

terms in a particular class.

Class Cellular Component
Explicit GO Terms

No. of Terms
Essential GO terms Child Terms (Relationship)

1 Cell Wall GO:0005618
GO:0009274 (Is a), GO:0009277 (Is a),

5
GO:0009505 (Is a), GO:0031160 (Is a)

2 Centriole GO:0005814 None 1

3 Chloroplast GO:0009507 None 1

4 Cyanelle GO:0009842 GO:0034060 (Part of) 2

5 Cytoplasm GO:0005737 GO:0016528 (Is a), GO:0044444 (Part of) 3

6 Cytoskeleton GO:0005856

GO:0001533 (Is a), GO:0030863 (Is a),

7GO:0015629 (Is a), GO:0015630 (Is a),

GO:0045111 (Is a), GO:0044430 (Part of)

7 Endoplasmic reticulum GO:0005783 GO:0005791 (Is a), GO:0044432 (Part of) 3

8 Extracellular GO:0030198 None 1

9 Golgi apparatus GO:0005794 None 1

10 Lysosome GO:0005764
GO:0042629 (Is a), GO:0005765 (Part of),

4
GO:0043202 (Part of)

11 Mitochondrion GO:0005739 None 1

12 Nucleus GO:0005634
GO:0043073 (Is a), GO:0045120 (Is a),

4
GO:0044428 (Part of)

13 Peroxisome GO:0005777 GO:0020015 (Is a), GO:0009514 (Is a) 3

14 Plasma membrane GO:0005886 GO:0042383 (Is a), GO:0044459 (Part of) 3

15 Plastid GO:0009536

GO:0009501 (Is a), GO:0009507 (Is a),

6GO:0009509 (Is a), GO:0009513 (Is a),

GO:0009842 (Is a)

16 Vacuole GO:0005773
GO:0000322 (Is a), GO:0000323 (Is a),

4
GO:0005776 (Is a)

dataset. Table 6 has two types of GO terms: essential GO terms

and child GO terms. As the name implies, the essential GO

terms, as identified by Huang et al. Huang et al. (2008), are

GO terms that are essential or critical for the subcellular lo-

calization prediction. In addition to the essential GO terms,

their direct descendants (known as child terms) also possess di-

rect localization information. The relationships between child

terms and their parent terms include ‘is a’, ‘part of’ and ‘occurs

in’ (Lord et al., 2003). The former two correspond to cellular

component GO terms and the third one typically corresponds to

biological process GO terms. As we are more interested in cel-

lular component GO terms, the ‘occurs in’ relationship will not

be considered. For ease of reference, we refer to both essential

GO terms and their child terms as ‘explicit GO terms’.

For each class in Table 6, the child terms were obtained

by presenting the corresponding essential GO term to the

QuickGO server (Binns et al., 2009), followed by excluding

those child terms that do not appear in the proteins of the EU16

dataset.4

4Note that if we use the cellular-component names as the searching keys,

QuickGO will give us more than 49 cellular-component GO terms, suggesting

that the 49 explicit GO terms are only a tiny subset of all relevant GO terms (in

Given a query sequence, we first obtain its ‘GO-term’ set

from the GO annotation database. Then, if only one of the terms

in this set matches an essential GO term in Table 6, the subcel-

lular location of this query protein is predicted to be the one

corresponding to this matched GO term. For example, if the set

of GO terms contains GO:0005618, then this query protein is

predicted as ‘Cell Wall’. Further, if none of the terms in this

set matches any essential GO terms but one of the terms in this

set matches any child terms in Table 6, then the query protein

is predicted as belonging to the class associated with this child

GO term. For example, if no essential GO terms can be found

in the set but GO:0009274 is found, then the query protein is

predicted as ’Cell Wall’.

A major problem of this table lookup procedure is that the

GO terms of a query protein may contain more than one essen-

tial GO terms and/or having child terms spanning across sev-

eral classes, causing inconsistent classification decisions. For

example, in the EU16 dataset, 713 (out of 2423) proteins have

explicit GO terms that map to more than one class, and 513

our method, we have more than 5000 relevant GO terms). Even for such a small

number of explicit GO terms, many proteins have explicit GO terms spanning

several classes.
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(out of 2423) proteins do not have any explicit GO terms. This

means that about 51% (1226/2423) of the proteins in the dataset

cannot be predicted using only explicit GO terms. Among the

2423 proteins in the dataset, only 1197 (49%) of them have

explicit GO terms that map to unique (consistent) subcellular

locations. This analysis suggests that direct table lookup is not

a desirable approach and this motivates us to develop machine

learning methods for GO-based subcellular localization predic-

tion.
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