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DiabDeep: Pervasive Diabetes Diagnosis based
on Wearable Medical Sensors and Efficient

Neural Networks
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Abstract—Diabetes impacts the quality of life of millions of people around the globe. However, diabetes diagnosis is still an arduous
process, given that this disease develops and gets treated outside the clinic. The emergence of wearable medical sensors (WMSs) and
machine learning points to a potential way forward to address this challenge. WMSs enable a continuous, yet user-transparent,
mechanism to collect and analyze physiological signals. However, disease diagnosis based on WMS data and its effective deployment
on resource-constrained edge devices remain challenging due to inefficient feature extraction and vast computation cost. To address
these problems, we propose a framework called DiabDeep that combines efficient neural networks (called DiabNNs) with off-the-shelf
WMSs for pervasive diabetes diagnosis. DiabDeep bypasses the feature extraction stage and acts directly on WMS data. It enables
both an (i) accurate inference on the server, e.g., a desktop, and (ii) efficient inference on an edge device, e.g., a smartphone, to obtain
a balance between accuracy and efficiency based on varying resource budgets and design goals. On the resource-rich server, we
stack sparsely connected layers to deliver high accuracy. On the resource-scarce edge device, we use a hidden-layer long short-term
memory based recurrent layer to substantially cut down on computation and storage costs while incurring only a minor accuracy loss.
At the core of our system lies a grow-and-prune training flow: it leverages gradient-based growth and magnitude-based pruning
algorithms to enable DiabNNs to learn both weights and connections, while improving accuracy and efficiency. We demonstrate the
effectiveness of DiabDeep through a detailed analysis of data collected from 52 participants. For server (edge) side inference, we
achieve a 96.3% (95.3%) accuracy in classifying diabetics against healthy individuals, and a 95.7% (94.6%) accuracy in distinguishing
among type-1 diabetic, type-2 diabetic, and healthy individuals. Against conventional baselines, such as support vector machines with
linear and radial basis function kernels, k-nearest neighbor, random forest, and linear ridge classifiers, DiabNNs achieve higher
accuracy, while reducing the model size (floating-point operations) by up to 454.5× (8.9×). Therefore, the system can be viewed as
pervasive and efficient, yet very accurate.

Index Terms—Diabetes diagnosis; grow-and-prune training; machine learning; neural networks; wearable medical sensors.
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1 INTRODUCTION

More than 422 million people around the world (more
than 24 million in the U.S. alone) suffer from diabetes [1],
[2]. This chronic disease imposes a substantial economic
burden on both the patient and the government, and ac-
counts for nearly 25% of the entire healthcare expenditure
in the U.S. [2]. However, diabetes prevention, care, and
especially early diagnosis are still fairly challenging given
that the disease usually develops and gets treated outside
a clinic, hence out of reach of advanced clinical care. In
fact, it is estimated that more than 75% of the patients still
remain undiagnosed [2]. This may lead to irreversible and
costly consequences. For example, studies have shown that
the longer a person lives with undiagnosed and untreated
diabetes, the worse their health outcomes are likely to be [3].
Without an early alarm, people with pre-diabetes, a less
intensive diabetes status that can be cured, could end up
with diabetes mellitus within five years that can no longer
be cured [4]. Thus, it is important to develop an accessible
and accurate diabetes diagnosis system for the daily life
scenario that can greatly improve general welfare and bend
the associated healthcare expenditure downwards [5].

The emergence of wearable medical sensors (WMSs)
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points to a promising way to address this challenge. In
the past decade, advancements in low-power sensors and
signal processing techniques have led to many disrup-
tive WMSs [6]. These WMSs enable a continuous sensing
of physiological signals during daily activities, and thus
provide a powerful, yet user-transparent, human-machine
interface for tracking the user’s health status. Combining
WMSs and machine learning brings up the possibility of
pervasive health condition tracking and disease diagnosis
in a daily context [7]. This approach exploits the superior
knowledge distillation capability of machine learning to
extract medical insights from health-related physiological
signals [8]. Hence, it offers a promising method to bridge
the information gap that currently separates the clinical and
daily domains. This helps enable a unified smart healthcare
system that serves people in both the daily and clinical
scenarios [6].

However, disease diagnosis based on WMS data and its
effective deployment at the edge still remain challenging [7].
Conventional approaches typically involve feature extrac-
tion, model training, and model deployment. However, such
an approach suffers from two major problems:

• Inefficient feature extraction: Handcrafting features
may require substantial engineering effort and expert
domain knowledge for each targeted disease. Search-
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ing for informative features through trial-and-error
can be very inefficient, hence it may not be easy to
effectively explore the available feature space. This
problem is exacerbated when the feature space scales
up given (i) a growing number of available signal
types from WMSs, and (ii) more than 69,000 human
diseases that need to be monitored [9].

• Vast computation cost: Due to the need to execute
a large number of floating-point operations (FLOPs)
during feature extraction and model inference, con-
tinuous health monitoring can be very computation-
ally intensive, hence hard to deploy on resource-
constrained platforms [10].

To solve these problems, we propose a framework called
DiabDeep that combines off-the-shelf WMSs with efficient
neural networks (NNs) for pervasive diabetes diagnosis.
DiabDeep completely bypasses the feature extraction stage,
acts on raw signals captured by commercially available
WMSs, and makes accurate diagnostic decisions. It supports
inference both on the server and the edge. On the resource-
rich server, we deploy stacked sparsely connected (SC)
layers (DiabNN-server) to focus on high accuracy. On the
resource-poor edge, we use the hidden-layer long short-
term memory (H-LSTM) based recurrent layer (DiabNN-
edge) to cut down on computation and storage costs while
incurring only a minor accuracy loss. Augmented by a
grow-and-prune training methodology, DiabDeep simulta-
neously improves accuracy, shrinks model size, and cuts
down on computation costs relative to conventional ap-
proaches, such as support vector machines (SVMs) and
random forest.

We summarize the major contributions of this article as
follows:

1) We propose a novel DiabDeep framework that
combines off-the-shelf WMSs and efficient NNs for
pervasive diabetes diagnosis. DiabDeep focuses on
both physiological and demographic information
that can be captured by WMSs in the daily domain,
including Galvanic skin response, blood volume
pulse, inter-beat interval of heart, body tempera-
tures, ambient environment, body movements, and
patient’s demographic background.

2) We design a novel DiabNN architecture that uses
different NN layers in its edge and server inference
model variants to accommodate varying resource
budgets and design goals.

3) We develop a training flow for DiabNNs based
on a grow-and-prune NN synthesis paradigm that
enables the networks to learn both weights and con-
nections in order to simultaneously tackle accuracy
and compactness.

4) We show that DiabDeep is accurate: we evaluate
DiabDeep based on data collected from 52 partic-
ipants. Our system achieves a 96.3% (95.3%) ac-
curacy in classifying diabetics against healthy in-
dividuals on the server (edge), and 95.7% (94.6%)
accuracy in distinguishing among type-1 diabetics,
type-2 diabetics, and healthy individuals.

5) We show that DiabDeep is efficient: we compare Di-
abNNs with conventional models, including SVMs

with linear and radial basis function (RBF) kernels,
k-nearest neighbors (k-NN), random forest, and lin-
ear ridge classifiers. DiabNNs achieve the highest
accuracy, while reducing model size (FLOPs) by up
to 454.5× (8.9×).

6) We show that DiabDeep is pervasive: it captures
all the signals non-invasively through comfortably-
worn WMSs that are already commercially avail-
able. This greatly assists with continuous diabetes
detection and monitoring without disrupting daily
lifestyle.

The rest of this paper is organized as follows. We review
related work in Section 2. Then, in Section 3, we discuss
the proposed DiabDeep framework in detail. We explain
our implementation details of DiabDeep in Section 4 and
present our experimental results in Section 5. In Section 6,
we discuss the inspirations of our proposed framework
from the human brain and future directions inspired by
DiabDeep. Finally, we draw conclusions in Section 7.

2 RELATED WORK

In this section, we first discuss diabetes diagnosis ap-
proaches using machine learning algorithms that have been
previously proposed. Then, we focus on recent progress in
efficient NN design.

2.1 Machine learning for diabetes diagnosis

Numerous studies have focused on applying machine learn-
ing algorithms to diabetes diagnosis from the clinical do-
main to the daily scenario.
Clinical approach: Electronic health records have been
widely used as an information source for diabetes predic-
tion and intervention [11]. With the recent upsurge in the
availability of biomedical datasets, new information sources
have been unveiled for diabetes diagnosis, including gene
sequences [12] and retinal images [13]. However, these
approaches are still restricted to the clinical domain, hence
have very limited access to patient status when he/she
leaves the clinic.
Daily approach: Daily glucose level detection has recently
captured an increasing amount of research attention. One
stream of study has explored subcutaneous glucose moni-
toring for continuous glucose tracking in a daily scenario [5].
This is an invasive approach that still requires a high
level of compliance, relies on regular sensor replacement
(3-14 days), and impacts user experience [14]. Recent sys-
tems have started exploiting non-invasive WMSs to alle-
viate these shortcomings. For example, Yin et al. combine
machine learning ensembles and non-invasive WMSs to
achieve a diabetes diagnostic accuracy of 77.6% [7]. Ballinger
et al. propose a system called DeepHeart that acts on Apple
watch data and patient demographics [15]. DeepHeart uses
bidirectional LSTMs to deliver an 84.5% diagnostic accuracy.
However, it relies on a small spectrum of WMS signals that
include only discrete heart rate and step count measure-
ments (indirectly estimated by photoplethysmograph and
accelerometer). This may lead to information loss, hence
reduce diagnostic capability. Swapna et al. achieve a 93.6%
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diagnostic accuracy by combining convolutional neural net-
works (CNNs) with LSTMs and heart rate variability mea-
surements [16]. However, the system has to rely on an
electroencephalogram (ECG) data stream sampled at 500Hz
that is not supported by commercial WMSs.

2.2 Efficient neural networks

Efficient NN design is a vibrant field. We discuss two
approaches next.
Compact model architecture: One stream of research ex-
ploits the design of efficient building blocks for NN redun-
dancy removal. For example, MobileNetV2 stacks inverted
residual building blocks to effectively shrink its model size
and reduce its FLOPs [17]. Ma et al. use channel shuffle
operation and depth-wise convolution to deliver model
compactness [18]. Wu et al. propose ShiftNet based on shift-
based modules, as opposed to spatial convolution layers,
to achieve substantial computation and storage cost reduc-
tion [19]. Besides, automated compact architecture design
also provides a promising solution [20], [21]. Dai et al.
develop efficient performance predictors to speed up the
search process for efficient NNs [22]. Compared to Mo-
bileNetV2 on the ImageNet dataset, the generated Cham-
Nets achieve up to 8.5% absolute top-1 accuracy improve-
ment while reducing inference latency substantially.
Network compression: Compression techniques [10], [23]
have emerged as another popular direction for NN re-
dundancy removal. The pruning methodology was initially
demonstrated to be effective on large CNNs by reducing the
number of parameters in AlexNet by 9× and VGG by 13×
for the well-known ImageNet dataset, without any accuracy
loss [23]. Follow-up works have also successfully shown
its effectiveness on recurrent NNs such as the LSTM [24],
[25], [26]. Network growth is a complementary method to
pruning that enables a sparser, yet more accurate, model
before pruning starts [10], [27]. A grow-and-prune synthe-
sis paradigm typically reduces the number of parameters
in CNNs [10], [28] and LSTMs [29] by another 2×, and
increases the classification accuracy [10]. It enables NN
based inference even on Internet-of-Things (IoT) sensors
[28]. The model can be further compressed through low-
bit quantization. For example, Zhu et al. show that a ternary
representation of the weights instead of full-precision (32-
bit) in ResNet-56 can significantly reduce memory cost while
incurring only a minor accuracy loss [30]. The quantized
models offer additional speedup potential for current NN
accelerators [31].
Knowledge distillation: Knowledge distillation allows a
compact student network to distill information (or ’dark
knowledge’) from a more accurate, but computationally
intensive, teacher network (or group of teacher networks)
by mimicking the prediction distribution, given the same
data inputs. The idea was first introduced by Hinton et
al. [32]. Since then, knowledge distillation has been effec-
tively used to discover efficient networks. Romero et al.
proposed FitNets that distill knowledge from the teacher’s
hint layers to teach compact students [33]. Passalis et al.
enhanced the knowledge distillation process by introduc-
ing a concept called feature space probability distribution
loss [34]. Yim et al. proposed fast minimization techniques

based on intermediate feature maps that can also support
transfer learning [35].

3 METHODOLOGY

In this section, we describe the proposed DiabDeep frame-
work in detail. We first give a high-level overview of the
entire framework. Then, we zoom into the DiabNN archi-
tecture used for DiabDeep inference, followed by a detailed
description of gradient-based growth and magnitude-based
pruning algorithms for DiabNN training.

3.1 The DiabDeep framework

We illustrate the proposed DiabDeep framework in Fig. 1.
DiabDeep captures both physiological and demographic
information as data input. It deploys a grow-and-prune
training paradigm to deliver two inference models, i.e.,
DiabNN-server and DiabNN-edge, that enable inference on
the server and on the edge, respectively. Finally, DiabDeep
generates diagnosis as output. The details of data input,
model training, and model inference are as follows:

• Data input: As mentioned earlier, DiabDeep fo-
cuses on (i) physiological signals and (ii) demo-
graphic information that are available in the daily
context. Physiological signals can be captured by
WMSs (e.g., from a smartphone and smartwatch) in
a non-invasive, passive, and efficient manner. The
list of collectible signals includes, but is not limited
to, heart rate, body temperature, Galvanic skin re-
sponse, and blood volume pulse. Additional signals
such as eletromechanical and ambient environmental
data (e.g., accelerometer, gyroscope, and humidity
sensor readings) may also provide information on
user habit tracking that offers diagnostic insights [7].
This list is expanding rapidly, given the speed of on-
going technological advancements in this field [17].
Demographics information (e.g., age, weight, gender,
and height) also assists with disease diagnosis [7]. It
can be easily captured and updated through a simple
user interface on a smartwatch or smartphone. Then,
both physiological and demographic data are aggre-
gated and merged into a comprehensive data input
for subsequent analysis.

• Model training: DiabDeep utilizes a grow-and-
prune paradigm to train its NNs, as shown in the
middle part of Fig. 1. It starts NN synthesis from a
sparse seed architecture. It first allows the network
to grow connections and neurons based on gradient
information. Then, it prunes away insignificant
connections and neurons based on magnitude
information to drastically reduce model redundancy.
This leads to improved accuracy and efficiency [10],
[29], where the former is highly preferred on the
server and the latter is critical at the edge. The
training process generates two inference models, i.e.,
DiabNN-server and DiabNN-edge, for server and
edge inference, respectively. Both models share the
same DiabNN architecture, but vary in the choice
of internal NN layers based on different resource
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Fig. 1. The schematic diagram of the proposed DiabDeep framework. DORs refer to disease-onset records. GSR, Temp., Acc., and Gyro. refer to
Galvanic skin response, skin temperature, accelerometer data, and gyroscope data, respectively.

constraints and design objectives, as explained later.

• Model inference: Due to the distinct inference envi-
ronments encountered upon deployment, DiabNN-
server and DiabNN-edge require different input data
flows, as depicted by the separate data paths in Fig. 1.
In DiabNN-server, data have to be accumulated in
local memory, e.g., local phone/watch storage, be-
fore they can be transferred to the base station in
a daily, weekly, or monthly manner, depending on
user preference. As opposed to the accumulation-
and-inference process, DiabNN-edge enables on-the-
fly inference directly at the edge, e.g., a smartphone.
This enables users to receive instantaneous diagnos-
tic decisions. As mentioned earlier, it incurs a slight
accuracy degradation (around 1%) due to the scarce
energy and memory budgets on the edge. However,
this deficit may be alleviated when DiabNN-edge
jointly works with DiabNN-server. When an alarm
is raised, DiabNN-edge can store the relevant data
sections as disease-onset records (DORs) that can be
later transferred to DiabNN-server for further analy-
sis. In this manner, DiabNN-edge offers a substantial
data storage reduction in the required edge memory
by bypassing the storage of ’not-of-interest’ signal
sections, while preserving the capability to make
accurate inference on the server side. Such DORs can
also be used as informative references when future
physician intervention and checkup are needed.

We next explain our proposed DiabNN architecture in
detail.

Fig. 2. An illustration of the DiabNN architecture.

3.2 The DiabNN architecture

Fig. 2 shows the DiabNN architecture that distills diagnostic
decisions (shown at the top) from data inputs (shown at the
bottom). There are three sequential steps employed during
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this process: (i) data preprocessing, (ii) transformation via
NN layers, and (iii) output generation using softmax. We
describe these steps next.

The preprocessing stage is critical for DiabNN inference
due to the following reasons:

• Data normalization: NNs typically favor normalized
inputs. Normalization methods, such as min-max
scaling, standardization, and L2 normalization, gen-
erally lead to accuracy and noise tolerance improve-
ments [36], [37]. In this work, we apply min-max
scaling to scale each input data stream into the [0,1]
range:

xnormalized =
x−min(x)

max(x)−min(x)
• Data alignment: WMS data streams may vary in their

start times and sampling frequencies [38]. Therefore,
we guarantee that the data streams are synchronized
by checking their timestamps and applying appro-
priate offsets accordingly.

We use different NN layers in DiabNN for server and
edge inference. DiabNN-server deploys SC layers to aim
at high accuracy whereas DiabNN-edge utilizes sparsely
recurrent (SR) layers to aim at extreme efficiency. All NN
layers are subjected to dropout regularization, which is a
widely-used approach for addressing overfitting and im-
proving accuracy [39].

In DiabNN-server, each SC layer conducts a linear trans-
formation (using a sparse matrix as opposed to a conven-
tional full matrix) followed by a nonlinear activation func-
tion. As shown later, utilizing SC layers leads to more model
parameters than SR layers, hence leads to an improved
learning capability and higher accuracy. Consequentially,
DiabNN-server achieves a 1% accuracy improvement over
DiabNN-edge.

In DiabNN-edge, we base our SR layer design on the H-
LSTM cell [29]. It is a variant of the conventional LSTM cell
obtained through addition of hidden layers to its control
gates. Fig. 3 shows the schematic diagram of an H-LSTM.
Its internal computation flow is governed by the following
equations:

ft = σ(Ws
fH

∗([xt,ht−1]) + bf )

it = σ(Ws
iH

∗([xt,ht−1]) + bo)

ot = σ(Ws
oH

∗([xt,ht−1]) + bo)

gt = tanh(Ws
gH

∗([xt,ht−1]) + bg)

ct = ft ⊗ ct−1 + it ⊗ gt

ht = ot ⊗ tanh(ct)
where ft, it, ot, gt, xt, ht, and ct denote the forget gate,
input gate, output gate, cell update vector, input, hidden
state, and cell state at step t, respectively; ht−1 and ct−1

refer to the previous hidden and cell states at step t − 1;
H , Ws, b, σ, and ⊗ refer to a hidden layer that performs
a linear transformation followed by an activation function,
sparse weight matrix, bias, sigmoid function, and element-
wise multiplication, respectively; ∗ indicates zero or more H
layers for each NN gate. The additional hidden layers enable
three advantages. First, they enhance gate control through

Fig. 3. The schematic diagram of an H-LSTM cell. DNNs refer to deep
neural network control gates.

Algorithm 1: Gradient-based growth

Input: W ∈ RM×N : weight matrix of dimension
M ×N , Msk ∈ RM×N : weight mask of dimension
M ×N
Output: updated Msk, updated W
Denote: α: growth ratio, W.grad: gradient of the
weight matrix, η: current learning rate
Begin
Accumulate W.grad for one training epoch
thres = (αMN)th largest element in |W.grad|
for 1 ≤ m ≤M do

for 1 ≤ n ≤ N do
if |W.gradm,n| > thres then

Mskm,n = 1
end

end
end
W←W + (η ×W.grad⊗Msk)
Return Msk, W
End

a multi-level abstraction that can lead to accuracy gains.
Second, they can be easily regularized through dropout,
and thus lead to better generalization. Third, they offer a
wide range of choices for internal activation functions, such
as the rectified linear unit (ReLU), that can lead to faster
learning [29]. Using H-LSTM based SR layers, DiabNN-edge
reduces the model size by 130× and inference FLOPs by
2.2× relative to DiabNN-server.

3.3 Grow-and-prune training for DiabNN

We next explain the gradient-based network growth and
magnitude-based network pruning algorithms in detail. Un-
less otherwise stated, we assume a mask-based approach
for tackling sparse networks. Each weight matrix W has a
corresponding binary mask matrix Msk that has the exact
same size. It is used to disregard dormant connections
(connections with zero-valued weights).
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Algorithm 2: Magnitude-based pruning

Input: W ∈ RM×N : weight matrix of dimension
M ×N , Msk ∈ RM×N : weight mask of dimension
M ×N
Denote: β: pruning ratio
Output: updated Msk, updated W
Begin
thres = (βMN)th largest element in |W|
for 1 ≤ m ≤M do

for 1 ≤ n ≤ N do
if |Wm,n| < thres then

Mskm,n = 0
end

end
end
W←W⊗Msk
Return Msk, W
End

Algorithm 1 illustrates the connection growth process.
The main objective of the weight growth phase is to locate
only the most effective dormant connections to reduce the
value of the loss function L. To do so, we first evaluate the
gradient for all the dormant connections and use this infor-
mation as a metric for ranking their effectiveness. During
the training process, we extract the gradient of all weight
matrices (W.grad) for each mini-batch of training data using
the back-propagation algorithm. We repeat this process over
a whole training epoch to accumulate W.grad. Then, we
calculate the average gradient over the entire epoch by
dividing the accumulated values by the number of training
instances. We activate a dormant connection w if and only if
its gradient magnitude is larger than the ((1 − α) × 100)th

percentile of the gradient magnitudes of its associated layer
matrix. Its initial value is set to the product of its gradient
value and the current learning rate. The growth ratio α is
a hyperparameter. We typically use 0.1 ≤ α ≤ 0.3 in our
experiments. The NN growth method was first proposed
in [10]. It has been shown to be very effective in enabling the
network to reach a higher accuracy with far less redundancy
than a fully connected model.

We show the connection pruning algorithm in Algo-
rithm 2. During this process, we remove a connection w
if and only if its magnitude is smaller than the (β × 100)th

percentile of the weight magnitudes of its associated layer
matrix. When pruned away, the connection’s weight value
and its corresponding mask binary value are simultaneously
set to zero. The pruning ratio β is also a hyperparameter.
Typically, we use β ≤ 0.3 in our experiments. Connection
pruning is an iterative process, where we retrain the net-
work to recover its accuracy after each pruning iteration.

4 IMPLEMENTATION DETAILS

In what follows, we first describe the dataset collected from
52 participants that is used for DiabDeep evaluation. Then,
we explain the implementation details of DiabDeep based
on the collected dataset.

Fig. 4. A photo of the Empatica E4 smartwatch (left) and the Samsung
Galaxy S4 smartphone (right) used for data collection.

TABLE 1
Data types collected from each participant

Data type Source
Galvanic skin response Smart watch
Skin temperature Smart watch
Acceleration (x, y, z) Smart watch
Inter-beat interval Smart watch
Blood volume pulse Smart watch
Humidity Smart phone
Ambient illuminance Smart phone
Ambient light color spectrum Smart phone
Ambient temperature Smart phone
Gravity (x, y, z) Smart phone
Angular velocity (x, y, z) Smart phone
Orientation (x, y, z) Smart phone
Acceleration (x, y, z) Smart phone
Linear acceleration (x, y, z) Smart phone
Air pressure Smart phone
Proximity Smart phone
Wi-Fi radiation strength Smart phone
Magnetic field strength Smart phone
Age Questionnaire
Gender Questionnaire
Height Questionnaire
Weight Questionnaire
Relatives with diabetes Questionnaire
Smoking Questionnaire
Drinking Questionnaire

4.1 Data collection and preparation

In this study, we collected both the physiological data and
demographic information from 52 participants. 27 partic-
ipants were diagnosed with diabetes (14 with type-1 and
13 with type-2 diabetes) whereas the remaining 25 partici-
pants were healthy non-diabetic baselines. We collected the
physiological data using a commercially available Empatica
E4 smartwatch [40] and Samsung Galaxy S4 smartphone,
as shown in Fig. 4. We also used a questionnaire to gather
demographic information from all the participants. We sum-
marize all the data types collected in this study in Table 1. It
can be observed that the collected data cover a wide range
of physiological and demographic signals that may assist
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with diabetes diagnosis in the daily context. The smartwatch
data capture the physiological state of the target user. This
information, e.g., GSR (measures the electrical activity of
the skin, i.e., skin conductance) and BVP (measures car-
diovascular activity, e.g., heart beat waveform and heart
rate variability, etc.), has been shown to effectively capture
the body status in terms of its health indicators [6]. The
ambient information from the smartphone may assist with
sensing of body movement and physiological signal calibra-
tion. Finally, demographic information has been previously
shown to be effective for diabetes diagnosis [7]. In this work,
we study whether synergies among sources of the above
information collected in the daily context can support the
task of pervasive diabetes diagnosis.

During data collection, we first inform all the partic-
ipants about the experiment, let them sign the consent
form, and ask them to fill the demographic questionnaire.
Then, we place the Empatica E4 smartwatch on the wrist of
participant’s non-dominant hand, and the Samsung Galaxy
S4 smartphone in the participant’s pocket. The experiment
lasts between 1.0 and 1.5 hours per participant during which
time the smartwatch and smartphone continuously track
and store the physiological signals. We use the Empatica
E4 Connect portal for smartwatch data retrieval [40]. We de-
velop an Android application to record all the smartphone
sensor data streams. All the data streams contain detailed
timestamps that are later used for data synchronization. The
experimental procedure was approved by the Institutional
Review Board of Princeton University. None of the partici-
pants reported mental, cardiac, or endocrine disorders.

We next preprocess the dataset before training the model.
We first synchronize and window the WMS data streams. To
avoid time correlation between adjacent data windows, we
divide data into t = 15s windows with s = 30s shifts in
between. The final dataset contains 5030 data instances. We
use 70%, 10%, and 20% of the data as training, validation,
and test sets. The training, validation, and test sets have
no time overlap. We then extract the value ranges of the
data streams from the training set, and then scale all three
datasets based on the min-max scaling method, as explained
earlier.

4.2 DiabDeep implementation

We implement the DiabDeep framework using PyTorch [41]
on Nvidia GeForce GTX 1060 GPU (with 1.708GHz fre-
quency and 6GB memory) and Tesla P100 GPU (with
1.329GHz frequency and 16GB memory). We employ CUDA
8.0 and CUDNN 5.1 libraries in our experiments. We next
describe our implementation of DiabNNs based on the
collected dataset.

4.2.1 DiabNN-server
We first explain the implementation details for DiabNN-
server.

Data input: For each data instance, we flatten and con-
catenate the data within the same monitoring window from
both the smartphone and smartwatch. This results in a vec-
tor of length 3705, where the flattened smartwatch window
contains 2535 signal readings (from one data stream at 64Hz,
three data streams at 32Hz, two data streams at 4Hz and

Fig. 5. Architecture of DiabNN-server. x denotes the input tensor.
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Fig. 6. Training curve for DiabNN-server to distinguish among type-1
diabetic, type-2 diabetic, and healthy individuals.

one data stream at 1Hz), and the flattened smartphone win-
dow provides additional 1170 signal readings (from 26 data
streams at 3Hz). Finally, we append the seven demographic
features at its end and obtain a vector of length 3712 as the
input for DiabNN-server.

Model architecture: We present the model architecture
for DiabNN-server in Fig. 5. We use six sequential SC layers
in DiabNN-server with widths set at 1024, 512, 256, 128,
64 and 2 (3 for three-class classification), respectively. The
input dimension is the same as the input tensor dimension
of 3712. We use ReLU as the nonlinear activation function
for all SC layers.

Training: We use a stochastic gradient descent (SGD)
optimizer with a momentum of 0.9 for this experiment. We
initialize the learning rate to 0.005 and divide the learning
rate by 10 when the validation accuracy does not increase
in 50 consecutive epochs. We use a batch size of 256 and
a dropout ratio of 0.2. For grow-and-prune training, we
initialize the seed architecture with a filling rate of 20%.
We grow the network for three epochs using a 0.2 growth
ratio. For network pruning, we initialize the pruning ratio
to 0.2. We halve the pruning ratio if the retrained model
cannot restore accuracy on the validation set. We terminate
the process when the ratio falls below 0.01. The training
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Fig. 7. Architecture of DiabNN-edge. The denotations follow the descrip-
tion in Section 3.2.
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Fig. 8. Training curve for DiabNN-edge to distinguish among type-1
diabetic, type-2 diabetic, and healthy individuals.

curve for DiabNN-server is presented in Fig. 6.

4.2.2 DiabNN-edge

We explain the implementation details for DiabNN-edge in
this section.

Data input: Unlike SC layer based DiabNN-server, SR
layer based DiabNN-edge acts on time series data step
by step [29]. Thus, at each time step, we concatenate the
temporal signal values from each data stream along with the
demographic information to form an input vector of length
40 (corresponding to seven smartwatch data streams, 26
smartphone data streams, and seven demographic features,
as shown in Table 1). DiabNN-edge operates on four input
vectors per second. When a signal reading is missing in a
data stream (e.g., due to a lower sampling frequency), we
use the closest previous reading in that data stream as the
interpolated value.

Model architecture: We present the model architecture
for DiabNN-edge in Fig. 7. DiabNN-edge contains one H-
LSTM cell based SR layer that has a hidden state width
of 96. Each control gate within the H-LSTM cell contains
one hidden layer. We use ReLU as the nonlinear activation
function.

Training: We again use an SGD optimizer with a mo-
mentum of 0.9 for this experiment. The learning rate is
initialized to 0.001. We divide the learning rate by 10 when
the validation accuracy does not increase in 30 consecutive
epochs. We use a batch size of 64 and a dropout ratio of 0.2
for training. For grow-and-prune training, we use the same

TABLE 2
Performance evaluation metrics

Name Definition
Accuracy (TP + TN)/(TP + FP + FN + TN)

False positive rate FP/(TN + FP )
False negative rate FN/(TP + FN)

F1 score 2TP/(2TP + FP + FN)

TP (TN): diabetic (healthy) instances classified as diabetic (healthy)
FP (FN): healthy (diabetic) instances classified as diabetic (healthy)

hyperparameter set as in the experiment for DiabNN-server.
The training curve for DiabNN-edge is presented in Fig. 8.

5 EVALUATING DIABDEEP PERFORMANCE

In this section, we first analyze the performance of DiabNN-
server and DiabNN-edge for two classification tasks: (i)
binary classification that distinguishes between diabetic
vs. healthy individuals, and (ii) three-class classification
to distinguish among type-1 diabetic, type-2 diabetic, and
healthy individuals. Then, we compare the performances of
DiabNN-server, DiabNN-edge, and the relevant baselines.

We evaluate the performance of DiabNNs using four
performance metrics, as summarized in Table 2. Accuracy
indicates the overall prediction capability. The false posi-
tive rate (FPR) and false negative rate (FNR) measure the
DiabNN’s capability to avoid misclassifying healthy and
diabetic instances, respectively. The F1 score measures the
overall performance of precision and sensitivity.

5.1 DiabNN-server performance evaluation
We first analyze the performance of DiabNN-server. Table 3
presents the confusion matrix of DiabNN-server for the bi-
nary classification task. DiabNN-server achieves an overall
accuracy of 96.3%. For the healthy instances, it achieves a
very low FPR of 4.3%, demonstrating its effectiveness in
avoiding false alarms. For the diabetic instances, it achieves
an FNR of 3.1%, indicating its effectiveness in raising alarms
when diabetes does occur. DiabNN-server achieves an F1
score of 96.5% for the binary classification task.

We present the confusion matrix of DiabNN-server for
the three-class classification task in Table 4. DiabNN-server
achieves an overall accuracy of 95.7%. For the healthy in-
stances, it achieves a low FPR of 6.6%, again demonstrating
its ability to avoid false alarms. It also delivers low FNRs
for both type-1 and type-2 diabetic individuals of 1.6% and
2.8%, respectively (each FNR depicts the ratio of the number
of false predictions for a target diabetes type divided by
the total number of instances of that type). DiabNN-server
achieves an F1 score of 95.7% for the three-class classification
task.

Furthermore, the grow-and-prune training paradigm not
only delivers high diagnostic accuracy, but also leads to
model compactness as a side benefit. For binary classifica-
tion, the final DiabNN-server model contains only 429.1K
parameters with a sparsity level of 90.5%. For the three-class
classification task, the final DiabNN-server model contains
only 445.8K parameters with a sparsity level of 90.1%. The
model compactness achieved in both cases can help reduce
storage and energy consumption on the server.
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TABLE 3
DiabNN-server confusion matrix for binary classification

prediction

diabetic healthy total

label
diabetic 504 16 520

healthy 21 465 486

total 525 481 1006

TABLE 4
DiabNN-server confusion matrix for three-class classification

prediction

type-1 type-2 healthy total

label

type-1 303 1 4 308

type-2 5 206 1 212

healthy 22 10 454 486

total 330 217 459 1006

5.2 DiabNN-edge performance evaluation
We next analyze the performance of DiabNN-edge. We
present the confusion matrix of DiabNN-edge for the binary
classification task in Table 5. DiabNN-edge achieves an over-
all accuracy of 95.3%. For the healthy case, it also achieves
a very low FPR of 3.7%. For diabetic instances, it achieves
an FNR of 5.6%. This shows that DiabNN-edge can also
effectively raise disease alarms on the edge. DiabNN-edge
achieves an F1 score of 95.4% for the binary classification
task.

TABLE 5
DiabNN-edge confusion matrix for binary classification

prediction

diabetic healthy total

label
diabetic 491 29 520

healthy 18 468 486

total 509 497 1006

TABLE 6
DiabNN-edge confusion matrix for three-class classification

prediction

type-1 type-2 healthy total

label

type-1 288 4 16 308

type-2 7 200 5 212

healthy 12 10 464 486

total 307 214 485 1006

TABLE 7
Performance comparison between DiabNN-server and DiabNN-edge

Performance matrices DiabNN-server DiabNN-edge
Accuracy 96.3% 95.3%

FPR 4.3% 3.7%
FNR 3.1% 5.6%
F1 96.5% 95.4%

FLOPs 858.2K 392.8K
#Parameters 429.1K 3.3K

We also evaluate DiabNN-edge for the three-class clas-
sification task and present the confusion matrix in Table 6.
DiabNN-edge achieves an overall accuracy of 94.6%. For the
healthy case, it achieves an FPR of 4.5%. It achieves FNRs of
6.5% and 5.7% for the type-1 and type-2 diabetic instances,
respectively. DiabNN-server achieves an F1 score of 94.4%
for the three-class classification task.

DiabNN-edge delivers extreme model compactness. For
binary classification, the final DiabNN-edge model contains
a sparsity level of 96.3%, yielding a model with only 3.3K
parameters. For the three-class classification task, the final
DiabNN-edge model contains a sparsity level of 95.9%,
yielding a model with only 3.7K parameters. This greatly
assists with inference on the edge that typically suffers from
very limited resource budgets.

5.3 Results analysis

As mentioned earlier, DiabNN-edge and DiabNN-server of-
fer several performance tradeoffs over diagnostic accuracy,
storage cost, and run-time efficiency. This provides flexi-
ble design choices that can accommodate varying design
objectives related to model deployment. To illustrate their
differences, we compare these two models for the binary
classification task in Table 7. We observe that DiabNN-
server achieves a higher accuracy, a higher F1 score, and
a lower FNR. DiabNN-edge, on the other hand, caters to
edge-side inference by enabling:

• A smaller model size: The edge model contains
130× fewer parameters, leading to a substantial
memory reduction.
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Fig. 9. Performance tradeoffs against model complexity based on five
runs per data point with different random seeds. Error bars denote
standard deviations.

• Less computation: It requires 2.2× fewer FLOPs
per inference, enabling a more efficient, hence more
frequent, monitoring capability on the edge.

• A lower FPR: It reduces the FPR by 0.6%. This
enables fewer false alarms and hence an improved
usability for the system in a daily usage scenario.

We also analyze the performance tradeoffs under changing
model complexity and present the results in Fig. 9. It can
be observed that an increase in computational complexity
can lead to performance improvements, in general. How-
ever, such benefits gradually degrade as the computation
complexity continues to increase.

We next compare DiabNNs with widely-used learning
methods, including SVMs with linear and RBF kernels, k-
NN, random forest, and linear ridge classifiers. For all the
methods, we use the same train/validation/test split and
the same binary classification task for a fair comparison.
In line with the studies in [42] and [43], we extract the
signal mean, variance, Fourier transform coefficients, and
the third-order Daubechies wavelet transform approxima-
tion and detail coefficients on Daubechies D2, D4, D8, and
D24 filters from each monitoring window, resulting in a
feature vector of length 304 per data instance. We train all
our non-NN baselines using the Python-based Scikit learn li-
braries [44]. We compare the performance of all the inference
models in Table 8. In addition to classification accuracy, we
also compute the necessary FLOPs per inference involved in
both feature extraction and classification stages. We can see
that DiabNN-server achieves the highest accuracy among
all the models. With a higher accuracy than all the non-NN
baselines, DiabNN-edge achieves the smallest model size

(up to 454.5× reduction) and least FLOPs per inference (up
to 8.9× reduction). Note that the feature extraction stage
accounts for 491K FLOPs even before the classification stage
starts executing. This is already 1.3× the total inference cost
of DiabNN-edge.

Finally, we compare DiabDeep with relevant work from
the literature in Table 9. We also focus on the same binary
classification task that is the focus of these studies. Dia-
bDeep achieves the highest accuracy relative to the base-
lines due to its two major advantages. First, it relies on a
more comprehensive set of WMSs. This captures a wider
spectrum of user signals in the daily context for diagnostic
decisions. Moreover, it utilizes a grow-and-prune training
paradigm that learns both the connections and weights in
DiabNNs. This enables a more effective SGD in both the
model architecture space and parameter space.

6 DISCUSSIONS & FUTURE WORK

In this section, we discuss the inspirations we took from hu-
man brains to train DiabNNs as well as the future directions
enabled by DiabDeep.

Our brains continually remold the synaptic connections
as we acquire new knowledge. These changes happen every
second throughout our lifetimes. It has even been shown
that most knowledge acquisition and information learning
processes in our brains result from such a synaptic rewiring,
also referred to as neuroplasticity [45]. This is very different
from most current NNs that have a fixed architecture. To
mimic the learning mechanism of human brains, we utilize
gradient-based growth and magnitude-based pruning to
train accurate, yet very compact, DiabNNs for DiabDeep.
The grow-and-prune synthesis paradigm allows DiabNNs
to easily adjust their synaptic connections to the diabetes
diagnosis task.

DiabDeep opens up the potential for future WMS-based
disease diagnosis studies, given that more than 69,000 dis-
eases exist [7]. We hope that this work will encourage
clinics/hospitals/researchers to start collecting WMS data
from individuals across more challenging diagnostic tasks,
e.g., for long-term cancer prediction. Bypassing the feature
extraction stage with efficient NNs enables easy scalability
of the proposed approach across other disease domains.
The grow-and-prune synthesis paradigm may even support
continuous disease trend forecasting capability, given its
continuous learning capability [27]. As more data become
available and analyzed with the proposed methodology, its
effectiveness as a scalable approach for future pervasive
diagnosis and medication level determination will continue
to improve.

7 CONCLUSIONS

In this work, we proposed a framework called DiabDeep
that combines off-the-shelf WMSs with efficient DiabNNs
for continuous and pervasive diabetes diagnosis on both
the server and the edge. On the resource-rich server, we
deployed stacked SC layers to focus on high accuracy.
On the resource-scarce edge, we used an H-LSTM based
SR layer to reduce computation and storage costs with
only a minor accuracy loss. We trained DiabNNs by
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TABLE 8
Inference model comparison between DiabNNs and conventional methods

Model Accuracy #Parameters Feature extraction Classification Total FLOPs
FLOPs FLOPs

SVM-linear 86.3% 699K 0.49M 1.39M 1.88M
SVM-RBF 92.1% 822K 0.49M 1.65M 2.14M
k-NN 93.5% 1.5M 0.49M 3.0M 3.49M
Random forest 92.6% 8K 0.49M 4K+ 0.49M∗

Linear ridge 81.3% 0.8K 0.49M 1.6K 0.49M
DiabNN-server 96.3% 429K - 0.86M 0.86M
DiabNN-edge 95.3% 3.3K - 0.39M 0.39M
+: Number of comparison operations.
∗: Calculation excluding the comparison operation cost.

TABLE 9
Performance comparison between DiabDeep and related work

Data sources Model Accuracy
Swapna et al. [16] ECG sensor Conv-LSTM 95.1%
Swapna et al. [16] ECG sensor CNN 93.6%
Ballinger et al. [15] Watch + demographics LSTM 84.5%
Yin et al. [7] Watch + demographics Ensemble 77.6%
This work (DiabNN-server) Watch + phone + demographics Stacked SC layers 96.3%
This work (DiabNN-edge) Watch + phone + demographics H-LSTM SR layer 95.3%

leveraging gradient-based growth and magnitude-based
pruning algorithms. This enables DiabNNs to learn both
weights and connections during training. We evaluated
DiabDeep based on data collected from 52 participants.
Our system achieves a 96.3% (95.3%) accuracy in classifying
diabetics against healthy individuals on the server (edge),
and a 95.7% (94.6%) accuracy in distinguishing among
type-1 diabetic, type-2 diabetic, and healthy individuals.
Against conventional baselines, such as SVMs with linear
and RBF kernels, k-NN, random forest, and linear ridge
classifiers, DiabNN-edge reduces model size (FLOPs) by
up to 454.5× (8.9×) while improving accuracy. Thus, we
have demonstrated that DiabDeep can be employed in
a pervasive fashion, while offering high efficiency and
accuracy.
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