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1 Introduction

The anti-de Sitter/conformal field theory (AdS/CFT) duality has passed many tests. When

precise comparisons of gravity and field theory results can be made, the results generally

agree. This paper focuses on an aspect of the AdS4/CFT3 duality in which there is an

apparent acute conflict between the two sides of the duality, but we find that the conflict

is resolved through oft-neglected boundary terms.

The conflict involves the holographic computation of the 3-point function of dimension-

1 operators of the CFT3. For concreteness, let us describe it in the case of the maximally

supersymmetric (N = 8) 3d superconformal field theories (SCFTs) whose holographic de-

scription includes four-dimensional, N = 8 gauged supergravity [1]. The representation

theory of the N = 8 superconformal algebra shows that any 3d, local N = 8 SCFT must

contain scalar operators OIJ , 1 ≤ I, J ≤ 8 transforming in the traceless symmetric tensor

description of the 35v representation of the SO(8) global R-symmetry group with scale di-

mension ∆ = 1. These scalars are present in any local N = 8 SCFT because they belong to

the same superconformal multiplet as the stress tensor. As we will explain, superconformal

Ward identities imply that the 3-point correlation function 〈OIJ(~x1)OJK(~x2)OKI(~x3)〉 for

given I, J and K (no sum) must be non-vanishing and related to the 2-point function of the

canonically normalized stress tensor. This 2-point function can be calculated exactly using

supersymmetric localization [2] whenever an explicit Lagrangian description is available.

The AdS/CFT correspondence requires the 3-point functions 〈OIJ(~x1)OJK(~x2)OKI(~x3)〉
be matched by a calculation in the gravity bulk, where 3-point functions are usually

calculated by evaluating a Witten diagram containing a cubic vertex from the bulk La-

grangian. The problem is that the Lagrangian of N = 8 gauged supergravity in four

dimensions does not contain any cubic scalar couplings! Thus another way to obtain

〈OIJ(~x1)OJK(~x2)OKI(~x3)〉 must be found.

Note that the foregoing description of the conflict does not rely on a specific field theory

realization of the N = 8 SCFT dual to four-dimensional, N = 8 gauged supergravity. In

fact, the four-dimensional, N = 8 gauged supergravity theory does not correspond to a
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unique N = 8 SCFT; it corresponds instead to a universal sector describing the stress

tensor multiplet of all known N = 8 SCFTs with holographic duals. These are the large

N limits of three distinct families: U(N)1 × U(N)−1 ABJM theory [3], U(N)2 × U(N)−2

ABJM theory, and U(N)2 × U(N + 1)−2 ABJ theory [4]. (See also [5–8] for earlier work

that was generalized in [3, 4].)1 These N = 8 SCFTs are believed to be, respectively,

the infrared limits of maximally supersymmetric 3d Yang-Mills theory with gauge group

U(N), O(2N), and O(2N + 1). At large N they have a dual description in terms of eleven-

dimensional supergravity, of which four-dimensional N = 8 gauged supergravity of [1] is a

consistent truncation.

An important clue to the resolution of the conflict appears in [14], where an N = 2

truncation of the N = 8 supergravity theory was studied.2 The truncation contains 3 com-

plex scalars zα = Aα + iBα, α = 1, 2, 3. The goal of [14] was to match the field theory

calculation of the S3 free energy of an N = 2-preserving mass deformation of the ABJM

theory obtained in [16] by the method of supersymmetric localization developed in [17–19]

(for recent reviews, see [20, 21]). Obtaining the match is not straightforward. First, the

bulk scalars Aα dual to the three ∆ = 1 field theory operators Oα in the truncation3 must be

quantized by alternate quantization [22]. Second, the infinite counterterms obtained from

the method of holographic renormalization must be supplemented by a finite counterterm.

Both alternate quantization and the finite counterterm [23, 24] are required by the super-

symmetry of the Legendre transformed on-shell action which is the generator of correlation

functions in the boundary field theory [25]. We focus on the counterterm obtained in [14]

by a Bogomolny factorization argument for the action of planar domain walls [26]. The

counterterm turns out to be proportional to
∫
d3x
√
−hA1A2A3 with a determined coeffi-

cient.4 It turns out that this boundary term and its extension to the full N = 8 theory are

exactly what we need to compute 〈O1(~x1)O2(~x2)O3(~x3)〉 and 〈OIJ(~x1)OJK(~x2)OKI(~x3)〉.
The main effort in this paper is to obtain the essential cubic counterterm5 by modifying

the bulk theory so that supersymmetry extends to the boundary. The principle we employ

is that the on-shell supergravity action, seen via the AdS/CFT dictionary as a functional of

the sources for the field theory operators, should be supersymmetric. We analyze this first

at the level of a limit of four-dimensional N = 1 supergravity in which the back-reaction of

1The ABJ(M) theory [3, 4] is a U(N)k×U(M)−k Chern-Simons matter theory in three dimensions that

has only N = 6 manifest supersymmetry. It is the effective theory on N coincident M2-branes placed at

the singular point of a certain C4/Zk orbifold. When k = 1 or 2 and M = N or M = N + 1, the infrared

limit is believed to have enhanced N = 8 supersymmetry [3, 9–13]. The U(N)1 × U(N + 1)−1 theory is

dual to the U(N)1 × U(N)−1 one, so there are only three distinct families of N = 8 SCFTs of this type.

A fourth family of N = 8 SCFTs is given by the SU(2)k × SU(2)−k BLG theories [5–8] but do not have

classical supergravity duals. The BLG theories have manifest N = 8 supersymmetry.
2To our knowledge, this truncation was first given in [15].
3The 3 operators Oα constitute the subset of the 35 OIJ that is part of the truncated theory. This

subset is defined in the next section.
4The induced metric at the boundary is hab.
5It is well known that a boundary term quadratic in fermion fields must be added to the bulk action in

order to obtain the 2-point correlator of fermion operators in the boundary theory, [27–30]. Also, a cubic

boundary counterterm plays a role in the holographic story of extremal correlation functions in N = 4 SYM

theory [31]. See, also [32–34].
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matter fields on the AdS4 background is consistently suppressed and the resulting theory,

similar to that of [36], enjoys global AdS supersymmetry. We also discuss the changes

needed to extend the treatment to N = 1 supergravity. Then we move on to N = 8

and show how the cubic counterterm emerges from an extended Bogomolny argument and

finally how it is generated in the full N = 8 gauged supergravity. In both the N = 1 and

N = 8 analyses, the alternate quantization of [25], implemented through a Legendre trans-

form of the on-shell action, plays an important role. It is worth noting that for N = 1 global

supersymmetric theories with boundaries, the boundary terms we find here (and their

derivation) are in some ways very similar to those encountered in lower dimensions [37–39].

We should emphasize that the framework developed here goes beyond the immediate

application to the correspondence between the N = 8 gauged supergravity and its maxi-

mally supersymmetric 3d SCFT dual. Indeed, any holographic computation of a 3-point

correlator of dimension-1 operators in a 3d CFT with a gravity dual must be similar to

the present study in that the bulk cubic vertex must vanish6 and the answer comes from a

(super)gravity boundary term.7 Our claim is that in a four-dimensional N ≥ 1 supergrav-

ity theory this boundary term can be determined from the requirement that the theory is

supersymmetric, including boundary terms.

It is worth contrasting the situation here to that of four-dimensional N = 4 super-

symmetric Yang-Mills theory, where the 3-point correlator of the chiral primary operator

O∆=2 in the same multiplet as the stress tensor is protected [43, 44]. This means that it is

independent of the gauge coupling constant, and so it can be computed at weak coupling

by performing Wick contractions. This is not true for the scalars OIJ of N = 8 SCFTs,

where there are strong coupling effects. It is worth displaying the result for the supergravity

limits of the 2- and 3-point function of the operators Oα in the truncation of [14]:

〈Oα(~x1)Oβ(~x2)〉 =
L2

2π3G4

δαβ

|~x12|2
=

√
2N3/2k1/2

3π3

δαβ

|~x12|2
,

〈O1(~x1)O2(~x2)O3(~x3)〉 =
L2

4π4G4

1

|~x12||~x23||~x31|
=

√
2N3/2k1/2

6π4

1

|~x12||~x23||~x31|
.

(1.1)

In these expressions, L is the radius of the dual AdS4 solution, G4 is the effective four-

dimensional Newton constant, ~xij ≡ ~xi − ~xj , N was defined above, and k = 1 or 2 is the

Chern-Simons level of the ABJ(M) theory. We will first explain how to derive (1.1) in

the N = 8 ABJM theory based on previous results that use supersymmetric localization

6Suppose that the on-shell action did contain an A3 or A∂µA∂
µA vertex. It is curious to note that the

results for the Witten diagrams given in [40] are both infinite when d = 3, and ∆1 = ∆2 = ∆3 = 1.
7An interesting example of dimension-1 operators in a non-supersymmetric instance of AdS4/CFT3 is

present in the higher spin/O(N) vector model duality conjectured in [41]. For this model, the dimension-1

scalar operators have s = 0 for the higher spin currents of spin s. The match of 3-point functions of higher-

spin currents between field theory and holography was performed in [42] for all s. For s = 0, the authors

of [42] argued for a match of the 3-point function of dimension-1 scalar operators somewhat indirectly by con-

sidering the analytic continuation of the result for arbitrary s, and not by explicitly computing a boundary

term as we do here. Perhaps one can provide a more direct argument by explicitly computing the required

boundary term by imposing the condition that the higher spin symmetry should extend to the boundary.
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and then derive it from N = 8 supergravity. Equality of the coefficients follows from the

AdS/CFT dictionary.

Therefore, in addition to uncovering the essential role of supergravity boundary terms

in the computation of CFT three-point functions, the results presented in this paper also

provide another precision test of holography: the equality in (1.1).

The rest of this paper is organized as follows. In section 2 we review the field theory

computations of correlation functions of dimension-1 operators. In section 3 we start with a

toy example in N = 1 supergravity in 4 dimensions, in which we derive the boundary terms

needed to ensure supersymmetry. In section 4 we use these boundary terms to calculate

holographically the 3-point function of dimension-1 operators, thus resolving the puzzle

mentioned above in an N = 1 toy example. In sections 5–8 we generalize this computation

to N = 8 gauged supergravity: we start with a brief review in section 5, we develop a

Bogomolny argument that motivates the presence of a boundary term in section 6, we use

this boundary term to verify supersymmetry in section 7, and we perform the holographic

computation of the 3-point functions of dimension-1 scalar operators in section 8. We end

with concluding remarks in section 9.

2 Field theory computations

In this section we discuss 3-point functions of dimension-1 scalar operators from a field

theory perspective. We start in section 2.1 with a general discussion of dimension-1 scalar

operators in 3d SCFTs. In section 2.2 we then specialize to N = 8 SCFTs, which are the

main focus of this paper.

2.1 Dimension-1 scalar operators in 3d SCFTs

In 3d SCFTs with at least N = 2 supersymmetry, scalar operators of dimension 1 are

very common. Indeed, these operators appear in one of two ways: either as part of a

chiral or anti-chiral multiplet, where they carry R-charge 1 or −1, respectively, or as part

of the same multiplet as a conserved flavor symmetry current, where they have vanishing

R-charge. There are no other multiplets of the N = 2 superconformal algebra that contain

dimension-1 scalar operators. Of course, not every N = 2 SCFT must have a chiral or

anti-chiral operator of dimension 1, but if there are any flavor symmetries present, then

dimension-1 operators must be present as part of the conserved flavor current multiplets.

When we consider extended supersymmetry, dimension-1 scalar operators can, of

course, only arise in multiplets that upon reduction to N = 2 contain either a flavor

current multiplet, a chiral multiplet of R-charge 1, or an anti-chiral multiplet of R-charge

−1. This always happens, for instance, in SCFTs with N ≥ 4 supersymmetry. Indeed, in

such SCFTs some of the R-symmetry currents (which are in the same N ≥ 4 supermulti-

plet as the stress tensor) can be interpreted as flavor currents upon reduction to N = 2,

and these flavor currents belong to N = 2 supermultiplets also containing dimension-1

scalar operators. Therefore, local N ≥ 4 SCFTs must always contain scalar operators of

dimension 1 that belong to the same N ≥ 4 supermultiplet as the stress energy tensor.
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In N = 2 SCFTs, supersymmetry techniques allow for the computation of certain

3-point functions of dimension-1 scalar operators exactly. Without extended supersym-

metry, the 3-point functions that are calculable with existing supersymmetric localization

techniques are those of precisely one chiral operator, one anti-chiral operator, and one oper-

ator in a conserved flavor current multiplet. Such a 3-point function is non-vanishing only if

the chiral and anti-chiral operators carry non-vanishing charges under the flavor symmetry

corresponding to the third operator, and in this discussion we will assume this. The other

type of non-zero three point function, namely between three operators in conserved current

multiplets, does not seem to be accessible through supersymmetric localization in theories

with just N = 2 supersymmetry, but it can of course also be computed in theories with ex-

tended supersymmetry in which supersymmetry relates it to a chiral-anti-chiral-conserved

current 3-point function.

To be precise, consider a dimension-1 chiral operator O, an anti-chiral operator O, and

a dimension-1 real operator J in the same multiplet as a conserved flavor current jµ. Let

the operators O and O have charges q and −q, respectively, under the symmetry generated

by jµ. It is important to be precise about the normalization of these operators. For the

chiral and anti-chiral operators, let us normalize them such that

〈O(~x)O(0)〉 =
1

8π2 |~x|2
. (2.1)

It is convenient to normalize J such that it is related to the canonically normalized jµ in

a canonical way. Canonical normalization of jµ means that the following OPE holds

jµ(~x)O(0) = q
xµ

4π |~x|3
O(0) + . . . . (2.2)

We take the canonical normalization of J to mean that if the conserved current jµ is

normalized as in (2.2), then J should be normalized such that it gives the OPE

J(~x)O(0) = q
1

4π |~x|
O(0) + . . . . (2.3)

With this normalization, we have the following 2-point functions at separated points

〈J(~x)J(0)〉 =
τ

16π2 |~x|2
, 〈jµ(~x)jν(0)〉 =

τ

16π2

(
∂λ∂

ληµν − ∂µ∂ν
) 1

|~x|2
. (2.4)

The coefficient τ can be computed using supersymmetric localization of a certain de-

formation of the SCFT on S3. The deformation can be interpreted as a modification of the

supersymmetry algebra where we change the R-charges of all chiral operators by adding

to them the flavor charges under jµ multiplied by a parameter t. It is possible to compute

the S3 free energy F (t) for this deformation of the theory exactly. Then one extracts [45]

(for recent reviews, see [21, 46])

τ = − 2

π2

d2F

dt2

∣∣∣∣
t=0

. (2.5)
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The 3-point function 〈O(~x1)O(~x2)J(~x3)〉 can be computed using these results very

easily. Indeed, by conformal invariance, it takes the form

〈O(~x1)O(~x2)J(~x3)〉 =
λOOJ

|~x1 − ~x2| |~x1 − ~x3| |~x2 − ~x3|
. (2.6)

Using the OPE (2.2) and the 2-point function (2.1), we obtain

λOOJ =
q

32π3
. (2.7)

The simplicity of (2.7) is misleading, because it relies on the canonical normalization

of J as well as on the normalization of the chiral and anti-chiral operators in (2.1). The

following ratio of three and 2-point functions is a constant that is independent of the

normalization of these operators:

〈O(~x1)O(~x2)J(~x3)〉2

〈O(~x1)O(~x3)〉 〈O(~x3)O(~x2)〉 〈J(~x1)J(~x2)〉
=
q2

τ
. (2.8)

It depends on both the charge q as well as the coefficient τ obtained through (2.5).

2.2 Application to N = 8 SCFTs

This framework can be applied to the computation of the 3-point function of dimension-1

operators in maximally supersymmetric N = 8 SCFTs, as we now explain. As described

above, any SCFT with at least N = 4 supersymmetry must have dimension-1 scalars in

the same multiplet as the stress energy tensor. In an interacting N = 8 theory, these

are the only dimension-1 operators that can exist. They transform in a 35-dimensional

representation of the SO(8) R-symmetry that, by a choice of convention, we take to be the

35v. In addition to the stress tensor and the dimension-1 scalar operators transforming

in the 35v, the N = 8 stress tensor multiplet also contains an R-symmetry current trans-

forming in the adjoint of SO(8), the supercurrent of spin 3/2 transforming (by a choice

of conventions) in the 8s of SO(8), dimension-2 pseudoscalars transforming in the 35c, as

well as dimension-3/2 operators of spin 1/2 transforming in the 56s.

The 2-point function of the canonically normalized stress tensor is determined by

conservation and conformal invariance to be

〈Tµν(~x)Tρσ(0)〉 =
cT
64

(PµρPνσ + PνρPµσ − PµνPρσ)
1

16π2 |~x|2
, (2.9)

where Pµν ≡ ηµν∂
λ∂λ − ∂µ∂ν , and cT is a constant that depends on the theory. This

definition means that one has cT = 1 in a non-supersymmetric theory of a free massless

real scalar. A straightforward computation then shows that one has cT = 1 in a non-

supersymmetric theory of a free massless Majorana fermion. The free N = 8 theory

contains 8 real scalars and 8 Majorana fermions and it thus has cT = 16.

The 2-point function of the canonically normalized SO(8) R-symmetry current is also

determined up to an overall constant by conformal invariance and conservation. Moreover
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the superconformal algebra relates this constant to cT , and the 2-point function takes

the form

〈jµIJ(~x)jνKL(0)〉 =
cT
64

(δIKδJL − δILδJK)Pµν
1

16π2 |~x|2
, (2.10)

where jµIJ is antisymmetric in the IJ indices. The constant, cT , has been computed in

many examples by considering Abelian flavor currents and using the method described

around (2.5). We will provide a few explicit examples shortly.

We now focus on the dimension-1 scalar operators in the 35v of SO(8), which we will

represent by a symmetric traceless tensor OIJ(~x). To simplify the following formulas, it is

convenient to pass to an index free notation by contracting OIJ with a traceless symmetric

matrix M IJ , thus defining

O(~x,M) = M IJOIJ(~x) . (2.11)

The two and 3-point functions of O(~x,M) are restricted by conformal and SO(8) invariance

to take the form

〈O(~x1,M1)O(~x2,M2)〉 = c2
tr(M1M2)

|~x1 − ~x2|2
,

〈O(~x1,M1)O(~x2,M2)O(~x3,M3)〉 = c3
tr(M1M2M3 +M1M3M2)

|~x1 − ~x2| |~x1 − ~x3| |~x2 − ~x3|
,

(2.12)

for some constants c2 and c3. Of course, c2 can be changed by changing the normalization of

the operators, so it may not be meaningful, and one might want to consider instead a com-

bination of two and three point functions that is invariant under rescalings of the operators:

〈O(~x1,M1)O(~x2,M2)O(~x3,M3)〉2

〈O(~x1,M1)O(~x3,M2)〉〈O(~x2,M1)O(~x3,M2)〉〈O(~x1,M3)O(~x2,M3)〉

=
c2

3

c3
2

[tr(M1M2M3 +M1M3M2)]2

tr(M1M2) tr(M1M2) tr(M3M3)
.

(2.13)

In order to connect (2.12)–(2.13) with the discussion of the previous section, which

considered N = 2 SCFTs, we should understand how the 35v operators OIJ transform

under an N = 2 superconformal subalgebra of the N = 8 algebra. One can choose an

embedding of the N = 2 superconformal algebra osp(2|4) into osp(8|4) such that the

N = 2 SO(2)R R-symmetry is generated by the anti-Hermitian 8 × 8 matrix

R =
i

2


σ2 0 0 0

0 σ2 0 0

0 0 σ2 0

0 0 0 σ2

 (2.14)

acting in the 8v representation of SO(8). In other words, the N = 2 R-symmetry current

is jµ ≡ RIJjµIJ . It is not hard to see that the 35v operators have the following N = 2

R-charges: ten of them have R-charge 1 and are thus chiral operators from the N = 2 point

– 7 –
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of view; ten of them have R-charge −1 and are thus anti-chiral operators from the N = 2

point of view; and fifteen of them have vanishing R-charge and therefore belong to flavor

current multiplets from the N = 2 point of view. Indeed, from an N = 2 perspective, the

flavor symmetry is SU(4), because this is the subgroup of SO(8) that commutes with (2.14).

Since SU(4) has rank three, there are three commuting Abelian flavor currents that can be

taken to correspond to the SO(8) generators:

F(1) =
i

2


σ2 0 0 0

0 σ2 0 0

0 0 −σ2 0

0 0 0 −σ2

 , F(2) =
i

2


σ2 0 0 0

0 −σ2 0 0

0 0 σ2 0

0 0 0 −σ2

 ,

F(3) =
i

2


σ2 0 0 0

0 −σ2 0 0

0 0 −σ2 0

0 0 0 σ2

 .

(2.15)

These flavor currents are thus jµ(α) ≡ F
IJ
(α)j

µ
IJ . They are normalized so that

〈jµ(α)(~x)jν(β)(0)〉 =
cT
16
Pµν

δαβ

16π2 |~x|2
. (2.16)

The dimension-1 scalars that are part of 35v and that belong to the same N = 2 multiplet

as these flavor currents in (2.15) are J(α) = M IJ
(α)OIJ , where

M(1) =
1

4
diag{1, 1, 1, 1,−1,−1,−1,−1} ,

M(2) =
1

4
diag{1, 1,−1,−1, 1, 1,−1,−1} ,

M(3) =
1

4
diag{1, 1,−1,−1,−1,−1, 1, 1} ,

(2.17)

respectively. From (2.12), we have

〈J(α)(~x)J(β)(0)〉 =
c2

2 |~x|2
δαβ . (2.18)

Comparing (2.16) and (2.18) to (2.4), we see that the real scalars J(α) are canonically

normalized in the sense of (2.4) provided that

c2 =
cT

8(4π)2
, τ =

cT
16
. (2.19)

In order to find c3 by using (2.8), we should identify linear combinations of the 35v
operators that reduce to chiral and anti-chiral operators from an N = 2 point of view. It

can be checked that

O = O11 −O22 + 2iO12 , O = O11 −O22 − 2iO12 , (2.20)
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are such operators because they have R-charges 1 and −1 under (2.14). From (2.15), we

see that they have flavor charges 1 and −1, respectively, under each of the currents jµ(α).

From (2.13), we have

〈O(~x1)O(~x2)J(α)(~x3)〉〉2

〈O(~x1)O(~x3)〉 〈O(~x3)O(~x2)〉 〈J(α)(~x1)J(α)(~x2)〉
=

c2
3

2c3
2

. (2.21)

Identifying q = 1 and using τ = cT /16 as in (2.19), we have from (2.8) that

〈O(~x1)O(~x2)J(α)(~x3)〉〉2

〈O(~x)O(~x2)〉 〈O(~x3)O(~x2)〉 〈J(α)(~x1)J(α)(~x2)〉
=

16

cT
. (2.22)

A comparison of (2.21) and (2.22) gives

c2
3

c3
2

=
32

cT
. (2.23)

For canonically normalized OIJ for which c2 is given by (2.19), we have

c3 =
cT
4

1

(4π)3
. (2.24)

2.2.1 Summary

To summarize, the 2- and 3-point functions of the canonically normalized 35v operators in

an N = 8 SCFT are

〈O(~x1,M1)O(~x2,M2)〉 =
cT
8

1

(4π)2

tr(M1M2)

|~x− ~x2|2
,

〈O(~x1,M1)O(~x2,M2)O(~x3,M3)〉 =
cT
4

1

(4π)3

tr(M1M2M3 +M1M3M2)

|~x1 − ~x2| |~x1 − ~x3| |~x2 − ~x3|
,

(2.25)

where cT is defined in (2.9).

In general, the quantity, cT , depends on the parameters and dynamics of the (S)CFT

in question. For an (S)CFT with a holographic dual, cT is a simple universal function

of L and G4 —it must be universal because the correlator 〈Tµν(~x)Tρσ(0)〉 is unique and

depends only on L and G4. In the rest of this paper, we will be interested in theories

with AdS4 duals. If L is the radius of AdS4 and G4 is the effective Newton constant in

four-dimensions, we have [47]:

cT =
32L2

πG4
. (2.26)

The correlation functions (2.25) then become:

〈O(~x1,M1)O(~x2,M2)〉 =
L2

4π3G4

tr(M1M2)

|~x1 − ~x2|2
,

〈O(~x1,M1)O(~x2,M2)O(~x3,M3)〉 =
L2

8π4G4

tr(M1M2M3 +M1M3M2)

|~x1 − ~x2| |~x1 − ~x3| |~x2 − ~x3|
.

(2.27)

One of our main goals in the remainder of this paper is to reproduce these formulas from

a holographic computation.
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2.2.2 An example

Ref. [14] considered only three of the 35 operators, denoted Oα, with α = 1, 2, 3, corre-

sponding to

Oα = 2J(α) (2.28)

with J(α) defined right above (2.17). The 2-point function of Oα is

〈Oα(~x1)Oβ(~x2)〉 =
L2

2π3G4

δαβ

|~x1 − ~x2|2
. (2.29)

Using (2.27), one can check that all 3-point functions between Oα vanish except for

〈O1(~x1)O2(~x2)O3(~x3)〉 =
L2

4π4G4

1

|~x1 − ~x2| |~x1 − ~x3| |~x2 − ~x3|
, (2.30)

as well as symmetric permutations of Oα. For a different computation of these correlation

functions, see appendix A.8

3 Boundary terms in N = 1 truncations

3.1 Review of the Bogomolny argument in [14]

The first (not so gentle) hint that a boundary counterterm may provide the answer to the

puzzle of the vanishing 〈O1(~x1)O2(~x2)O3(~x3)〉 correlator from bulk supergravity came from

appendix C of [14]. In this reference, a Bogomolny argument was used to generate the BPS

equations for a general N = 1 supergravity model with asymptotically AdS4 solution. The

model contains chiral multiplets with a Kähler target space with Kähler potential K(z, z̄)

and a holomorphic superpotential WSG(z). We now summarize the results.

When the domain wall Ansatz

ds2 = e2A(r)ηabdx
adxb + dr2 , zα = zα(r) , z̄β̄ = z̄β̄(r) (3.1)

is inserted in the (Lorentzian signature) bosonic action

S =
1

8πG4

∫
d4x
√
−g
[

1

2
R−Kαβ̄∂µz

α∂µz̄β̄ − VSG

]
,

VSG = eK
[
gαβ̄∇αWSG∇β̄W SG − 3WSGW SG

]
,

∇αWSG = (∂α +K,α )WSG , ∇β̄W SG = (∂β̄ +K,β̄ )W SG ,

(3.2)

the action can be manipulated by partial integration and turned into a sum of quadratic

factors which are the BPS equations

∂rz
α = −eK/2

√
WSG/W SGK

αγ̄∇γ̄W SG ,

∂rz̄
β̄ = −eK/2

√
W SG/WSGK

δβ̄∇δWSG ,

∂rA = eK/2|WSG| ,

(3.3)

8It should also be possible to calculate c2 and c3 directly in the SCFT using the gauged quantum

mechanics obtained in [48].
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plus the boundary term (at the cutoff r0)

Scutoff =
1

4πG4

∫
d3x dr

∂

∂r

(√
−geK/2|WSG|

)
=

1

4πG4

∫
d3x e3AeK/2|WSG| . (3.4)

This surface term must be cancelled by adding an equal and opposite counterterm to the

action, which we will do momentarily.

In the specific 3-scalar truncation studied in [14], the superpotential and Kähler po-

tential are

WSG =
1 + z1z2z3

L
, K = −

3∑
α=1

log
[
1− |zα|2

]
. (3.5)

The constant term in WSG determines AdS scale. The warp factor of the domain wall

solution tends to e2A(r) → e2r/L at large r, and the scalars vanish at the rate zα(r) ∼ e−r/L.

The counterterm, which is Kähler invariant, is (at fixed large r)

SBPS = − 1

4πG4

∫
d3xe3AeK/2|WSG|

= − 1

4πG4L

∫
d3x e3r/L

[
1 +

1

2
δαβ̄z

α(r)z̄β̄(r)

+
1

2
(z1(r)z2(r)z3(r) + c.c.) + . . .

]
.

(3.6)

The constant part of |WSG| gives a cubic divergence as r → ∞, and the quadratic

term from the Kähler potential gives a linear divergence. Both terms agree with standard

counterterms from holographic renormalization. The third term is finite, and it is this that

provides the boundary cubic vertex which will be used to calculate 〈O1(~x1)O2(~x2)O3(~x3)〉
in section 8.2.

It is important to point out that the precise agreement of the free energy found in [14]

between the AdS/CFT result and that from supersymmetric localization in the dual ABJM

field depended crucially on the added cubic counterterm. Since BPS domain walls are

supersymmetric, the new counterterm is a consequence of SUSY.

3.2 Boundary terms required by supersymmetry

In most studies of supergravity theories, boundary terms generated in the process of check-

ing local supersymmetry are discarded, since the supersymmetry parameters, ε(r, ~x), are

arbitrary functions and may be assumed to vanish rapidly at the boundary. However, in

AdS, the spinors ε(r, ~x), are required to approach an AdS Killing spinor at the boundary

and this leads to finite and even divergent boundary contributions. Without the addition of

appropriate boundary terms, as we will explain, the action is simply not supersymmetric.

Let us be more precise. The most basic AdS/CFT setup involves the study of the

states in a CFT. This is to be contrasted with the study of relevant deformations and

correlation functions of the CFT via holographic sources, which we will discuss in the next

paragraph. In general, the states of a CFT are described by bulk field configurations obey-

ing boundary conditions that 1) provide a well-defined Euler-Lagrange principle, namely
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that the Euler-Lagrange equations follow from the vanishing of the variation of the action,

without discarding any boundary terms. If the CFT is supersymmetric, which is the case

of interest here, the boundary conditions used to describe states of the CFT must also 2) be

preserved under arbitrary supersymmetry variations; and 3) ensure that the action is su-

persymmetric, also without discarding any boundary terms. The point we will make is that

these conditions cannot be obeyed without the addition of certain boundary counterterms.

See also [23, 24, 27–31, 31, 49–59].

As a more involved application of AdS/CFT to supersymmetric field theories, one

generalizes the boundary conditions discussed above to allow for deformations of the CFT

by introducing sources for relevant operators. For a general given source configuration,

the action will not be supersymmetric.9 Instead, supersymmetry relates various source

configurations to one another. So, the on-shell supergravity action, when viewed as a

functional of the various field theory sources, should still be supersymmetric, provided

that the sources are transformed appropriately instead of being held fixed. Indeed, it is

usually the on-shell action Son-shell, viewed as a functional of various field theory sources,

that is interpreted by the AdS/CFT dictionary as the generating functional of connected

correlation functions, and this generating functional should be supersymmetric. We will

actually deal with a somewhat exceptional application of AdS/CFT, because the three bulk

scalars Aα = Re zα in the N = 1 truncation (and the 35 αijkl in the N = 8 theory) are dual

to ∆ = 1 operators in the dual CFT. In this case it is not Son-shell but rather its Legendre

transform [25], defined and called S̃on-shell in section 3.6 below, that is the generating

functional. Supersymmetry requires that this generating functional is supersymmetric,

provided that the field theory sources are assigned appropriate transformation rules.10

In the remainder of this section, we determine the boundary counterterms that ensure

that S̃on-shell is supersymmetric. In the limit in which the cutoff is removed, r0 → ∞, we

find a set of infinite and finite boundary counterterms. The infinite counterterms agree

with those obtained by holographic renormalization and the finite ones include the finite

term of SBPS in (3.6).

Since gauged N = 8 supergravity is a rather complicated theory, we first present a

detailed illustration of the technique in a far simpler model, an N = 1 model with global

SUSY in AdS4. This model is obtained in a limit of N = 1 supergravity, similar to that

of [36], in which the back-reaction of matter fields on the spacetime geometry is consistently

suppressed. We then outline the extension of the method to N = 1 supergravity and finally

proceed to derive the analogous results in the N = 8 theory.

3.3 The global limit of N = 1, AdS4 supergravity

In this section we derive the action and transformation rules of chiral multiplets of a global

SUSY model on a fixed AdS4 background geometry. We derive this model from N = 1

9For certain special source configurations, the action may preserve a fraction of the supersymmetries

preserved by the vacuum.
10Alternate quantization and the Legendre transform are needed to describe CFT operators whose scale

dimension is given by the lower sign in the AdS/CFT mass fomula ∆ = (d±
√
d2 + 4m2L2)/2.
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supergravity written in conventions very similar11 to those of chapter 18 of [60]. The action

is normalized as12,13

SSG =

∫
d4x
√
−g
[

1

2κ2

(
R− ψ̄µγµνρ∇νψρ

)
− gαβ̄

(
∂µz

α∂µz̄β̄ +
1

2
χ̄α /∇PRχβ̄ +

1

2
χ̄β̄ /∇PLχα

)
+ · · ·

]
.

(3.7)

Factors of κ with κ2 = 8πG4 are included in the non-linear terms indicated by · · · .
The dynamics of the supergravity model is specified by a Kähler potential K(z, z̄) and

a holomorphic superpotential of the form

WSG(z) =
1

κ2L
+W (z) −→ 1

κ2L
+
κ

L
z1z2z3 . (3.8)

The superpotential in the N = 1 truncation of N = 8 supergravity studied in [14] appears

on the right. The condition that the theory admit a supersymmetric AdS4 solution of scale

L is that

∇αWSG ≡
(
∂α + κ2∂αK

)
WSG = 0 , (3.9)

is satisfied at zα = 0. This condition is fulfilled in the model of [14].

The global limit of the supergravity action is obtained via the following procedure:

1. Fix the AdS4 background and use coordinates r, xa, a = 0, 1, 2 in which

ds2 = e2r/Lηabdx
adxb + dr2 . (3.10)

2. Set the gravitino field to ψµ = 0. This is consistent if we require that the SUSY

parameters are Killing spinors of AdS4 and thus satisfy

∇µε = − 1

2L
γµε =⇒ /∇ε = − 2

L
ε . (3.11)

3. Use (3.8) to obtain the superpotential W (z) of the global model.

4. Keep the κ factors in K(z, z̄) and W (z), but otherwise drop all terms in the super-

gravity action with positive powers of κ.

When this procedure is applied to the scalar potential of N = 1 supergravity, one

obtains

VSG ≡ eκ
2K
[
gαβ̄∇αWSG∇β̄W SG − 3κ2WSGW SG

]
= gαβ̄

(
∂αW (z)+

1

L
∂αK

)(
∂β̄W (z̄)+

1

L
∂β̄K

)
− 3

L
(W+W )− 3K +O(κ2) ,

(3.12)

11Here we scale the SUSY parameter ε of [60] to
√

2ε.
12To avoid potential confusion, we note that complex scalars in this section are canonical and have

engineering dimension 1. They are related to the dimensionless scalars of [14] and previous sections of this

paper by zhere = zthere/κ. When this and the analogous scaling is made for spinors, the supergravity action

acquires the overall factor 1/8πG4.
13For clarity, we write /∇ = γµ∂µ as an operator acting on the 4d fields, and /∂ = γa∂a as an operator

acting only in the boundary directions.
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which agrees with (3.8) of [36]. An additional cosmological constant term −3/κ2L2 has

been dropped since it is part of the gravitational sector whose solution is fixed.

The entire action obtained from our procedure agrees with (3.5) of [36]. However, we

now make a further assumption which simplifies the analysis needed for our main purpose

which is to determine the boundary terms in the variation of the action. Namely, we

assume that the Kähler metric is flat. This is justified because the Kähler potential of the

N = 1 truncation and the parent N = 8 theory has the structure

K(z, z̄) = zz̄ + a2(zz̄)2 + a3(zz̄)3 + · · · . (3.13)

In models with cubic W (z), scalar masses m2 = −2/L2 are entirely determined by the

conformal coupling, so the leading asymptotic behavior of scalar fields is z(r, x) ∼ e−r/L.

Thus the effects of target space curvature are suppressed by e−2r/L relative to the leading

term, and they play no role in the determination of boundary terms.

After the procedure above is implemented we make the further step of introducing

auxiliary F, F̄ fields. It is also sufficient to consider a single chiral mutiplet (z, PLχ, F ).

This enables us to write the action as14

Sbulk = Skin + SF + SF̄ , (3.14)

where

Skin =

∫
d4x
√
−g
[
− ∂µz∂µz̄ −

1

2

(
χ̄ /∇PLχ+ χ̄ /∇PRχ

)
+

(
F +

z

L

)(
F +

z̄

L

)
+

2

L2
zz̄

]
,

(3.15)

SF =

∫
d4x
√
−g
[
FW ′ − 1

2
W ′′χ̄PLχ+

3

L
W

]
, SF̄ = (SF )† . (3.16)

It is very useful to have three terms which are separately invariant under the transformation

rules:
δz = ε̄PLχ , δPLχ = PL( /∇z + F )ε , δF = ε̄( /∇− 1/L)PLχ ,

δz̄ = ε̄PRχ , δPRχ = PR( /∇z̄ + F̄ )ε , δF̄ = ε̄( /∇− 1/L)PRχ .
(3.17)

The proof of invariance is quite simple for SF :

δSF =

∫
d4x
√
−g
[
FW ′′ ε̄PLχ−W ′′ ε̄(− /∇z + F )PLχ

+W ′ ε̄

(
/∇− 1

L

)
PLχ+

3

L
W ′ (ε̄PLχ)−W ′′′ (ε̄PLχ)(χ̄PLχ)

]
.

(3.18)

Terms involving F cancel and the W ′′′ term vanishes by Fierz rearrangement. The remain-

ing terms can be written as

δSF =

∫
d4x
√
−g
[
ε̄ /∇(W ′PLχ) +

2

L
W ′ ε̄PLχ

]
=

∫
d4x
√
−g
[
∇µ(W ′ ε̄γµPLχ)− ε̄

(←
/∇ − 2

L

)
W ′PLχ

]
.

(3.19)

14This action was studied in section 3 of [61].
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The last term vanishes by the (adjoint of the) Killing spinor equation (3.11), and the first

term is the total derivative which is the goal of the calculation.

It is more difficult to show that δSkin is invariant up to boundary terms. Details are

given in appendix B. Here we simply write the final expression that contains the residual

boundary terms

δSkin =
1

2

∫
d4x
√
−g∇µ

[
ε̄γµ
(
− /∇(zPR+z̄PL)+

2

L
(zPR+z̄PL)+(FPR+F̄PL)

)
χ

]
. (3.20)

The analysis above is valid for a general superpotential, W (z). However, we are specif-

ically concerned with a cubic W (z), which, for the purpose of providing a toy model, we

take to be

W (z) =
κz3

3L
. (3.21)

The consistent truncation of N = 8 studied in [62–64] contains three identical chiral mul-

tiplets and is trivially related to ours, as is the truncation to three chiral multiplets with

W = κz1z2z3/L of [14].

Finally we note that auxiliary fields are eliminated and real fields are introduced using

F = − z
L
−W ′ = − z

L
− κ z̄

2

L2
, z = A+ iB . (3.22)

3.4 Further conventions and asymptotic behavior

Before determining the boundary counterterms that ensure supersymmetry it is useful

to state our conventions more completely and to discuss the asymptotic behavior of the

various actors in our drama.

In the natural Lorentz frame, ea = er/Ldxa and e3 = dr, a = 0, 1, 2, for the met-

ric (3.10), (γa, γ3) are constant γ-matrices for signature (−+++). As usual, the γ-matrices

with a Greek index are defined by γµ = ea
µγa+e3

µγ3. In the language of the Cartan struc-

ture equations, the connection 1-forms are ωa3 = ea/L, ωab = 0.

The Killing spinors of the Poincaré patch are Majorana spinors. In AdS4, the Killing

spinor equation (3.11) has solutions of the form

ε = er/2Lη− + e−r/2Lη+ , (3.23)

with coefficients η−(~x) and η+(~x) that obey /∂η+ = 0 and /∂η− = −(3/L)η+ and have

definite “radiality”:

γ3η± = ±η± , η̄±γ
3 = ∓η̄± . (3.24)

In particular, there are two linearly independent Poincaré supersymmetries that have

η+ = 0 and η− = constant, as well as two superconformal supersymmetries that have

η+ = constant and η− = −γaxaη+/L.15

15The designations Poincaré and superconformal arise because the associated supercharges anti-commute

to translations and, respectively, special conformal transformations of the isometry group SO(3,2).
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The behavior of solutions of the field equations as r →∞ is (with z = A+ iB)

A(r, ~x) = e−r/LA1(~x) + e−2r/LA2(~x) + . . . ,

B(r, ~x) = e−r/LB1(~x) + e−2r/LB2(~x) + . . . ,

χ(r, ~x) = e−3r/2Lχ3/2(~x) + e−5r/2Lχ5/2(~x) + . . . .

(3.25)

The leading rates are standard in AdS4/CFT3 for scalars of mass m2 = −2/L2 and massless

spinors. In a free theory, i.e. W (z) = 0, the asymptotic series for A and B would contain

exponential rates e−kr/L with k either even or odd [22]. The presence of mixed even and

odd integer rates occurs with interactions and is important in our analysis.

From the bulk supersymmetry variations (3.17) and the decomposition (3.23) for the

Killing spinors, we find the supersymmetry transformations of the various coefficients ap-

pearing in the boundary expansion (3.25):

δA1 =
1

2
η̄−χ3/2+ , δA2 =

1

2

(
η̄−χ5/2+ + η̄+χ3/2−

)
δB1 = − i

2
η̄−γ

5χ3/2− , δB2 = − i
2

(
η̄−γ

5χ5/2− + η̄+γ
5χ3/2+

)
,

δχ3/2− =

(
1

L
A2 −

κ

L
(A2

1 −B2
1) + iγ5/∂B1

)
η− −

2i

L
B1γ

5η+ ,

δχ3/2+ = iγ5

(
1

L
B2 +

2κ

L
A1B1

)
η− + /∂A1η− −

2

L
A1η+ .

(3.26)

Here and in the rest of this section we find it convenient to split the coefficient functions

χk(~x) appearing in the expansion of χ(r, ~x) into components of even and odd radiality,

denoted by an additional ± subscript:

χk(~x) = χk+(~x) + χk−(~x) , γ3χk± = ±χk± . (3.27)

3.5 Counterterms and CFT states

We now turn to our goal of finding the appropriate boundary counterterms that ensure

supersymmetry. As already mentioned, the appropriate requirement in its most general

form is that the Legendre transform of Sbulk + Sbdy, seen as a functional of the boundary

theory sources, is supersymmetric. As a particular simpler case that does not require a

Legendre transform, we first study the case where the boundary sources vanish and find

the boundary counterterms Sbdy that ensure supersymmetry, as explained in section 3.2.

The counterterms Sbdy are initially evaluated at the cutoff r = r0; in the limit r0 → ∞
they are expressed in terms of the asymptotic coefficients of (3.25).

In determining the boundary conditions and boundary counterterms that ensure su-

persymmetry, we can take guidance from the fact that the pseudoscalar B(r, ~x) is dual to a

dimension 2 operator in the dual CFT. Consequently, the standard AdS/CFT dictionary

identifies B1(~x) as the field theory source for this operator. The condition of vanishing

sources should therefore include B1(~x) = 0. The supersymmetry variations (3.26) then

identify a consistent set of boundary conditions on the other fields. Indeed, by considering
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δB1(~x), one also obtains χ3/2−(~x) = 0, and then from δχ3/2−(~x) = 0 one further obtains

A2(~x)− κA2
1(~x) = 0. In summary, the conditions of vanishing sources are

B1(~x) = 0 , χ3/2−(~x) = 0 , A2(~x)− κA2
1(~x) = 0 , (3.28)

and they represent our desired boundary conditions.16

The boundary counterterms are then determined by ensuring that the boundary con-

ditions (3.28) are consistent with the Euler-Lagrange variational principle. Let us examine

the scalar part of the action first. Integrating out the auxiliary fields and using the cubic

superpotential (3.21), the scalar part of the bulk action becomes

Sbulk =

∫
d4x
√
−g
[
− ∂µz∂µz̄ +

2

L2
zz̄ − κ2

L2
(zz̄)2

]
. (3.29)

The Euler-Lagrange variation of the action reads

δSbulk =

∫
d4x
√
−g
[
δz(eom for z̄) + δz̄(eom for z)−∇µ(δz∂µz̄ + δz̄∂µz)

]
. (3.30)

The variational principle implies the equations of motion provided that we add a boundary

term whose variation cancels the second term in (3.30). Using the asymptotic expan-

sion (3.25) and the boundary conditions (3.28), we have

δSbdy +
1

L

∫
d3x

[
2er0/L(A1δA1) + 8κA2

1δA1

]
= 0 , (3.31)

where the second term in (3.31) comes from the last term in (3.30). From this expression

we deduce that the required boundary term is

Sbdy = − 1

L

∫
d3xe3r0/L

[
A2 +

2κ

3
A3

]
, (3.32)

because its variation gives (3.31), again after using the boundary conditions (3.28). A

similar analysis for the fermionic part of the action shows that there are no fermionic

boundary terms that do not vanish under (3.28), the boundary term Sbdy being the only

boundary term that is needed. One can then check that the combined action Sbulk + Sbdy

is supersymmetric. This calculation is a particular case of the calculation performed in the

next section, and we will defer it until then.

What we have done so far amounts to a “minimal supersymmetric completion” of the

bulk action via the boundary term (3.32). Without this boundary term and the boundary

conditions (3.28), the theory would not be supersymmetric.

3.6 More general counterterms and the Legendre transform

We now proceed to an analysis that is not restricted to the CFT states but allows non-

vanishing sources for relevant operators. In particular, we relax the conditions (3.28) by

16It is well known [27–30] that one should choose one of the two asymptotic projections χ3/2± in (3.26)

as the fermion source.
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allowing arbitrary field theory sources, as we will explain. We will determine a more

general boundary action Sbdy that reduces to (3.32) when the sources are taken to vanish

as in (3.28).

Recall that the supersymmetry variation of the bulk action, δSbulk = δSkin + δSF +

δSF̄ , reduces to a boundary term given in (3.19)–(3.20). It is straightforward to cancel

various contributions to δSbulk against the variation of an appropriately chosen boundary

counterterm Sbdy. For instance, it is clear that δSF (and its conjugate δSF̄ ) are finite at

the boundary and can be nicely cancelled by the variation of the finite counterterm

S3 = −
∫
d3x e3r0/L[W (z) + W̄ (z̄)] . (3.33)

The remaining boundary term δSkin is “linearly divergent.” Its leading term grows as

er0/L at the boundary when we include the factor
√
−h = e3r0/L, h being the determinant

of the boundary metric. We expect that such divergences are cancelled by counterterms

determined by holographic renormalization. The relevant counterterm can be obtained

from (6.5) of [14]. With a sign change for Lorentzian signature and in the global limit and

with current normalization, it is given by

S2 = − 1

L

∫
d3x e3r0/L z̄z . (3.34)

Upon adding S2, the supersymmetry variation of the kinetic term (3.20) is finite at the

boundary. After adjusting the normalization to that of section 3 and for cubic W (z), S3

and S2 agree perfectly with the cubic and quadratic terms of (3.6). In the rest of this

section we will work with the cubic W (z) = κz3/3L introduced in (3.21).

The remaining finite terms of δ(Skin + S2) (to be displayed in the next section) must

still be cancelled, and two further modifications are needed. The first is to add another

finite counterterm

Sχ =
c

4

∫
d3x e3r0/L χ̄χ . (3.35)

This was proposed in the earliest papers on fermions in AdS/CFT [27–30] in order to

obtain non-trivial 2-point correlators of fermionic operators in the boundary theory. The

coefficient c will be fixed at the value c = 1 below.17

The second modification involves the Legendre transform that was mentioned in

section 3.2. It is a more subtle issue that we now discuss in detail. We know that the

scalar field A is dual to a field theory operator of dimension 1, and hence obeys “alternate

boundary conditions” as explained in [25]. Let us explain what this means by comparison

to the pseudoscalar B, which is dual to a dimension-2 operator and obeys standard bound-

ary conditions. For B, the leading coefficient in the boundary expansion (3.25), B1(~x), is

interpreted as a source for the dual operator. The Euler-Lagrange equations of motion are

solved with the boundary condition of a prescribed value for B1(~x), and the on-shell action

is naturally thought of as a functional of B1(~x). For A, it is not the leading coefficient,

17For a Dirac fermion, the coefficient was fixed in [29] and [30].
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A1(~x), that should be interpreted as the source for the field theory operator, but instead

its canonically conjugate quantity [25]

A(~x) = −δSon-shell[A1, . . .]

δA1(~x)
. (3.36)

Here, the ellipsis stands for other boundary data, such as B1(~x), that can be interpreted

as sources for field theory operators. The source A(~x) is sometimes loosely referred to as

A2(~x), because a simple calculation,

A(~x) = − lim
r0→∞

e−r0/L
δSon-shell

δA(r0, ~x)
= − lim

r0→∞
e−r0/LΠA(r0, ~x)

= −
(

2

L
A2(~x)− 2κ

L
(A1(~x)2 −B1(~x)2)

)
,

(3.37)

shows that, up to a normalization factor, it is equal to A2(~x) plus non-linear corrections

coming from the boundary terms (3.33)–(3.34). Note that A(~x) is the boundary limit of

canonical momentum for the field A(r, ~x), namely18

ΠA(r, ~x) = e3r/L ∂L
∂(∂rA(r, ~x))

= −2e3r/L

(
∂rA+

1

L
A+

κ

L
(A2 −B2)

)
, (3.38)

and that the second equality in (3.37) follows from the Hamilton-Jacobi equation.

The generating functional for connected correlators is the Legendre transform

S̃on-shell[A, . . .] = Son-shell[A1, . . .] +

∫
d3xA(~x)A1(~x) (3.39)

evaluated after extremizing the r.h.s. with respect to A1(~x). This extremization yields

precisely (3.36). It is S̃on-shell, and not Son-shell, that is required to be supersymmetric

when sources are present.

To ensure that S̃on-shell is supersymmetric, we need the supersymmetry variation δA(~x),

and this must be chosen as the variation of (3.37) when the equations of motion are used.

In particular, the fermion equation of motion implies

χ5/2+ = L/∂χ3/2− + 2κ(A1χ3/2+ + iB1γ
5χ3/2−) . (3.40)

When combined with (3.37) and (3.26), this yields

δA = −2δ

(
A2

L
− κ

L
(A2

1 −B2
1)

)
= −

(
η̄−/∂χ3/2− + η̄+

1

L
χ3/2−

)
. (3.41)

To summarize, we have added boundary terms to the bulk action of (3.14) to obtain

the renormalized action

Sren = Sbulk + Sbdy , (3.42)

18Here L is the Lagrangian obtained from the action (3.14), augmented by conversion of the boundary

actions (3.33)–(3.34) into total ∂r derivatives.
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where the bulk and boundary terms are

Sbulk ≡ Skin + SF + SF̄ , Sbdy ≡ S2 + Sχ + S3 . (3.43)

The renormalized action Sren is denoted by Son-shell[A1, . . .] when equations of motion are

satisfied. We identified the boundary limit A(~x) of the canonical momentum. We then

defined the Legendre transform in (3.39) which a functional of A. This is the generating

functional for correlation functions and will be used for this purpose in section 4. In the

next subsection we show that

δ(Sren + SL) = 0 , SL ≡
∫
d3xA(~x)A1(~x) , (3.44)

on-shell.

Before checking supersymmetry, let us make a comment about the field theory sources,

which we have identified as B1, χ3/2− and A. As argued in section 3.5, the three sources

should then transform among themselves under SUSY. It is worth writing the SUSY

variations of the sources that result from these assignments:

δB1 = − i
2
η̄−γ

5χ3/2− , (3.45)

δχ3/2− =

(
−i/∂B1γ

5 +
1

2
A

)
η− −

2i

L
B1γ

5η+ , (3.46)

δA = −
(
η̄−/∂χ3/2− + η̄+

1

L
χ3/2−

)
. (3.47)

These transformations resemble the standard superconformal transformations of an N = 1,

d = 3 scalar multiplet, albeit with artefacts of their origin as the boundary limits of the bulk

theory. It is straightforward to compute the commutator of two Poincaré supersymmetry

transformations, those with η+ = 0 and ∂aη− = 0, as described below (3.24). In terms of

the effectively two-component spinor parameters ε = iγ5η−, the result is

[δ1, δ2]Φ(~x) = −(ε̄1γ
aε2)∂aΦ(~x) , (3.48)

for all components Φ = B1, χ3/2−, A of the multiplet.19

3.7 Cancellation of the supersymmetry variation of the on-shell action

Let us now show that (3.44) holds. We have already argued that

δ(SF + SF̄ + S3) = 0 . (3.49)

Our remaining task is to show that

δ (Skin + S2 + Sχ + SL) = 0 , (3.50)

which we now proceed to do.

19We suggest that faithful readers try the Fierz rearrangement needed for the fermion.
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The variation of S2 in (3.34) is

δS2 = − 1

L

∫
d3x
√
−g ε̄

(
zPR + z̄PL

)
χ . (3.51)

By adding it to δSkin in (3.20) we obtain

δ(Skin + S2) =
1

2

∫
d3x
√
−g
[
ε̄

(
− γ3/∂ +

2

L
(γ3 − I)

)(
zPR + z̄PL

)
χ

+ ε̄ γ3
(
FPR + F̄PL

)
χ

]
.

(3.52)

Using (3.22) as well as the boundary asymptotics (3.25), we obtain

δ(Skin + S2) =
1

2

∫
d3x

[
η̄−

[
A2

L
− κ

L
(A2

1 −B2
1)− /∂A1

]
χ3/2 (3.53)

+ η̄−

[
−B2

L
− 2κ

L
A1B1 + /∂B1

]
iγ5χ3/2 +

1

L
η̄+

[
−2A1 + 2B1iγ

5
]
χ3/2

]
,

where we took the limit r0 →∞.

Next, we have the variation δSχ:

δSχ =
c

2

∫
d3x

[
−η̄−

[
− 1

L
(A2 + iγ5B2) +

κ

L

(
A2

1 −B2
1 − 2iA1B1γ

5
)]
χ3/2

− η̄−
[
/∂A1 − iγ5/∂B1

]
χ3/2 −

1

L
η̄+

[
2A1 + 2iγ5B1

]
χ3/2

]
,

(3.54)

as well as the variation of SL computed after using (3.37) and (3.41)

δSL = −
∫
d3x

[
η̄−A1/∂χ3/2− +

1

L
η̄+A1χ3/2− + η̄−

(
A2

L
− κ

L
(A2

1 −B2
1)

)
χ3/2+

]
. (3.55)

We see that δ(Sχ+SL) can cancel δ(Skin +S2) in (3.53) only if c = 1. With this choice,

the sum of (3.53)–(3.55) is

δ (Skin+S2+Sχ+SL) =

∫
d3x

[
−η̄−(/∂A1)χ3/2−−

3

L
η̄+A1χ3/2−− η̄−A1/∂χ3/2−

]
. (3.56)

Finally, using /∂η− = −(3/L)η+ as explained below (3.23), we see that the integrand in this

expression is a total derivative. Thus (3.50) follows.

3.8 The AB2 boundary term: a minor puzzle resolved

While we have found a boundary term Sbdy defined in (3.43) that ensured supersymmetry,

we have not mentioned whether it is unique. In fact, if it were unique, then the following

puzzle could be raised. The cubic boundary term (3.33) decomposes as

S3 = −2κ

L

∫
d3x (A3 − 3AB2) , (3.57)
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where we have indicated its form for the case W = κz3/(3L) as in (3.21).20 The A3

term will be used to calculate the 3-point correlator of three ∆ = 1 scalar operators in

the next section while the AB2 term would generate a correlator of one scalar and two

∆ = 2 pseudoscalars. The puzzle arises because both correlators are non-vanishing in the

N = 1 models, but SO(8) symmetry forces21 〈O1(~x1)O2(~x2)O2(~x3)〉 to vanish in N = 8

supergravity. This is suspicious because both the z3 and the z1z2z3 models are supposed

to be consistent N = 1 truncations of N = 8.

The resolution of this issue is that the finite boundary counterterm

S′ = c′
∫
d3xA1B

2
1 , (3.58)

can be added to the z3 model with arbitrary constant c′ and maintains supersymmetry of

the Legendre transform S̃. Further, the more general cubic polynomial

Ŝ =

∫
d3x

[
c3A

3
1 + c2A

2
1B1 + c1A1B

2
1 + c0B

3
1

]
, (3.59)

violates supersymmetry unless c0 = c2 = c3 = 0. This is quite fortunate. One can choose

c′ = c1 = −2κ/L and cancel the 〈O1(~x1)O2(~x2)O2(~x3)〉 correlator which must vanish in a

consistent truncation of N = 8, while the coefficient of 〈O1(~x1)O1(~x2)O1(~x3)〉 retains the

value which matches the non-perturbative physics of the boundary N = 8 SCFT.

It is easy to establish the facts mentioned above. In particular:

1. The addition of the boundary term Ŝ requires that we recompute the extremal point

of S̃. We find that A shifts as A→ A + Â with

Â = −
(
3c3A

2
1 + 2c2A1B1 + c1B

2
1

)
. (3.60)

The boundary term SL shifts as SL → SL + ŜL with ŜL =
∫
d3x ÂA1.

2. These changes are compatible with supersymmetry if

δ(Ŝ + ŜL) =

∫
d3x

[
δ(c3A

3
1 + c2A

2
1B1 + c1A1B

2
1 + c0B

3
1) + δÂA1 + ÂδA1

]
=

∫
d3x

[
−2A1(c2B1 + 3c3A1)δA1 + (3B2

1c0 −A2
1c2)δB1

]
= 0 .

(3.61)

where we used (3.60), and where δA1 and δB1 are understood to be computed

from (3.26). It is then straightforward to determine the integrand of (3.61) and

observe that it vanishes if and only if c0 = c2 = c3 = 0, while c1 is arbitrary.

20When W = κz1z2z3/L the r.h.s. of this expression contains the combination A1A2A3 − A1B2B3 −
A2B3B1 −A3B1B2.

21The subscripts here indicate scale dimension.
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3.9 Boundary SUSY for N = 1 truncations of supergravity.

In this section we discuss, qualitatively, the steps that are needed to show that the boundary

terms obtained above in the global limit are not changed by reanalysis at the level of N = 1

supergravity. In supergravity we must use ε(r, ~x) parameters with arbitrary dependence

on the coordinates of the bulk theory. The terms in the general N = 1 Lagrangian (as

presented in (18.6) of [60]) that must be considered are the chiral multiplet terms that have

obvious limits to the global Lagrangian in [36]. These include, respectively, the m3/2 and

mαβ terms in (18.15) and (18.16) of [60]. We must also include the Noether current term

(written for a single multiplet)

LNoether =
1√
2
ψ̄µ

[(
/∇z̄γµ + γµ∇WSG

)
PLχ+ c.c.

]
, (3.62)

and use its gravitino variation δψµ =
√

2(∇µε + 1
2Lγµ)ε. We can drop terms in the su-

pergravity Lagrangian, such as the quartic fermion terms, and in transformation rules,

whose contribution to possible boundary terms vanishes when the AdS/CFT asymptotic

conditions of (3.25) are used.22

With the action and transformation rules limited in this manner, one finds that the

∇µε terms from δLNoether combine with others elsewhere in δS to produce the same set

of boundary terms found in (3.19) and (3.20), but with general spinor parameters ε(r, ~x).

The assumption that they approach Killing spinors as r → ∞ is then used to study the

boundary terms in more detail.

4 2- and 3-point correlators from N = 1 supergravity

In this section we present a holographic calculation of 2- and 3-point functions of a ∆ = 1

CFT operator O1 in the example (3.14) from N = 1 supergravity with the cubic superpo-

tential (3.21). The computation in this toy model will be generalized to N = 8 supergravity

in section 8.

4.1 2- and 3-point correlators

As we explained in the previous section, the operator O1 is dual to the bulk scalar A = Re z.

The pseudoscalar field B and fermion χ play no role in the calculation of correlators of

O1, so we set them to zero. The part of the action (3.14) involving A and the boundary

term (3.32) that we need is

S =
1

2

∫
d4x
√
g

[
∂µA∂

µA− 2

L2
A2

]
+

1

2L

∫
d3x e3r0/L

[
A2 +

2κ

3
A3

]
, (4.1)

where we Wick rotated to Euclidean signature and multiplied (3.14) by an overall factor

of 1/2 for a more conventional normalization. We set κ = L = 1 in this section.

The field A obeys the equation of motion

(�+2)A = 0 . (4.2)

22Boundary conditions on the gravitino are not needed for our purposes. They are discussed in [55–59].
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As in (3.25), the solution of this equation of motion can be expanded at large r as

A(r, ~x) = e−rA1(~x) + e−2rA2(~x) + · · · . (4.3)

In fact, the equation of motion (4.2) implies that the entire bulk field can be reconstructed

in terms of A1(~x) with the help of the bulk-to-boundary propagator

A(r, ~x) =

∫
d3y K2(r, ~x; ~y)A1(~y) , K2(r, ~x; ~y) ≡ 1

π2

e−2r(
e−2r + |~x− ~y|2

)2 . (4.4)

Plugging this expression into (4.1) one obtains the on-shell action written as a functional

of the boundary coefficient A1(~x):23

Son-shell[A1] = −1

2

∫
d3x d3y

A1(~x)A1(~y)

π2 |~x− ~y|4
+

1

3

∫
d3xA1(~x)3 +O(A4

1) . (4.5)

This expression would be the goal of our computation if A were dual to a dimension

2 field theory operator O2. In that case A1(~x) would be interpreted as the source of O2,

and, by the AdS/CFT dictionary, −Son-shell[A1] becomes the generating functional of its

connected correlators, certainly not what we want.

Indeed, in our case of interest, the field A is dual to a dimension 1 operator O1, but

A1(~x) is not the field theory source for O1. Instead, the field theory source, denoted A(~x), is

the canonically conjugate variable to A1 [25] and the generating functional is the Legendre

transform S̃on-shell[A] defined as in (3.39) by

S̃on-shell[A] = Son-shell[A1] +

∫
d3xA(~x)A1(~x) . (4.6)

These ideas were introduced in section 3.6, where our main purpose was to demonstrate

that the generating functional S̃on-shell[B1, χ3/2−,A] is a supersymmetric functional of its

sources. In this section our purpose is more pragmatic; we wish to express S̃on-shell[A] in

a form in which functional derivatives with respect to A(~x) can be applied to produce

correlators of O1.

Toward that end, we proceed to extremize the r.h.s. of (4.6) with respect to A1(~x)

after inserting the toy model expression (4.5). Extremization yields the result

A(~x) = −δSon-shell[A1]

δA1(~x)
=

1

π2

∫
d3y

A1(~y)

|~x− ~y|4
−A1(~x)2 +O(A3

1) . (4.7)

This expression can be inverted by taking its convolution with 1/(2π2 |~z − ~x|2) and using

the relation ∫
d3x

1

2π2 |~z − ~x|2
1

π2 |~x− ~y|4
= −δ(3)(~z − ~y) , (4.8)

23Here and in the following formulas, the integration kernel 1
|~x−~y|4 is understood to be regularized by re-

placing it with 1
(ε2+|~x−~y|2)2 , where ε = e−r0 is a holographic UV cutoff, and discarding the power divergences

in ε. Discarding such power divergences can be unambiguously done in a CFT.
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which can be derived, for instance, by passing to Fourier space.24 The expression for A1(~x)

in terms of A(~x) is finally

A1(~x) = −
∫
d3y

A(~y)

2π2 |~x− ~y|2
− 1

(2π2)3

∫
d3y d3zA(~y)A(~z)I(~x, ~y, ~z) +O(A3) , (4.9)

where

I(~x, ~y, ~z) =

∫
d3w

1

|~x− ~w|2 |~y − ~w|2 |~z − ~w|2
=

π3

|~x− ~y| |~y − ~z| |~x− ~z|
. (4.10)

Plugging this into (4.6) and using (4.10) again gives

S̃on-shell[A] = − 1

4π2

∫
d3x d3y

A(~x)A(~y)

|~x− ~y|2
− 1

24π3

∫
d3x d3y d3z

A(~x)A(~y)A(~z)

|~x−~y| |~y−~z| |~x−~z|
+O(A4) .

(4.11)

The first term in this expression agrees with the result of [25] in a free bulk theory. The

expression (4.11) thus generalizes this result to include a cubic boundary interaction.

Since −S̃on-shell[A] is interpreted as the generating function of connected correlators

for the operator O1, we obtain the 2- and 3- point functions

〈O1(~x1)O1(~x2)〉 =
1

2π2 |~x1 − ~x2|2
,

〈O1(~x1)O1(~x2)O1(~x3)〉 =
1

4π3

1

|~x1 − ~x2| |~x2 − ~x3| |~x1 − ~x3|
.

(4.12)

In section 8, a similar computation is used to obtain the 2- and 3-point functions of the

dimension 1 operators of an N = 8 SCFT transforming in the 35v representation of SO(8)

R-symmetry.

4.2 On the nonlinear boundary condition for A(r, ~x)

The toy model provides the opportunity to explore the Legendre transform further and

hopefully gain further insight into its workings. Toward that end we express the bulk field

A(r, ~x) in terms of boundary data for a source A(~x) of compact support. We then study its

boundary limit in a region where the source vanishes and show explicitly that the boundary

condition

A(~x) = A2(~x)−A1(~x)2 = 0 , ~x ∈ (supp(A))c (4.13)

is satisfied.

The bulk field A(r, ~x) can be expressed in terms of the boundary data A(~x) by com-

bining (4.4) and (4.9). Performing the required integrals, one can write the resulting

expression as

A(r, ~x) =

∫
d3y K1(r, ~x; ~y)

(
A(~y) +

1

(2π2)2

∫
d3z d3w

A(~z)A(~w)

|~y−~z|2 |~y− ~w|2

)
+O(A3) , (4.14)

24A more careful regulated analysis gives∫
d3x

1

2π2 |~z − ~x|2
1

π2(ε2 + |~x− ~y|2)2
=

1

ε

1

2π2 |~z − ~y|2
− δ(3)(~z − ~y) .

To derive (4.8) one must discard the linear UV divergence. The regulated expression above is simply a

combination of (4.15) and (4.17) below multiplied by ε2 = e−2r0 .
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where

K1(r, ~x; ~y) ≡
∫
d3z K2(r, ~x; ~z)

−1

2π2 |~z − ~y|2
= − 1

2π2

e−r

e−2r + |~x− ~y|2
. (4.15)

To check (4.13), we should expand A(r, ~x) at large r and assume that ~x lies outside the

support of A. Since r only appears in K1, we can expand K1 at large r first. To leading

order in e−r, we have that K1(r, ~x; ~y) approaches − e−r

2π2|~x−~y|2 . The first subleading correction

can be computed as

e2r

(
K1(r, ~x; ~y) +

e−r

2π2 |~x− ~y|2

)
=

1

2π2

e−r

|~x− ~y|2
(
e−2r + |~x− ~y|2

) → δ(3)(~x− ~y) . (4.16)

So

K1(r, ~x; ~y)→ − e−r

2π2 |~x− ~y|2
+ e−2rδ(3)(~x− ~y) . (4.17)

Using this large r expansion in (4.14) and comparing with (4.3), we identify

A1(~x) = − 1

2π2

∫
d3y

A(~y)

|~x− ~y|2
+O(A2) ,

A2(~x) =
1

(2π2)2

∫
d3z d3w

A(~z)A(~w)

|~x− ~z|2 |~x− ~w|2
+O(A3) .

(4.18)

By examining (4.18) it is easy to see that, indeed, the non-linear boundary condition (4.13)

is obeyed.

5 The N = 8 supergravity

We begin with a brief summary of the N = 8 gauged supergravity in four dimensions [1, 65]

with the SO(8) gauge fields set to zero. In the bosonic sector one is then left with the

metric, gµν , and the scalar/pseudoscalar fields parametrizing the non-compact coset space

E7(7)/SU(8). In the symmetric gauge [1, 66], the scalar 56-bein, V, is explicitly given by

V ≡

(
uij

IJ vijIJ
vklIJ uklKL

)
= exp

(
0 −1

4

√
2φijkl

−1
4

√
2φijkl 0

)
∈ E7(7) , (5.1)

where

φijkl =
1

24
εijklmnpqφ

mnpq , φijkl = (φijkl)
∗ , (5.2)

are complex self-dual fields, whose real and imaginary parts, φijkl = αijkl + i βijkl, are

the 35v scalars, αijkl, and 35c pseudoscalars, βijkl, respectively, where the labels s and

c indicate the assignment of SO(8) representations.25 In the fermionic sector, there are

8s left/right-handed gravitini, ψµ
i/ψµ i, and 56s left/right-handed gauginos χijk/χijk. As

for complex scalars, see (5.2), complex conjugation of the fermions amounts simply to

25See, e.g., table 7 in [67].
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raising/lowering of the SU(8) indices, for example (χijk)
∗ = χijk, with the corresponding

change of chirality.

The scalar fields enter the action and the supersymmetry transformations through the

composite SU(8) connection, Bµij , and the self-dual tensor, Aµijkl, defined by [66]:

Bµij =
2

3

(
uikIJ∂µujk

IJ − vikIJ∂µvjkIJ
)
, (5.3)

Aµijkl = −2
√

2
(
uijIJ∂µv

klIJ − vijIJ∂µuklIJ
)
, (5.4)

and the two A-tensors [1]:

A1
ij =

4

21
Tk

ikj , A2i
jkl = −4

3
Ti

[jkl] , (5.5)

defined in terms of the T -tensor,

Ti
jkl ≡

(
uklIJ + vklIJ

) (
uim

JKujmKI − vimJKvjmKI
)
. (5.6)

Note that A1
ij = A1

ji, while A2 i
jkl = A2 i

[jkl].

The bosonic action of the N = 8 supergravity in the gravity plus scalar sector is [1]26

SB =

∫
d4x
√
−g
[

1

2
R− 1

96
AµijklAµijkl − g2 P

]
, (5.7)

where

P = −3

4
|A1

ij |2 +
1

24
|A2 l

ijk|2 , (5.8)

is the scalar potential. The maximally supersymmetric solution is given by the AdS4

metric (3.10) of radius

L =
1√
2 g

, (5.9)

and vanishing scalar fields, φijkl = 0.

For a general solution, the asymptotic expansion of the scalar fields is similar to that

in (3.25), namely

φijkl(r, ~x) = e−r/Lφ(1)
ijkl(~x) + e−2r/Lφ(2)

ijkl(~x) + . . . ,

φ(n)
ijkl(~x) = α(n)

ijkl(~x)− iβ(n)
ijkl(~x) .

(5.10)

Using the symmetric gauge (5.1) and the definitions (5.3)–(5.5), one can verify by a

somewhat tedious calculation the following expansions of the composite fields [66]:

Bµij = − 1

24

(
φipqr∂µφjpqr − φjpqr∂µφipqr

)
+O(φ4) ,

Aµijkl = ∂µφ
ijkl +

1

24
φpqrsφ

pq[ij∂µφ
kl]rs − 1

24
φpq[ijφkl]rs∂µφpqrs +O(φ5) ,

(5.11)

26In this section we set κ2 = 1/8πG4 = 1.
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and of the A-tensors [65],27

A1
ij =

(
1 +

1

192
|φ|2

)
δij +

√
2

96
φikmnφmnpqφ

pqkj +O(φ4) , (5.12)

A2 l
ijk = −

√
2

2

(
1+

1

144
|φ|2
)
φijkl− 3

8
φmnl[iφ

jk]mn +

√
2

16
φlpqrφ

pqs[iφjk]rs+O(φ4) , (5.13)

where |φ|2 = φijklφ
ijkl. In particular, it follows from (5.12) and (5.13) that

|A1
ij |2 = 8 +

1

12
|φ2| −

√
2

96

(
φijklφklmnφ

mnij + c.c.
)

+O(φ4) ,

|A2 l
ijk|2 =

1

2
|φ|2 − 3

√
2

16

(
φijklφklmnφ

mnij + c.c.
)

+O(φ4) .

(5.14)

Hence the scalar potential (5.8),

P = −6− 1

24
|φ|2 +O(φ4) , (5.15)

has no cubic terms in its expansion! This is the source of the puzzle we resolve in this paper.

In the following we will also need the action for the spin-1/2 fields:

Sχ-bulk =

∫
d4x
√
−g
[
− 1

12

(
χ̄ijkγµDµχijk + χ̄ijkγ

µDµχ
ijk
)

+

√
2

144
g
(
εijkpqrlmA2

n
pqrχ̄ijkχlmn + c.c.

)]
,

(5.16)

and their Noether coupling to the gravitini:

SNoether =

∫
d4x
√
−g
[
− 1

12
Aµijklχ̄ijkγνγµψνl +

g

6
A2

i
jklψ̄µ iγ

µχjkl + c.c.

]
. (5.17)

The supersymmetry variation of the scalar fields is [1]

(δVV−1)ijkl ≡ −2
√

2 Σijkl , (5.18)

where

Σijkl = ε̄[iχjkl] +
1

24
ηijklmnpq ε̄

mχnpq , (5.19)

is self-dual. The expansion of (5.18) yields the result similar to (5.11) [1, 66], namely,

δφijkl = 8 Σijkl(1 +O(φ2)) . (5.20)

Finally, the supersymmetry variations of the left-handed gravitinos and gauginos in the

N = 8 theory are given by [1]

δψµ
i = 2Dµε

i +
√

2 g A1
ijγµεj , (5.21)

δχijk = −Aµijkl γµ εl − 2 g A2 l
ijkεl , (5.22)

with the corresponding complex conjugate variations of the right-handed fields, ψµi
and χijk.

27We correct the sign in the first bracket on the right hand side in (5.13).
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To conclude this summary we note that the bosonic action (5.7) expanded about its

maximally supersymmetric solution is

SB =

∫
d4x

[
1

2
R− 1

96
∂µφijkl∂

µφijkl + g2

(
6 +

1

24
|φ|2

)
+ . . .

]
, (5.23)

and has the same structure as the corresponding N = 1 action in (3.29). This suggests

that we should find the boundary counterterms with the same structure as those found in

section 3. To determine them we first consider the supersymmetry transformations of the

fermions and the corresponding Bogomolny factorization as in section 3.1 and then confirm

the result by a direct supergravity calculation.

6 Bogomolny argument in N = 8 supergravity

6.1 Motivation

It is useful to recall the form of the original BPS arguments [68, 69]. These are computa-

tions in field theories in flat backgrounds and, at least for monopoles, involve completing

the square in the Hamiltonian. This completion of the square requires boundary terms

that bound the energy from below. The bound is saturated precisely when the perfect

square in the bulk action vanishes and this condition leads to the BPS equations. Apart

from time-independence, there were no special assumptions about how the fields depended

on coordinates and the original treatment involved flat space and did not incorporate grav-

itational back-reaction.

In this section, we will make a “BPS-inspired” argument by making a similar comple-

tion of squares, but there will be several important differences with the standard BPS story.

First, our metric will not be flat but will be that of the “kink Ansatz,” (3.1), the most

general metric that preserves Poincaré invariance in the boundary directions. However,

unlike (3.1), we will consider completely general scalar fields. We use this metric Ansatz

because we wish to consider fields in AdS and in asymptotically-AdS backgrounds.

Exactly as in the BPS story, we will complete the square in the bulk action and collect

the essential boundary terms that are needed to achieve this. Since we are allowing a

non-trivial scale factor, A(r), in our metric Ansatz, one should anticipate that the energy

will not be bounded below. Indeed, one finds that the bulk action produces a signed sum

of squares. Thus, unlike the BPS story, we cannot obtain a lower bound on the energy.

What is important here is that we show that the action with the completed squares in the

bulk has much better fall-off behavior at infinity in an asymptotically-AdS background.

The result is that the boundary terms obtained from the “BPS-inspired” completion of

squares are precisely the boundary terms that one needs to regulate the action in an

asymptotically-AdS background.

6.2 The BPS equations in the “kink Ansatz”

As in section 3, we start by assuming that the metric has the Poincaré-invariant form (3.1)

and that the scalar fields depend only on the radial coordinate, r. Setting the spacetime
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components (µ = 0, 1, 2) of the gravitino variations (5.21) and the gaugino variations (5.22)

to zero, we obtain the following equations:

A′ γ3 εi +
√

2 g A1
ijεj = 0 ,

−Arijkl γ3 εl − 2 g A2 l
ijkεl = 0 ,

(6.1)

which, together with the complex conjugate equations, constitute a linear system for the

Killing spinors, εi and εi.

Motivated by the known solutions to (6.1) from RG-flows in various truncations of the

N = 8 theory (see for example [62, 70–75]), let us set

γ3εi = Xijεj , γ3εi = Xijε
j , X ij = (Xij)

∗ , (6.2)

where Xij is a symmetric matrix, which by consistency with (γ3)2 = I must also be unitary.

Then, substituting (6.2) in (6.1), we find the following equations:(
A′Xij +

√
2 g A1

ij
)
εj = 0 ,

(
Arijkl + 2 g X lmA2m

ijk
)
εl = 0 , (6.3)

where the matrices acting on the Killing spinors, εi, are the BPS operators we are

looking for.

We refer the reader to appendices C and E for further discussion of truncations and

flows. Here let us note that for known RG flows the components of the BPS operators that

act on the nonvanishing εi’s reduce to the usual BPS equations for the metric function and

the scalar fields, respectively. In particular, in the truncation discussed in [14] (see also

appendix E) they yield the BPS equations (3.3).

In the following we will show that the BPS operators defined in (6.3) provide natural

factors for the N = 8 analogue of the Bogomolny argument in section 3. At the same time

one should keep in mind that the discussion below is completely general and independent

of any solution of (6.3). In particular, the factorization in section 6.3 holds for scalar

fields with arbitrary space-time dependence. All that we use is that the metric has the

form (3.1), the general form of the BPS operators and identities satisfied by the A-tensors

in N = 8, d = 4 supergravity.

6.3 Completing the square

We now generalize the result: the metric will still be required to be of the form (3.1), but

the scalar fields will be allowed to have arbitrary dependence on all coordinates. With these

choices, the bosonic action (5.7) reduces to the following effective action for the scalars and

gravitational field:28

SB =

∫
d4x e3A

[
3(A′)2 +

3

4
g2
∣∣A1

ij
∣∣2 − 1

96
AµijklAµ ijkl −

1

24
g2
∣∣∣A2i

jkl
∣∣∣2 ] . (6.4)

28The reduction of (5.7) to (6.4) introduces boundary terms that arise from the integration by parts of

the second order derivatives of the metric inside the Ricci scalar. Those terms are then cancelled by the

usual Gibbons-Hawking boundary counterterm.
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At first sight, it may seem inconsistent to employ such an action because scalars de-

pending on the boundary directions will have an energy momentum tensor that sources

metric components that violate the metric Anstaz in (3.1). There are two, essentially equiv-

alent, ways to think about this. First, we want to work about a gravitational background

that preserves Poincaré invariance in the boundary directions and, as in section 3, we want

to “consistently suppress” all gravitational back-reaction that breaks the Poincaré invari-

ance. This can be reduced to a prescription in terms of powers of the gravitational coupling,

κ, but we can simply take the view that we use (6.4) and drop all the Einstein equations

involving components of the energy-momentum tensor that break Poincaré invariance.

The second, and more practical perspective, is that our goal now is to examine the

behavior of the action in asymptotically-AdS space and consider the asymptotic behavior

of the bulk action as it approaches the boundary. To that end, we note that (6.4) contains

precisely the degrees of freedom that remain non-trivial as the metric asymptotes that of

AdS at infinity. We discuss this more in section 6.5.

The supersymmetry means that this action can be written in terms of squares of the

BPS operators introduced above. Indeed, the first two terms in (6.4) may be written as

e3A
[
3(A′)2 +

3

4
g2
∣∣A1

ij
∣∣2 ] =

3

8
e3A
∣∣∣A′Xij ∓

√
2 g A1ij

∣∣∣2
± 3

4
√

2
gA′ e3A

[
XijA1

ij +XijA1ij

]
,

(6.5)

where Xij is any unitary matrix. Similarly, the A2-term and the radial component of the

scalar kinetic term in (6.4) can be written as:

e3A

[
− 1

96
ArijklArijkl −

g2

24

∣∣∣A2i
jkl
∣∣∣2 ] = − 1

96
e3A
∣∣∣Arijkl ± 2gXimA2m

jkl
∣∣∣2 (6.6)

± g

48
e3A
[
ArijklXimA2m

jkl +ArijklXimA2
m
jkl

]
.

The role of the dynamical matrix Xij here is to preserve the SU(8) covariance of the factors

inside the squares. In principle, we could choose Xij in any convenient manner and one

could even choose these matrices to be different in (6.5) and (6.6).

There is, however, a very natural and canonical choice that is motivated by flows and

superpotentials of truncated theories. We will also see that this choice also leads to a

very simple boundary action. Autonne-Takagi factorization [76] allows one to write the

symmetric, complex matrix, A1
ij , as

A1
ij = (S DST )ij , (6.7)

where Sij is a unitary matrix and Dij is real and diagonal with non-negative eigenvalues.

Indeed, multiplying this by its complex conjugate gives

A1
ik A1 kj = (S D2 S†)ij . (6.8)

and so the eigenvalues of D are the square-roots of the real eigenvalues of the hermitian

matrix A1
ikA1 kj . Choose

Xij = (S∗ S†)ji , X ij = (Xij)
∗ . (6.9)
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Note that Xij = Xji is a symmetric matrix. Furthermore one has

XijA1
ij = Tr

(
S∗ S† S DST

)
= TrD , (6.10)

which means that the squared term in (6.5) may be written as

3

8
e3A
∣∣∣A′Xij ∓

√
2 g A1

ij
∣∣∣2 =

3

8
e3A
∣∣∣A′ δij ∓√2 g Dij

∣∣∣2 . (6.11)

6.4 Collecting the boundary terms

Observe that using the identity [1]

DµA1
ij =

1

12
√

2

(
A2

i
klmAµjklm +A2

j
klmAµiklm

)
, (6.12)

the extra terms in (6.5) and (6.6) can be combined to

± g

4
√

2

[
XijDr(e

3AA1 ij) +Xij Dr(e
3AA1

ij)
]
. (6.13)

Using the cyclic properties of the trace, one finds:

Xij∂µA1
ij = Tr

[
S∗ S† ∂µ(S DST )

]
= Tr

[
(S† ∂µS)D +D (∂µS

T )S∗ + ∂µD
]

= Tr
[
∂µD + ((S† ∂µS) + (S† ∂µS)T )D

]
.

(6.14)

Note that (S† ∂µS)+(S† ∂µS)T is symmetric and in the Lie algebra of SU(8). It is therefore

purely imaginary and so cancels when added to the complex conjugate:

Xij∂µA1 ij +Xij∂µA
ij
1 = 2 ∂µ TrD = 2 ∂µ Tr

√
A1A

†
1 . (6.15)

Finally, there are the connection terms in the covariant derivative:

DµA1
ij = ∂µA1

ij − 1

2
BµikA1

kj − 1

2
BµjkA1

ik = ∂µA1
ij − Bµ(i

kA1
j)k , (6.16)

where we have used the symmetry of A1
ij . These connection terms yield a contribution:

−XijBµikA1
kj = −Tr

[
S∗ S† Bµ S DST ] = −Tr

[
Bµ (S DS†)] . (6.17)

However, (S DS†) is hermitian while Bµ is anti-hermitian and so this trace is purely imag-

inary and therefore also cancels out when one adds the complex conjugate. This means

that with our choice of Xij , the SU(8) connection terms make no contribution to (6.13)

and so the complete boundary term may be written as

± g

2
√

2
∂rTr

[
e3AD

]
= ± g

2
√

2
∂rTr

[
e3A

√
A1A

†
1

]
. (6.18)

Putting this all together, we see that the effective action (6.4) can be written as

SB =

∫
d3x dr e3A

[
3

8

∣∣A′Xij −
1

L
A1ij

∣∣2 − 1

96

∣∣Arijkl +

√
2

L
XipA2p

jkl
∣∣2

− 1

96
gabAaijklAbijkl

]
+

1

4L

∫
d3x e3A Tr

√
A1A

†
1

∣∣∣
r=r0

,

(6.19)

where we have explicitly restored the spacetime components, Aa and Ab of Aµ, a, b = 0, 1, 2.

In appendix C we perform similar computations for consistent truncations of the N =8

theory to reduced levels of supersymmetry. It particular we obtain the analogous form

of (6.19) for such truncations.
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6.5 Asymptotics and counterterms

We will now argue that for the solutions of interest, namely with

A(r) =
r

L
+O(e−2r/L) , (6.20)

and (5.10) for the scalars, the two squared terms in the first line in (6.19) obtained by

choosing the upper signs in (6.5) and (6.6) vanish at the boundary and that the last

term in the bulk integral vanishes as well. This makes the last term in (6.19) a natural

candidate for the counterterm. We will further confirm that in section 7 by showing that

this boundary counterterm is consistent with the local supersymmetry of the Legendre

transformation of the renormalized on-shell action.

Observe that (5.12) implies that the matrix, (A1ij), is diagonal to quadratic order in

the fields. Using the asymptotic expansion (5.10), we thus have

A1 ij = δij +O(e−2r/L) , (A†1A1)ij = δij +O(e−2r/L) , Dij = δij +O(e−2r/L) . (6.21)

Together with (6.20) and (6.11), where we choose the upper sign, this implies the estimate

A′ δij −
√

2 g Dij ∼ O(e−2r/L) . (6.22)

Similarly, from (6.21) and the definition (6.7), we find the asymptotic expansion

Sij = S0
i
j +O(e−3r/L) , (6.23)

where S0 is a (complex) orthogonal matrix, ST0 S0 = 1. Then, cf. (6.9),

Xij = δij +O(e−3r/L) . (6.24)

Once more choosing the upper sign in (6.6) and using (5.11) and (5.13) we find:29

Arijkl + 2 g X imA2m
jkl ∼ O(e−2r/L) . (6.25)

Given the asymptotic expansions (6.22) and (6.25), we see that

∣∣A′Xij −
1

L
A1ij

∣∣2 , ∣∣Arijkl +

√
2

L
XimA2m

jkl
∣∣2 ∼ O(e−4r/L) . (6.26)

This shows that the terms in the square bracket in (6.19) vanish at the boundary.

The metric in the boundary directions is gab = e−2r/Lδab and, from (5.10) and (5.11),

one has Aaijkl ∼ O(e−r/L) and so the third bulk term in (6.19), including the factor of e3A,

vanishes at infinity. Thus even though we allowed scalar fields to depend on the boundary

directions, the exponential fall-off of the components of the metric in the boundary direc-

tions means that such scalar fluctuations consistently decouples in our effective action near

the boundary.

29Note the order of indices in (5.11).
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Thus we are led to the boundary scalar counterterm action:

Ss-ct = − 1

4L

∫
d3x e3r0/L Tr

√
A1A

†
1

=

∫
d3x e3r0/L

[
− 2

L
− 1

96L
φijklφ

ijkl

+
1

384
√

2L

(
φijklφijmnφ

klmn + c.c.
)

+ . . .

]
.

(6.27)

The combined bulk (6.4) and boundary (6.27) action can be rewitten as:

SB + Ss-ct =

∫
d3x dr e3A

[
3

8

∣∣A′Xij −
1

L
A1ij

∣∣2 − 1

96

∣∣Arijkl +

√
2

L
XimA2m

jkl
∣∣2

− 1

96
gabAaijklAbijkl

]
.

(6.28)

This has a vanishing contribution in the asymptotic region. Put differently, the original

bulk action, SB, has divergent and finite pieces at infinity but adding the boundary action,

Ss-ct, precisely cancels these boundary terms.

Finally, we note that the cubic counterterm in (6.27) depends only on the scalar

fields, αijkl. Indeed, it is straightforward to check that for self-dual scalars, αijkl, and

anti-self-dual pseudoscalars, βijkl,

αmn[ijαkl]mn and βmn[ijβkl]mn , (6.29)

are also, respectively, self-dual and anti-selfdual, see appendix D. Thus expanding the cubic

counterterm we find

1

384
√

2L
(φijklφ

klmnφmnij + c.c.) =

√
2

384L
αijklαklmnαmnij . (6.30)

This is of course in agreement with the branching rules for the SO(8) tensor products [77]:

35i ⊗ 35i −→ 1 + 35i + . . . , 35i ⊗ 35j −→ 35k + . . . , (6.31)

and the assignment of 35v and 35c to the scalars and the pseudoscalars, respectively. Hence

the absence of a cubic coupling between the scalars and the pseudoscalars is a consequence

of the SO(8) symmetry.

We should finish this section by emphasizing that while the Bogomolny type argument

uses the standard completion of the square that can be used to derive the BPS equations,

the latter are not relevant to our focus here. The Bogomolny type argument simply leads

to a bulk action with stronger (vanishing) convergence properties at infinity and so can be

used to derive the boundary counterterms needed to achieve this outcome.

7 Boundary sources and N = 8 supersymmetry

7.1 Preliminaries

In this section, using methods similar to section 3.5, we show that boundary terms in the

supersymmetry variation of the Legendre transformed on-shell action of N = 8 supergravity
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are cancelled by the variation of the boundary counterterms,

Sbdy = Ss-ct + Sχ-ct , (7.1)

where Ss-ct is the scalar counterterm (6.27) and Sχ-ct is the gaugino counterterm

Sχ-ct =

∫
d3x e−3r0

[
1

24
χ̄ijkχijk + c.c.

]
. (7.2)

This fermionic counterterm may, at first, seem surprising in that it breaks the SU(8)

symmetry of N = 8 supergravity down to SO(8). Such a symmetry breaking is expected

because scalars and pseudoscalars in supergravity are quantized differently.

As in section 3.5, we consider only those variations that involve the scalar and spin-

1/2 fields and work in the fixed AdS4 metric background with the corresponding Killing

spinors,

εi(r, ~x) = er/2Lζ+
i(~x) + e−r/2Lζ−

i , εi(r, ~x) = er/2Lζ+i(~x) + e−r/2Lζ−i , (7.3)

γ3ζ±
i = ∓ζ± i , ζ̄±

iγ3 = ±ζ̄± i , (7.4)

/∂ζ+
i = − 3

L
ζ−i , /∂ζ+i = − 3

L
ζ−

i , (7.5)

obtained by solving the BPS equations (5.21), δψµ
i = δψµ i = 0, with vanishing scalar

fields. However, unlike in section 3, we will use the left- and right-handed spinors rather

than the underlying Majorana spinors. This explains why the radiality conditions (7.4)

look different from those in (3.24). The two are of course equivalent.

To take advantage of the radiality constraints (7.4) of the Killing spinors, it is conve-

nient to introduce analogous projections of the spin-1/2 fields. To this end we define

Ξijk =
1

2

(
χijk − γ3χijk

)
, Υijk =

1

2

(
χijk + γ3χijk

)
,

Ξijk =
1

2

(
χijk − γ3χijk

)
, Υijk =

1

2

(
χijk + γ3χijk

)
,

(7.6)

where the level of indices indicates the γ5-chirality.30 Then

γ3 Ξijk = −Ξijk , γ3 Υijk = Υijk . (7.7)

The asymptotic expansions of these fields are given by

Ξijk = e−3r/2L Ξ(3/2)
ijk + e−5r/2L Ξ(5/2)

ijk + . . . ,

Υijk = e−3r/2L Υ(3/2)
ijk + e−5r/2L Υ(5/2)

ijk + . . . ,
(7.8)

30In terms of the underlying Majorana spinors, χijkM , the new fields are given by

Ξijk =
1

4
(1 + γ5)(1− γ3)χijkM , Υijk =

1

4
(1 + γ5)(1 + γ3)χijkM , etc. ,

and hence are chiral projections of the fields with negative/positive radiality, respectively.
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and similarly for the complex conjugate fields. In terms of the leading asymptotic coeffi-

cients, the supersymmetry variations (5.20) of the scalar fields become

δα(1)
ijkl = 8 ζ̄+

[iΥ(3/2)
jkl] +

1

3
ηijklmnpq ζ̄+

mΥ(3/2)
npq ,

δβ(1)
ijkl = −8i ζ̄+

[iΞ(3/2)
jkl] +

i

3
ηijklmnpq ζ̄+

mΞ(3/2)
npq ,

(7.9)

δα(2)
ijkl = 8

(
ζ̄−

[iΞ(3/2)
jkl] + ζ̄+

[iΥ(5/2)
jkl]
)

+
1

3
ηijklmnpq

(
ζ̄−

mΞ(3/2)
npq + ζ̄+

mΥ(5/2)
npq
)
,

δβ(2)
ijkl = −8i

(
ζ̄−

[iΥ(3/2)
jkl] + ζ+

[iΞ(5/2)
jkl]
)

+
i

3
ηijklmnpq

(
ζ̄−

mΥ(3/2)
npq + ζ̄+

mΞ(5/2)
npq
)
,

(7.10)

while the supersymmetry variations (5.22) for the leading modes of the gauginos are

δΞ(3/2)
ijk = −2i

L
β(1)

ijkl ζ−
l − 1

L

[
α(2)

ijkl +
3

4
√

2
α(1)

mn[ijα(1)
k]lmn

+
3

4
√

2
β(1)

mn[ijβ(1)
k]lmn − iLγ3/∂β(1)

ijkl

]
ζ+

l ,

(7.11)

and

δΥ(3/2)
ijk =

2

L
α(1)

ijkl ζ−
l − i

L

[
− β(2)

ijkl +
3

4
√

2
α(1)

mn[ijβ(1)
k]lmn

− 3

4
√

2
β(1)

mn[ijα(1)
k]lmn − iLγ3/∂α(1)

ijkl

]
ζ+

l .

(7.12)

The structure of the supersymmetry variations (7.9)–(7.12), modulo the SO(8) indices,

is exactly the same as in (3.26). In particular, we can set the sources:

β(1)
ijkl(~x) = 0 , Ξ(3/2)

ijk(~x) = 0 , (7.13)

and

Aijkl(~x) ≡ − 1

L

[
α(2)

ijkl(~x) +
3

4
√

2
α(1)

mn[ij(~x)α(1)
k]lmn(~x)

]
, (7.14)

to zero (cf. (3.28)) consistent with supersymmetry. It follows from (D.6) that Aijkl is totally

antisymmetric and self-dual. The same calculation as in section 3.6 shows that

Aijkl = − lim
r→∞

e−r/L Πijkl , (7.15)

where Πijkl is the conjugate momentum

Πijkl = −e3r/L

[
∂rα

ijkl +
1

L
αijkl − 3

4
√

2L
αmn[ijαkl]mn

]
, (7.16)

obtained by varying the bulk plus boundary bosonic action (6.28). Performing the Legendre

transform on the scalars amounts then to the addition of

SL =
1

48

∫
d3x Aijkl(~x)α(1)

ijkl(~x) (7.17)

to the action and then extremizing with respect to α(1)
ijkl.
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The equations of motion for the spin-1/2 fields that follow from the bulk action

(5.16) are:

γµDµχijk −
1

12L
ηijkpqrlmA2n

pqr χlmn = 0 . (7.18)

In the AdS4 background,

γµDµ = e−r/L/∂ + γ3 ∂

∂r
+

3

2L
γ3 , (7.19)

where /∂ is the 3d Dirac operator along the boundary, and the asymptotic expansion

of (7.18) and its complex conjugate equation yield

Ξ(5/2)
ijk = −L/∂Υ(3/2)ijk +

1

12
√

2
ηijkpqrlm

(
α(1)

npqrΞlmn(3/2) − iβ(1)
npqrΥlmn

(3/2)

)
,

Υ(5/2)
ijk = L/∂Ξ(3/2)ijk −

1

12
√

2
ηijkpqrlm

(
α(1)

npqrΥlmn
(3/2) − iβ(1)

npqrΞlmn(3/2)

)
,

(7.20)

with arbitrary Ξ(3/2)
ijk and Υ(3/2)

ijk. This is the N = 8 analogue of (3.40).

7.2 The boundary variation from the bulk N = 8 action

We will now demonstrate explicitly the invariance of the Legendre transformed on-shell

renormalized action

S̃ = Sbulk + Sbdy + SL , (7.21)

under theN = 8 superconformal symmetry (7.3). Since the calculation turns out somewhat

lengthy, it is helpful to split it into several steps as to make various cancellations more

transparent.

We start with the bulk action of the N = 8 supergravity, which is known to be

invariant — in the bulk — under local supersymmetry variations [1]. However, the proof

involves integration by parts which on a space-time with a boundary gives rise to nontrivial

boundary terms. A convenient way to identify them is to group individual terms in the

variation of the bulk supergravity Lagrangian, Lbulk, according to whether they contain

derivatives of the supersymmetry parameters or not. Schematically, we may write this as

δLbulk = V̄iε
i + X̄µ

iDµε
i + c.c. . (7.22)

The invariance of the action in the bulk means that after integration by parts,

(V̄i −DµX̄
µ
i)ε

i + c.c. = 0 . (7.23)

In the AdS4 background that we are considering, the remaining boundary terms are thus

given by

δSbulk =

∫
d3x e3r0/L

[
X̄3

iε
i + c.c.

]
. (7.24)

In practice, this means that in order to extract the boundary terms of interest, we must

look only at those terms in the bulk action that upon the supersymmetry variation give rise
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to derivatives of the supersymmetry parameters. There are three sources of such terms: the

kinetic terms with derivatives of the varied fields, the Noether coupling of the gravitino to

the supersymmetry current that is independent of g, and the additional Noether coupling

due to gauging.

Since we only are interested in the variations that contain the scalar fields and the

gauginos, we must consider only the following terms in the bulk action:

Sbulk =

∫
d4x
√
−g
[
− 1

96
AµijklAµijkl −

1

12

(
χ̄ijkγµDµχijk + χ̄ijkγ

µDµχ̄
ijk
)

− 1

12

(
Aµijklχ̄ijkγνγµψνl + c.c.

)
+
g

6

(
A2

i
jklψ̄µ iγ

µχjkl + c.c.
)]
.

(7.25)

Then, using the supersymmetry variations (5.21), (5.22) and (5.18), we find essentially by

inspection that the boundary terms in the variation of the bulk action are given by

ε̄jX
µ j = −1

6
Aµ ijklε̄iχjkl +

1

12
Aν

ijklε̄lγ
νγµχijk −

g

6
A2

l
ijk ε̄lγ

µχijk

+
1

6
Aνijklε̄iγνγµχjkl +

g

3
A2

i
jklε̄iγ

µχjkl ,

(7.26)

plus its complex conjugate, ε̄iXµ
i. We have kept here the same order of terms as in (7.25) to

indicate the origin of each term. Note that the variation of the gaugino kinetic action (the

second and third terms in (7.26)) is proportional to the variation of the Noether coupling

in the last two terms in (7.26). Hence31

ε̄jX
µ j + c.c. = −1

6
Aµ ijklε̄iχjkl +

1

12
Aνijklε̄iγνγµχjkl +

g

6
A2

i
jklε̄iγ

µχjkl + c.c. ,

= −1

6
Aµ ijklε̄iχjkl −

1

12
δχ̄jklγ

µχjkl + c.c. ,

(7.27)

where in the second line we used (5.22).

7.3 Adding counterterms

The first term in the second line of (7.27) is the only boundary contribution to (7.24) from

the variation of the bulk bosonic action (5.7), that is

δSB =

∫
d3x e3r0/L

[
− 1

6
Aµ ijklε̄iχjkl + c.c.

]
. (7.28)

We will first show that modulo source terms on the boundary, both the infinite and finite

terms in (7.28) are cancelled by the variation of the bosonic counterterms in (6.27):

δSs-ct =

∫
d3xe3r0/L

[
− c2

48L

(
αijklδαijkl + βijklδβijkl

)
+

c3

128
√

2L
αijklαklmnδαijmn

]
.

(7.29)

31To properly understand the signs, note the positions of the contracted indices ijkl in the second a

fourth terms in (7.26): these two terms differ by a factor of −2 just like the third and fifth terms.
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To keep track of the origin of various terms, we have introduced here constants c2 and c3,

to be set c2 = c3 = 1 afterwards.

The expansion of (7.28) and (7.29) yields the following result:32

(7.28) + (7.29) =
1

3L

∫
d3x er0/L (1− c2)

[
α(1)

ijkl ζ̄+
iΥ(3/2)

jkl + iβ(1)
ijkl ζ̄+

iΞ(3/2)
jkl
]

+
1

3L

∫
d3x (1− c2)

[
α(1)

ijkl ζ̄+
iΥ5/2

jkl + iβ(1)
ijkl ζ̄+

iΞ5/2
jkl

+ α(1)
ijklζ̄−

iΞ(3/2)
jkl + iβ(1)

ijklζ̄−
iΥ(3/2)

jkl
]

+
1

3L

∫
d3x

[(
(2− c2)α(2)

ijkl +
3c3

4
√

2
αijmn(1) α(1)

klmn

)
ζ+

iΥ(3/2)
jkl

+ (2− c2)iβ(2)
ijkl ζ+

iΞ(3/2)
jkl

]
. (7.30)

This shows that the quadratic counterterm removes the divergence at the boundary as well

as it cancels a number of finite terms given by the second integral. After using (7.9), (7.14)

and (7.17), the remaining terms are

δSB + δSs-ct =

∫
d3x

[
− 1

48
Aijklδα(1)

ijkl +
i

3L
β(2)

ijkl ζ+
iΞ(3/2)

jkl

]
, (7.31)

and they indeed vanish in the absence of sources, cf. (7.13) and (7.14).

Next consider the second boundary term in the variation of the bulk action (7.27) and

combine it with the variation of the gaugino counterterm (7.2) multiplied by an overall

constant, cχ. In terms of the modes (7.8), we then have∫
d3xe3r0/L

[
− 1

12
δχ̄ijkγ3χijk +

cχ
12
δχ̄ijkχijk + c.c.

]
=

∫
d3x

[
− 1

12
(1− cχ)δΞ̄(3/2)

ijkΥ(3/2)
ijk +

1

12
(1 + cχ)δῩ(3/2)

ijkΞ(3/2)
ijk + c.c.

]
.

(7.32)

Examining the variations (7.11) and (7.12), it is clear that we can cancel the second term

in (7.31) only by setting cχ = 1. Substituting (7.12) in (7.32) and then using (D.8) and

the radialities (7.4) and (7.7), we find

1

6
δῩ(3/2)

ijkΞ(3/2)
ijk + c.c. = − 2

3L
α(1)

ijkl ζ̄−
iΞ(3/2)

jkl − 1

3
ζ+i/∂α(1)

ijkl Ξ(3/2)
jkl

−
(

i

2
√

2
α(1)

ijmnβ(1)
klmn+

i

3L
β(2)

ijkl

)
ζ+

iΞ(3/2)
jkl .

(7.33)

The variation of the last term in (7.21) is

δSL =

∫
d3x

[
1

48
Aijklδα(1)

ijkl +
1

48
α(1)

ijkl δAijkl
]
, (7.34)

32Note that we consider here only a subset of terms from the full supersymmetry variation of the bosonic

action and hence there is no contradiction with the result of the asymptotic analysis in section 6.5, namely

that the renormalized bosonic action vanishes at the boundary.
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where the first term cancels against the first term in (7.31). To complete the proof of

invariance, we must show that the second term in (7.34) combines with the first three

terms in (7.33) into a total derivative along the boundary.

From (7.14), (7.9), (7.10) and using the identities (D.6), (D.8), (D.9) and (D.10) in

appendix D, we have

1

48
α(1)

ijkl δAijkl = − 1

3L
α(1)

ijkl
(
ζ̄−

iΞ(3/2)
jkl + ζ̄+

iΥ(5/2)
jkl
)

− 1

2
√

2L
α(1)

ijmnα(1)
klmn ζ̄−

iΥ(3/2)
jkl

= − 1

3L
α(1)

ijkl ζ̄−
iΞ(3/2)

jkl +
i

2
√

2
α(1)

ijmnβ(1)
klmn ζ+

iΞ(3/2)
jkl

− 1

3
α(1)

ijkl ζ̄+
i/∂Ξ(3/2)jkl ,

(7.35)

where in the second step we have also used the fermion equations of motion (7.20) to

eliminte Υ(5/2)
jkl. Adding the variations in (7.31), (7.33) and (7.35) we are left with

δS̃ =

∫
d3x

[
− 1

L
α(1)

ijkl ζ̄−
iΞ(3/2)

jkl − 1

3
ζ+i/∂α(1)

ijkl Ξ(3/2)
jkl − 1

3
α(1)

ijkl ζ̄+
i/∂Ξ(3/2)jkl

]
=

∫
d3x

[
− 1

3

∂

∂xa
(α(1)

ijklζ+iγ
aΞ(3/2)

jkl)

]
, (7.36)

which vanishes. This concludes the proof of invariance.

8 2- and 3-point correlators from N = 8 supergravity

8.1 The counterterms in the SL(8,R) basis

To calculate the three point functions of the operators, OIJ , we first transform the scalar

fields from the SU(8) to the SL(8,R) basis [66]. This replaces the antisymmetric self-dual

tensor, αijkl, by the symmetric traceless tensor, AIJ ,

αijkl =
1

4
(ΓIK)ij(ΓJK)klAIJ , AIJ =

1

96
(ΓIK)ij(ΓJK)kl αijkl , (8.1)

and the anti-self-dual tensor, βijkl, by the self-dual tensor, BIJKL,

βijkl =
1

16
(ΓIJ)ij(ΓKL)klBIJKL , BIJKL =

1

16
(ΓIJ)ij(ΓKL)kl βijkl , (8.2)

where I, J, . . . indices lie in 8v and ΓIJ are chiral SO(8) generators. In terms of the new

fields, the bulk action (5.23) and the boundary counterterms (6.27) read:

SB =

∫
d4x
√
−g
[

1

2
R− 1

4
∂µA

IJ∂µAIJ − 1

96
∂µB

IJKL∂µBIJKL

+
1

2L2

(
6 +AIJAIJ +

1

24
BIJKLBIJKL

)]
,

(8.3)

Ss-ct =

∫
d3x e3r0/L

[
− 2

L
− 1

4L
AIJAIJ +

1

6
√

2L
AIJAJKAKI

]
. (8.4)
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The source field (7.14) becomes

AIJ = − 1

L

[
A(2)

IJ +
1√
2

(
A(1)

IKA(1)
JK − 1

8
δIJA(1)

MNA(1)
MN

)]
, (8.5)

as can be verified by calculating the momentum ΠIJ from the action (8.3)–(8.4).

8.2 The correlators of the operators OIJ(~x)

Finally we calculate the 2- and 3-point functions of the 35 operators OIJ(~x) with scale

dimension ∆ = 1. This computation parallels the one in section 4, the only difference

being that here we need to carefully keep track of the SO(8) vector indices. Just as in

section 4, let us set L = 1. We will reinstate L by dimensional analysis at the end.

The starting point is the action (8.3)–(8.4) with the pseudoscalars set to zero. In

Euclidean signature, it reads

S =
1

κ2

∫
d4x
√
g

[
1

4
∂µA

IJ∂µAIJ − 1

2
AIJAIJ

]
+

1

κ2

∫
d3x e3r0

[
1

4
AIJAIJ − 1

6
√

2
AIJAJKAKI

]
+O(A4) ,

(8.6)

where we restored the factor of 1/κ2 that accounts for a proper normalization of the

Einstein-Hilbert term in (8.3). As in (4.3), we expand AIJ as

AIJ(r, ~x) = e−rAIJ(1)(~x) + e−2rAIJ(2)(~x) + · · · , (8.7)

and we can write the on-shell action as a simple generalization of (4.5):

Son-shell[A
IJ
(1)] = − 1

4κ2

∫
d3x d3y

AIJ(1)(~x)AIJ(1)(~y)

π2 |~x− ~y|4

− 1

6
√

2κ2

∫
d3xAIJ(1)(~x)AJK(1) (~x)AKI(1) (~x) +O(A4

(1)) .

(8.8)

To obtain the generating functional of connected correlators of OIJ(~x), we should pass

to the Legendre transform of (8.8):

S̃on-shell[A
IJ ] = Son-shell[A

IJ
(1)] +

1

2κ2

∫
d3xAIJ(~x)AIJ(1)(~x) , (8.9)

computed after extremizing the right-hand side with respect to AIJ(1)(~x). By analogy

with (4.7), this extremization gives

AIJ(~x) =
1

π2

∫
d3y

AIJ(1)(~y)

|~x− ~y|4
− 1√

2

[
AJK(1) (~x)AKI(1) (~x)− 1

8
δIJAKL(1) (~x)AKL(1) (~x)

]
+O(A3

(1)) .

(8.10)

Repeating the steps that led to (4.11), we obtain

S̃on-shell[A
IJ ] = − 1

8π2κ2

∫
d3x d3y

AIJ(~x)AIJ(~y)

|~x− ~y|2

+
1

6
√

2Lκ2

∫
d3x d3y d3z

AIJ(~x)AJK(~y)AKI(~z)

8π3 |~x− ~y| |~y − ~z| |~x− ~z|
+O(A4) ,

(8.11)

where we restored the appropriate factors of L.
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To identify −S̃on-shell[A
IJ ] with the generating functional of connected correlators of

OIJ(~x), we should account for the fact that AIJ(~x) may not be precisely the field theory

source for OIJ(~x), but it might differ from it by a constant,

Source for OIJ(~x) =
C
L
AIJ(~x) , (8.12)

with C being a dimensionless constant, and a factor of 1/L being required by dimensional

analysis. Adjusting for the proportionality constant in (8.12), we have from (8.11) that

〈OIJ(~x1)OIJ(~x2)〉 =
L2

16π3G4C2

1

|~x1 − ~x2|2
,

〈OIJ(~x1)OJK(~x2)OKI(~x3)〉 = − L2

64
√

2π4G4C3

1

|~x1 − ~x2| |~x1 − ~x2| |~x2 − ~x3|
,

(8.13)

with no sum over I, J , and K. In the index free “M notation,” these expressions become

〈O(~x1,M1)O(~x2,M2)〉 =
L2

8π3G4C2

tr(M1M2)

|~x1 − ~x2|2
,

〈O(~x1,M1)O(~x2,M2)O(~x3,M3)〉 = − L2

16
√

2π4G4C3

tr(M1M2M3 +M1M3M2)

|~x1 − ~x2| |~x1 − ~x2| |~x2 − ~x3|
.

(8.14)

The relations (8.14) are in complete agreement with the field theory results of section 2!

Indeed, these relations imply

c2 =
L2

8π3G4C2
, c3 = − L2

16
√

2π4G4C3
, (8.15)

where c2 and c3 are as in (2.12). It is straightforward to see that the ratio c2
3/c

3
2, which is

independent of the normalization constant C agrees with the result (2.23) provided that we

use cT = 32L2/(πG4) as in (2.26). Moreover, we see that if we work with operators OIJ
that are canonically normalized in the sense explained in section 2, for which the 2- and

3-point functions are given in (2.27), we have

C = − 1√
2
. (8.16)

Up to an overall sign, this normalization constant could have also been inferred from [14].

9 Conclusions

The goal of this paper was to resolve a puzzle concerning the 3-point functions of

dimension-1 scalar operators in 3d supersymmetric CFTs with gravity duals. In the case

of the N = 8 ABJM theory at Chern-Simons level k = 1, 2, one can calculate this 3-point

function exactly using the method of supersymmetric localization. It does not vanish.

When k = 1, the gravity dual of N = 8 ABJM is 11d supergravity on AdS4 × S7. The

4d maximally supersymmetric gauged SO(8) supergravity theory captures the dynamics of

the gravity multiplet in which the superconformal primaries are a 35v of scalar fields AIJ
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dual to the field theory operators OIJ of dimension 1. However the bulk action contains no

cubic couplings of the AIJ , so the traditional calculation of holographic 3-point functions

is not applicable.

The resolution is that the supergravity theory requires cubic boundary terms that

provide precisely the right interactions to reproduce the boundary 3-point functions. Our

main result (8.15) obtained from holography agrees precisely with the field theory expec-

tation (2.23). The boundary terms were first motivated by a Bogomolny argument for

BPS domain walls. They were then derived more rigorously by requiring that the total

derivatives usually neglected in supersymmetry variations of an action are cancelled by

boundary counter terms that include the necessary cubic.

Bulk fields dual to dimension-1 scalar operators in a 3d CFT enjoy alternate quanti-

zation as prescribed in [25]. The generating functional for their correlators is the Legendre

transform of the renormalized on-shell action that includes the new cubic boundary term.

The supersymmetry properties of the renormalized on-shell action and its Legendre trans-

form are as follows:

1. When sources are absent the on-shell action is invariant and the effect of the cubic

term is to produce nonlinear boundary conditions on the bulk fields. Naive boundary

conditions would break supersymmetry.

2. Sources are needed to calculate correlation functions. The sources and their super-

symmetry transformations are determined from the near-boundary asymptotics of

the bulk fields. When sources are included, only the Legendre transform is invariant.

Independent of supersymmetry, the Legendre transform plays a crucial role in the

calculation of the 3-point function 〈OIJ(~x1)OJK(~x2)OKI(~x3)〉. This is developed in an

N = 1 toy model in section 4 and extended to N = 8 supergravity in section 8. The

argument is both intricate and elegant, and gives considerable insight into the working of

the Legendre transform.

In the general framework of field theories with boundaries, the condition for a boundary

to preserve a conserved charge of the bulk theory is very simple: in the absence of boundary

sources, there must be no net flux of the conserved charge across the boundary. In particular

for supersymmetric theories, if there are no boundary sources, then flux of the supercurrent

across the boundary should be zero. The supersymmetric Noether currents of the N = 8

(global) supersymmetries are:

Jµi ≡
1

6
Aνijklγνγµχjkl +

g

3
A2

i
jklγµχ

jkl . (9.1)

and so supersymmetric boundary conditions should imply no leakage of supercharge at

infinity: ∫
d3x e3A

(
ε̄i J ir + c.c.

)
−→ 0 , r →∞ . (9.2)

It is relatively straightforward to establish that this indeed is a consequence of the vanishing

of (7.13) and (7.14) and similarly, for the N =1 theory, with the boundary conditions (3.28).
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A An alternative computation of 3-point functions of dimension-1

operators

Here we present an alternative method of computing 3-point functions of dimension-1

scalar operators that can be used in SCFTs with extended supersymmetry. As mentioned

in section 2, in N = 2 SCFTs, 2-point functions of dimension-1 scalars in flavor current

multiplets can be computed via supersymmetric localization by taking two derivatives of

the S3 free energy. Indeed, given a flat space N = 2 SCFT with R-symmetry current jµR
and Abelian flavor symmetries generated by jµ(α), one can construct [17] a unique supersym-

metric theory on S3 that is invariant under SU(2|1)`×SU(2)r, whose bosonic part consists

of the SU(2)` × SU(2)r isometry group of S3 as well as a U(1) symmetry generated by

jµR +
∑
α

tαj
µ
(α) , (A.1)

where tα are parameters. Using the technique of supersymmetric localization, one can

moreover compute the S3 free energy F (tα) of this theory [17]. One then has [45]

〈J(α)(~x1)J(β)(~x2)〉 = − 2

π2

(
∂2F

∂tα∂tβ

∣∣∣∣
tα=0

)
1

(4π)2 |~x1 − ~x2|2
, (A.2)

where J(α) are the dimension-1 scalars in the conserved current multiplets, normalized as

in (2.4).

As we now argue, the 3-point function of J(α) can also be computed from F (tα) via

〈J(α)(~x1)J(β)(~x2)J(γ)(~x3)〉 =
1

π2

(
∂3F

∂tα∂tβ∂tγ

∣∣∣∣
tα=0

)
1

(4π)3 |~x1 − ~x2| |~x1 − ~x3| |~x2 − ~x3|
,

(A.3)

but only in SCFTs that have at least N = 4 supersymmetry, and where at least two

of these N = 2 flavor current multiplets descend from half-BPS multiplets of the ex-

tended supersymmetry. Indeed, ∂3F
∂tα∂tβ∂tγ

∣∣
tα=0

is proportional to the 3-point function
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〈J(α)(~x1)J(β)(~x2)J(γ)(~x3)〉 whenever all 3-point functions of the operators multiplying tα
in the S3 action of [17] are proportional to 〈J(α)(~x1)J(β)(~x2)J(γ)(~x3)〉. This is true when

at least two of the N = 2 flavor current multiplets descend from half-BPS multiplets of

the extended supersymmetry, because in this case there is only one superspace invariant

that gives the 3-point function of the extended supersymmetry multiplets. A free theory

computation then gives the proportionality constant in (A.3).

We now show how (A.2) and (A.3) work in U(N)k × U(N)−k ABJM theory [3], first

when N = 1 where the theory is free, and afterwards in the large-N limit where the

theory has a holographic dual. We will be primarily interested in taking k = 1 or 2 where

supersymmetry is enhanced to N = 8. Recall that in N = 2 notation, ABJM theory has

2 vector multiplets with Chern-Simons levels (k,−k), two bi-fundamental chiral multiplets

Za, a = 1, 2 transforming in (N,N) of U(N) × U(N), and two bi-fundamental chiral

multiplets Wa, a = 1, 2 transforming in the conjugate representation of the gauge group.

Due to the extended supersymmetry, the R-charges of these chiral multiplets take the free

field value 1/2.

There are 3 Abelian flavor symmetries with conserved currents jµ(α), α = 1, 2, 3, corre-

sponding to the flavor charges of (Z1,Z2,W1,W2) being33 (1
2 ,

1
2 ,−

1
2 ,−

1
2), (1

2 ,−
1
2 ,

1
2 ,−

1
2),

and (1
2 ,−

1
2 ,−

1
2 ,

1
2). Correspondingly, there is a 3-parameter family of R-charge assignments

rZ1 =
1

2
(1 + t1 + t2 + t3) ,

rZ2 =
1

2
(1 + t1 − t2 − t3) ,

rW1 =
1

2
(1− t1 + t2 − t3) ,

rW2 =
1

2
(1− t1 − t2 + t3) ,

(A.4)

that can be used to couple the theory to S3 and compute the 2- and 3-point functions of the

canonically normalized operators J(α) in the same multiplet as jµ(α) using (A.2) and (A.3).

For N = 1, it is straightforward to apply the formulas in [17] to obtain

Ffree = −` (1− rZ1)− ` (1− rZ2)− ` (1− rW1)− ` (1− rW2) , (A.5)

where `(z) is a function defined in [17] obeying `′(z) = −πz cot(πz) and `(0) = 0. An

expansion at small tα gives

Ffree = 2 log 2− π2

4

(
t21 + t22 + t23

)
+ π2t1t2t3 +O(t4) . (A.6)

From (A.2) and (A.3) we obtain

〈J(α)(~x1)J(β)(~x2)〉free =
δαβ

(4π)2 |~x1 − ~x2|2
,

〈J(1)(~x1)J(2)(~x2)J(3)(~x3)〉free =
1

(4π)3 |~x1 − ~x2| |~x1 − ~x3| |~x2 − ~x3|
.

(A.7)

This result agrees with (2.25) when using the matrices in (2.17) and cT = 16.

33This normalization of the U(1)3 charges was chosen such that it agrees with the normalization in

section 2.2.
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At large N , it was shown in [16] that

F =
4
√

2πN3/2

3

√
rZ1rZ2rW1rW2 +O(N1/2) . (A.8)

Expanding at small tα, we have

F =
4
√

2πN3/2

3

[
1

4
− 1

4
(t21 + t22 + t23) + t1t2t3 +O(t4)

]
+O(N1/2) . (A.9)

From (A.2) and (A.3) we extract

〈J(α)(~x1)J(β)(~x2)〉 =
4
√

2N3/2

3π

δαβ

(4π)2 |~x1 − ~x2|2
+O(N1/2) ,

〈J(1)(~x1)J(2)(~x2)J(3)(~x3)〉 =
4
√

2N3/2

3π

1

(4π)3 |~x1−~x2| |~x1−~x3| |~x2−~x3|
+O(N1/2) .

(A.10)

Using
4
√

2N3/2

3π
≈ cT

16
≈ 2L2

πG4
, (A.11)

(see, for example, [47]) we see that these expressions agree with (2.29)–(2.30).

B Some details of the derivation of (3.20)

Below, the Killing spinor is assumed to be Majorana. We start by writing all terms in

δSkin involving the PRχ projection of the spinor field and then add the conjugate terms.

δSkin PRχ =

∫
d4x
√
−g
[
− ∂µ(ε̄PRχ)∂µz − 1

2
χ̄γµ∇µ(PL( /∇z + F )ε)

+
1

2
ε̄( /∇z − F )γµ∇µPRχ+ (ε̄γµ∇µPRχ)

(
F +

z

L

)
+ 2(ε̄PRχ)

z

L2

]
.

(B.1)

The 3 terms involving F are

− 1

2
χ̄γµ∇µ(PLFε)−

1

2
ε̄Fγµ∇µPRχ+ (ε̄γµ∇µPRχ)F . (B.2)

After a Majorana flip of the first term and adding the last two terms we recognize the total

derivative
1

2
∇µ(ε̄FγµPRχ) . (B.3)

This becomes the PRχ part of the last term in (3.20). Next use

γµγν∇µ(∂νzε) = �zε+ γµγν∂νz∇µε = �zε+ (1/L) /∇zε , (B.4)

in which the Killing spinor equation and a standard γ-matrix identity are used to write the

last term. This relation is used in the second term of (B.1) and, after partial integration,

in the third term also. After partial integration in the first term, one see that the 3 terms
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containing �z cancel. One is left with the two total derivatives from the partial integrations

plus terms in 1/L and 1/L2, namely

δSkin PRχ =

∫
d4x
√
−g
[
−∇µ(ε̄PRχ∂

µz) +
1

2
∇µ(ε̄ /∇zγµPRχ)

+
1

L
ε̄
[
/∇zPRχ+ zγµ∇µPRχ

]
+ 2

z

L2
ε̄PRχ

]
.

(B.5)

The terms inside the square bracket add to the derivative of the product zPRχ. This is

partially integrated giving another total derivative plus terms that vanish by Killing spinor

equation.

C Truncating the N = 8 theory

C.1 Truncations and flows

There are many important instances in which the full N = 8 theory is truncated to a

subsector with a reduced amount of supersymmetry. To define the reduced, or truncated,

theory we introduce a projection matrix, Πi
j , whose task will be to project onto the super-

symmetries of interest. Specifically, the supersymmetries in the truncation are given by:

Πi
j ε

j = εi , Πj
i εj = εi , Πi

j Πj
k = Πi

k , with p ≡ Πi
i = Tr(Π) . (C.1)

We are thus truncating to a theory with p supersymmetries.

In the second part of this appendix we show, in particular, that if Πi
j is a projector

acting on the supersymmetries in such a way that it reduces their number to p in a manner

consistent with (5.21) and (5.22) then the boundary counterterm action is simply:

Sb,truncated = − 2

pL

∫
d3x e3r0/L Tr

√
ΠA1A

†
1 . (C.2)

Indeed, in many instances,34
√

ΠA1A
†
1 is simply diagonal on the relevant subspace and has

eigenvalues eK/2W . Thus (C.2) yields the same result as in (3.4).

It is also important to note that (C.2) represents a sum over a subset of p of the

eigenvalues of A1A
†
1. From (5.12) one sees that, at quadratic order in φ, the eigenvalues

are all the same while at cubic order they will depend on details of the truncation. Thus, as

one would expect, to quadratic (divergent) order, the counterterms are universal35 but the

finite counterterms depend upon the details of the supersymmetry of the truncated theory.

In particular, the truncation will generically break SO(8) to SO(p), or perhaps even some

subgroup of SO(p). Thus the form of the finite counterterms is no longer bound by SO(8)

invariance, and it is quite possible that the truncated analog of (6.30) might allow some

α(β)2 terms. Indeed, we encountered precisely such terms in sections 3.6–3.8.

We would be remiss if we did not mention flow in the context of the Bogomolny fac-

torization. Flows are solutions that depended solely on r and are thus independent of the

34For early examples, see [71–75].
35The factors of p cancel between the coefficient of (C.2) and the sum in the trace.
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boundary directions. Supersymmetric flow solutions preserve some subset of the super-

symmetries and the BPS equations can typically be obtained by requiring each squared

term in the Bogomolny action to vanish independently. This means that Aaijkl = 0 and,

from, (C.10):

A′δij = ±
√

2 gΠk
iDkj , Πi

mArmjkl = ∓2 gΠi
pX

pmA2m
jkl . (C.3)

This means that the eigenvalues of ΠD must all be the same and reduce to essentially a

single superpotential, while the second equation in (C.3) takes the form of steepest descents

on that superpotential, exactly as in section 3.1. Also see, for example, [62, 63, 70].

C.2 Calculation of the counterterms

Consistency with (5.21) requires:

DµΠi
j = 0 , Πi

k A1
kj = Πj

k A1
ik ⇒ Πi

k Πj
mA1

km = Πi
k A1

kj . (C.4)

It follows that our truncation must reduce the A1 tensor to a p × p sub-matrix and the

gravitino variations are restricted to the components of (5.21) along Πi
kΠ

j
mA1

km.

To perform the Bogomolny trick in the truncated theory we need two identities involv-

ing the tensors associated with the scalars. First, consider the partial contraction:

AµiklmAµjklm =
1

576
εiklmpqrsεjklmtuvwAµpqrsAµtuvw =

5

4
δ

[i
j δ

p
t δ
q
uδ
r
vδ
s]
w ,AµpqrsAµtuvw

=
1

4
δij AµpqrstAµpqrst −AµjklmAµiklm . (C.5)

It follows that the self-duality of the kinetic term implies that one has:

AµiklmAµjklm =
1

8
δij AµpqrstAµpqrst . (C.6)

There is also a very similar identity in [1] for the A-tensors:

− 3

4
A1

ikA1kj +
1

24
A2

i
klmA2j

klm =
1

8
δij

(
− 3

4

∣∣A1
ij
∣∣2 +

1

24

∣∣∣A2i
jkl
∣∣∣2) =

1

8
Pδij . (C.7)

Contracting (C.6) and (C.7) with Πi
j gives

AµijklAµijkl =
8

p
Πj

iAµiklmAµjklm (C.8)

P =
8

p

(
−3

4
Πj

iA1
ikA1kj +

1

24
Πj

iA2
i
klmA2j

klm

)
, (C.9)
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One can now complete the square, exactly as in section 6, but now on the truncated

subsystem:

SB =

∫
d4xe3A

[
3(A′)2 +

3

4
g2
∣∣A1

ij
∣∣2 − 1

96
ArijklArijkl −

1

24
g2
∣∣∣A2i

jkl
∣∣∣2 ]

=

∫
d4xe3A

[
3(A′)2 +

8

p

(
3

4
g2Πj

iA1
ikA1kj −

1

96
Πj

iAriklmArjklm

+
1

24
g2Πj

iA2
i
klmA2j

klm

)]
=

1

p

∫
d4xe3A

[
3
∣∣∣A′Xij ∓

√
2gΠk

iA1kj

∣∣∣2 − 1

12

∣∣∣Πi
mArmjkl ± 2gXimA2m

jkl
∣∣∣2

±
√

2g
(
XijDr(e

3AA1ij) +XijDr(e
3AA1

ij)
)]
. (C.10)

Here the matrices, Xij = (Xij)∗, are again allowed to be dynamical but satisfy:

Xij = Xji , Xij X
kj = Πk

i , Πi
kX

kj = Xij , Πj
kX

ik = Xij . (C.11)

That is, it is an SU(p) matrix on the remaining supersymmetries. As in section 6, we

choose X so as to diagonalize A1 on the subspace defined by Π, and the same arguments

lead to a counterterm action:

Ss-ct,truncated = − 2

pL

∫
d3x e3r0/L Tr

√
ΠA1A

†
1 . (C.12)

In particular, for truncations to N = 1 or N = 2 supersymmetric theories, the super-

potential emerges as one or two, respectively, of the eigenvalues of A1A
†
1 while the other

eigenvalues of this matrix play no role in the supersymmetry of the theory. (These other

eigenvalues give mass to the gravitini for the broken supersymmetries.) Thus the projec-

tion by Π in (C.12) onto the subspace of residual supersymmetries is an essential part of

getting the correct supersymmetric boundary terms. Indeed, for such truncations, this

projection extracts the superpotential terms and thus generates boundary terms exactly of

the form (3.6).

D Some identities for SO(8) (anti-)self-dual tensors

Let αijkl = α[ijkl]+ be a self-dual and βijkl = β[ijkl]− an anti-self-dual real SO(8) tensor,

αijkl =
1

24
ηijklmnpqαmnpq , βijkl = − 1

24
ηijklmnpqβmnpq . (D.1)
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By a repeated use of (D.1) together with the contraction identities for the completely

antisymmetric symbol, ηijklmnpq, one can prove the following identities (see, e.g., [78]):

αijklβijkl = 0 , (D.2)

αiklmαjklm =
1

8
δij αklmnαklmn , (D.3)

βiklmβjklm =
1

8
δij βklmnβklmn , (D.4)

αiklmβjklm = βiklmαjklm , (D.5)

αmn[ijαk]lmn = αmn[ijαkl]mn self-dual , (D.6)

βmn[ijβk]lmn = βmn[ijβkl]mn anti-self-dual , (D.7)

αmn[ijβk]lmn = −βmn[ijαk]lmn , (D.8)

and

ηklmnpqrsα(1)
iklmα(1)

jnpq = 18α(1)
ijmnα(1)

rsmn

+ 6 δsiα(1)
jmnpα(1)

rmnp − 6 δriα(1)
jmnpα(1)

smnp (D.9)

= 18α(1)
ijmnα(1)

rsmn+
3

4
(δirδjs−δirδjs)α(1)

mnpqα(1)
mnpq ,

ηklmnpqrsα(1)
iklmβ(1)

jnpq = −18α(1)
ijmnβ(1)

rsmn

+ 6 δsjα(1)
imnpβ(1)

rmnp − 6 δrjα(1)
imnpβ(1)

smnp

= 18α(1)
rsmnβ(1)

ijmn

+ 6 δsiα(1)
rmnpβ(1)

jmnp − 6 δriα(1)
smnpβ(1)

jmnp ,

(D.10)

which are used in sections 6 and 7.

E The U(1)3-invariant truncation in [14]

The scalar sector of the U(1)3-invariant truncation of N = 8 supergravity36 studied in [14],

in the notation of the present paper, is given by

α1234 = α5678 = ρ1 cos θ1 ,

α1256 = α3478 = ρ2 cos θ2 ,

α3456 = α1278 = ρ3 cos θ3 ,

(E.1)

where

zα = tanh ρα e
iθα , α = 1, 2, 3 . (E.2)

36For an early work on this truncation, see [15].
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After the change from the SU(8) to the SL(8,R) basis, only the diagonal fields, AII , are

nonzero and are given by37

A11 = A77 =
1

2
(ρ1 cos θ1 − ρ2 cos θ2 − ρ3 cos θ3) ,

A22 = A88 =
1

2
(ρ1 cos θ1 + ρ2 cos θ2 + ρ3 cos θ3) ,

A33 = A66 =
1

2
(−ρ1 cos θ1 − ρ2 cos θ2 + ρ3 cos θ3) ,

A44 = A55 =
1

2
(−ρ1 cos θ1 + ρ2 cos θ2 − ρ3 cos θ3) .

(E.3)

The qudartic and cubic counterterms are then

− 1

4L
AIJAIJ = − 1

2L
(ρ2

1 cos2 θ1 + ρ2
2 cos2 θ2 + ρ2

3 cos2 θ3)

= − 1

2L
(z1z̄1 + z2z̄2 + z3z̄3) + . . . ,

(E.4)

1

6
√

2L
AIJAJKAKI =

1√
2L

ρ1ρ2ρ3 cos θ1 cos θ2 cos θ3

=
1

2
√

2L
(z1z2z3 + z̄1z̄2z̄3) + . . . .

(E.5)

where one must set the pseudoscalars to zero. The . . . stand for terms quartic in the fields

due to the expansion tanh ρα = ρα + . . ..
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