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Cells are home to a host of biomolecular condensates – phase-separated droplets that lack a
membrane. In addition to nonspecific interactions, phase separation depends on specific binding
motifs between constituent molecules. Nevertheless, few rules have been established on how these
specific, heterotypic interactions drive phase separation. Using lattice-polymer simulations and
mean-field theory, we find that the sequence of binding motifs strongly affects a polymer’s ability
to phase separate, influencing both phase boundaries and condensate properties (e.g. viscosity).
Notably, sequence primarily acts by determining the conformational entropy of self-bonding by
single polymers.

Eukaryotic cells contain a variety of phase-separated
biomolecular condensates that organize intracellular pro-
cesses ranging from ribosome assembly and metabolism
to signaling and stress response [1–3]. How do the ther-
modynamic and material properties of these condensates
emerge from their components, and how do cells regulate
condensate formation and function? Unlike the droplets
of simple molecules or homopolymers, intracellular con-
densates are typically composed of hundreds of molecular
species, each with multiple interaction motifs. While the
precise sequences of these motifs are believed to play a
major role in determining condensates’ phase diagrams
and material properties, the nature of this relation has
only begun to be explored [4, 5].

Previous studies have established important principles
relating phase separation to the sequence of nonspecific
interaction domains such as hydrophobic or electrostatic
motifs [6–9]. However, in many cases condensate forma-
tion and function depend on specific interactions includ-
ing residue-residue bonds, protein-protein bonds, and
protein-RNA bonds, which are one-to-one and saturating
[2]. Such one-to-one interactions between heterotypic do-
mains are ubiquitous in biology, and recent studies have
enumerated a large number of examples in both one-
component [10] and two-component [11, 12] systems (e.g.
cation-pi bonds between tyrosine and arginine in FUS-
family proteins, protein-protein bonds in the SIM-SUMO
system). Here, we address the important question: what
is the role played by sequence when specific, heterotypic
interactions are the dominant drivers of phase separa-
tion?

To address this question, we analyzed a model of poly-
mers with specific, heterotypic interaction motifs using
Monte Carlo simulations and mean-field theory. We
found that motif sequence determines both the size of
the two-phase region and dense-phase properties such as
viscosity and polymer extension. Importantly, sequence
acts primarily by controlling the entropy of self-bonds,
suggesting a new paradigm for biological control of in-
tracellular phase separation.

Specifically, we developed an FCC lattice model where
each polymer consists of a sequence of “A” and “B” mo-
tifs which form specific, saturating bonds of energy ε (Fig.
1(a) and 1(b)). Monomers on adjacent lattice sites have
nonspecific interaction energy J . We used Monte Carlo
simulations in the Grand Canonical Ensemble (GCE):
the 3D conformations of the polymers are updated using
a predefined move-set, and polymers are inserted/deleted
with chemical potential µ. (See Supplemental Material
for details [13].) For each sequence, we first determined
the critical point (temperature Tc, chemical potential µc,
and density φc). Then for each T < Tc we located the
phase boundary, defined by the value µ∗ for which the di-
lute and dense phases have equal thermodynamic weight.
Around this value of µ, the simulated system transitions
between the two phases, leading to a polymer number
distribution P (N) that has two peaks with equal weights
(Fig. 1(c)) [14]. Multicanonical sampling was employed
to adequately sample transitions [13].

How does a polymer’s sequence of interaction motifs
affect its ability to phase separate? We constructed phase
diagrams for polymers with the six sequences shown in
Fig. 1(a), all with L = 24 motifs (a = b = 12) arranged in
repeating domains. Each simulation contains polymers of
a single sequence, and the sequences differ only in their
domain sizes `. Figure 2(a) shows the resulting phase
diagrams, which differ dramatically by domain size, e.g.
the Tc values for ` = 2 and ` = 12 differ by 20%; if the
former were in the physiological range around 300K, this
60K difference would render the condensed phase of ` = 2
inaccessible in most biological contexts. Despite this wide
variation, Fig. 2(b) shows that rescaling by Tc and φc
causes the curves to collapse. This is expected near the
critical point, where all sequences share the behavior of
the 3D Ising universality class [14], but the continued
nearly exact data collapse indicates that (Tc, φc) fully
captures the sequence-dependence of the phase diagram.

Why does the sequence of binding motifs have such
a strong effect on phase separation? Importantly, se-
quence determines the entropy of intra-polymer bonds,
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FIG. 1. Lattice model for phase separation by polymers with
one-to-one interacting motifs. (a) Each polymer is defined
by its sequence of motifs, which come in types “A” (red) and
“B” (blue). The class of sequences shown consists of repeated
domains of As and Bs, labeled by their domain size `. (b) In
lattice simulations, an A and a B motif on the same lattice site
form a specific, saturating bond (green) with binding energy
ε. Monomers of any type on adjacent lattice sites have an
attractive nonspecific interaction energy J . We set J = 0.05ε
unless otherwise noted. (c) Simulations are conducted in the
Grand Canonical Ensemble (GCE), where the polymer num-
ber N fluctuates. In the two-phase region the polymer num-
ber distribution has two peaks, and when these have equal
weight, their mean polymer numbers define the concentra-
tions of the phase boundaries. Simulation parameters: ` = 3,
binding energy βε = 0.9287. Inset: Snapshots of the GCE
simulation at densities corresponding to the dilute and dense
phase boundaries.

i.e. the facility of a polymer to form bonds with itself,
as quantified by g(s), the number of configurations with
s self-bonds (which can be extracted from Monte Carlo
simulations of a single polymer (Fig. 2(c))). Sequences
with small domain sizes have many more conformations
available to them at all s (see [13] for a semi-log plot). In-
tuitively, a sequence like ` = 2 allows a polymer to make
many local bonds, whereas a sequence like ` = 12 cannot
form multiple bonds without folding up globally, which is
entropically unfavorable. Consequently, it is more favor-
able for polymers like ` = 12 to phase separate so each
polymer can form trans-bonds with others, leading to a
high Tc value.

This intuition can be captured by a simple mean-field
theory that incorporates the single-polymer properties
g(s) and motif numbers a, b. We make two mean-field
simplifications: 1) every polymer has the mean number
of trans-bonds t (i.e. for every polymer i, ti = t), and 2)
each polymer interacts with the mean-field background

FIG. 2. The sequence of binding motifs strongly affects a
polymer’s ability to phase separate. (a) Binodal curves defin-
ing the two-phase region for the six sequences of length L = 24
shown in Fig. 1(a). Stars indicate the critical points and the
solid curves are fits to scaling relations for the 3D Ising univer-
sality class. Each point shows the mean ± SD for three repli-
cates. (Uncertainties are too small to see for most points.)
(b) When rescaled by the critical temperature Tc and critical
density φc, the phase boundaries in (a) collapse, even far from
the critical point. Color key applies to all panels. (c) The ten-
dency to phase separate is inversely related to the entropy of
self-interactions, as quantified by the density of states g(s),
i.e. the number of ways a given sequence can form s bonds
with itself. Inset: Snapshots of ` = 3 polymer with s = 5
(top) and s = 10 (bottom). (d) Phase boundaries from a
mean-field theory that accounts for sequence only through
g(s).

of motifs, leading to the following free energy density (see
[13] for full expressions and derivation):
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where V is the number of lattice sites and χ is the
nonspecific-interaction parameter. fsteric is the transla-
tional contribution from the number of ways to place
polymers without overlap and ftrans is the entropy of
forming t trans-bonds given s self-bonds, derived from
the combinatorics of pairing independent motifs. w is
the self-bond weight chosen to self-consistently enforce∑

i si/N = s. This allows us to estimate the entropy of s
without assuming that si = s ∀ i. In the thermodynamic
limit the partition function is dominated by the largest
term, so we minimize Eq. 1 with respect to s and t at
each φ to yield f(φ) and determine the phase diagram.

Figure 2(d) shows mean-field phase diagrams. In spite
of the approximations, the theory captures the main
patterns observed in the full Monte Carlo simulations.
Specifically, sequences with larger motif domains have
larger two-phase regions and these extend to higher tem-
peratures. Rescaling by Tc and φc also causes the mean-
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field phase boundaries to collapse [13]. Intriguingly, the
mean-field theory does not correctly place the ` = 1 se-
quence in the Tc hierarchy. The single-polymer density of
states g(s) suggests that ` = 1 should be similar to ` = 2,
but its Tc is closer to to ` = 4. We trace this discrep-
ancy to trans-bond correlations in the dense phase: the
` = 1 sequence tends to form segments of multiple bonds
rather than independent bonds [13]. Overall, the success
of the theory demonstrates that sequence mainly governs
phase separation through the entropy of self-interactions.
We capture this dependence, as well as corrections due
to dense-phase correlations, in a simple “condensation
parameter” described below.

Do these conclusions still hold if the motifs are not ar-
ranged in regular domains, and how do polymer length
and motif stoichiometry affect phase separation? To ad-
dress these questions, we located the critical points for
three new types of sequences: 1) Length L = 24 se-
quences with a = b = 12 in scrambled order, 2) domain
sequences with L 6= 24, and 3) sequences with L = 24
but a 6= b.

Figure 3(a) shows Tc and φc for the scrambled L = 24
sequences and for domain sequences of various lengths.
Tc and φc are negatively correlated across all sequence
types, because for low-Tc sequences, trans-bonds – and
consequently, phase separation – only become favorable
at higher polymer density.

In Fig. 3(b) we show Tc as a function of length for
different domain sizes and observe that the Tc hierarchy
is preserved across sequence lengths. Thus domain size
is a robust predictor of Tc via its relationship with self-
bond entropy. The dashed curve in Fig. 3(c) shows Tc
for scrambled sequences with unequal motif stoichiome-
try. Tc decreases as the motif imbalance grows because
the dense phase is crowded with unbonded motifs, mak-
ing phase separation less favorable. How does this effect
relate to the role of g(s)? Scrambled sequences are clus-
tered near the ` = 3 sequence in (Tc, φc) space (Fig.
5(a)), so we generated sequences by starting with ` = 3
and randomly mutating B motifs into A motifs (Fig. 5(c),
solid curve). The ` = 3 mutants follow the same pattern
as the scrambled sequences, indicating that self-bond en-
tropy and stoichiometry are nearly independent inputs
to Tc.

The mean-field theory of Eq. 1 also captures the be-
havior of these more general sequences, as shown in Fig.
3(d). [15] This reinforces the picture that phase separa-
tion is mainly governed by the relative entropy of intra-
and inter-polymer interactions. The former is captured
by g(s) and the latter is described by pairing motifs with-
out reference to their arrangement on the polymer (al-
though see [13] regarding the ` = 1 sequence and cor-
relations). To capture these effects in a single number,
we propose a condensation parameter X (“Chi”) which
correlates with a sequence’s ability to phase separate (see

FIG. 3. Ability to phase separate is determined by the se-
quence of binding motifs for polymers of different lengths,
patterns, and motif stoichiometries. (a) Tc and φc for L = 24
polymers with scrambled sequences and domain sequences of
various lengths. Mean ± SD over three replicates. (Temper-
ature uncertainties are too small to see in (a), (b), and (d).)
(b) Tc as a function of length for sequences with different do-
main sizes. Mean ± SD over three replicates. (c) Tc as a
function of motif stoichiometry a/L. The solid curve corre-
sponds to ` = 3 sequences where a number of B motifs are
randomly mutated to A motifs, and the dashed curve shows
scrambled sequences. Each point shows mean ± SD over four
sequences. (d) Tc from Monte Carlo simulations versus mean-
field theory for domain sequences, scrambled sequences, and
sequences with unequal motif stoichiometry. Mean ± SD over
three replicates.

[13] for a heuristic derivation):

X ≡ − log

(
1

(rA)b(rB)a

∑
s

g(s)

(4Pcorr)s/2

)
, (2)

where rA/B = (a/b)/L is the fraction of motifs that are
A/B and Pcorr is a simple, easily calculable measure of
trans-bond correlations (see [13] for details). As shown in
Fig. 4(a), this accurately captures the phase separation
hierarchy of Tc, including the correlation-enhanced Tc of
the ` = 1 sequence.

Are domain sequences special? The space of possible
sequences is much larger than can be explored via Monte
Carlo simulations. However, we can use the condensation
parameter to quickly estimate Tc for any sequence. By
approximating

∑
s g(s) ≈ g(1) and estimating g(1) from

a loop-entropy calculation, we can obtain X without sim-
ulation. We then estimate Tc for new sequences using a
linear fit of Tc to X for the domain sequences. (See [13]
for details.) Figure 4(b) shows the distribution of critical
temperatures calculated in this way for 20,000 random
sequences with a = b = 12. Strikingly, the distribution
is sharply peaked at low Tc, comparable to the Tc values
for the ` = 2 and ` = 3 domain sequences. Sequences
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FIG. 4. The sequence dependence of phase separation is cap-
tured by a “condensation parameter” X, which takes into
account the entropy of self-interactions, motif stoichiometry,
and dense-phase correlations. (a) Tc values from simulations
as a function of X. Mean ± SD over three replicates. (b) Dis-
tribution of Tc values for 20,000 random sequences of length
L = 24 with a = b, calculated from X values and the linear
Tc versus X relation for domain sequences. Domain sequence
Tc values are marked.

with larger domains (e.g. ` = 6 and ` = 12) have anoma-
lously high Tc values, suggesting that they are unlikely
to evolve without selection.

The sequence of specific-interaction motifs influences
not only the formation of droplets, but also their phys-
ical properties. Figures 5(a) and 5(b) show the number
of self-bonds and trans-bonds in the dense phase. The
sequences have very different Tc values, but the data col-
lapse of Fig. 2(b) allows us to compare their degree
of bonding relative to scaled temperature |T − Tc|/Tc.
Density fluctuates in the GCE, so each point in Fig.
5 is averaged over configurations with φ within 0.01 of
the phase boundary. Figure 5(a) shows that the single-
polymer properties are still relevant in the dense phase:
smaller domain sizes lead to more self-bonds, and the hi-
erarchy matches the ordering of g(s) (Fig. 2(c)). Figure
5(b) shows that larger domains lead to more trans-bonds,
even though the droplets are less dense. As temperature
is reduced – and thus density is increased – the number of
trans-bonds increases, whereas the number of self-bonds
is relatively stable. Interestingly, we conclude that even
though the phase boundaries collapse to the same curve,
different sequences lead to droplets with very different
internal structures.

These structural differences will affect the physical
properties of the dense phase. The timescales of a
droplet’s internal dynamics will determine whether it be-
haves more like a solid or a liquid. We might expect
denser droplets to have slower internal dynamics, so the
` = 1 and ` = 2 sequences would be the most solid-
like. However, the extra inter-polymer bonds at large `
will slow down the dynamics. To disentangle these ef-
fects, we estimate the viscosity and polymer-diffusivity
by modeling the dense phase as a viscoelastic polymer
melt with reversible cross-links formed by trans-bonds.

FIG. 5. The structure of the dense phase depends on the
sequence of binding motifs. (a) Number of self-bonds s in the
dense phase as a function of reduced temperature for domain
sequences (symbols as in (c)). Each point shows s (mean ±
SD) over all configurations with φ ∈ [φdense − 0.01, φdense +
0.01]. Color bar: droplet density. (b) Number of trans-bonds
t (bonds with other polymers) versus temperature as in (a).
(c) Viscosity (Eq. 3) of the dense phase, shown as in (a).
Symbol key applies to all panels. (d) Radius of gyration Rg

of polymers in the dense phase (shown as in (a)) and in the
dilute phase. Each dilute-phase point shows Rg (mean ± SD)
over all configurations with φ ∈ [φdilute − 0.01, φdilute + 0.01].
The φdilute points have the same scaled temperature as the
adjacent φdense points, but are shifted for clarity. Color bar:
dilute phase density.

Then the viscosity is expected to scale as [16]

η ∼ Gτ =

(
kBT

φ

m3L

)(
τbt

2
)
, (3)

where m is the monomer length, G is the elastic modulus
(kBT times the number density of polymers), and τ is
the relaxation time of the polymer melt. The relaxation
time depends on the trans-bonds per polymer t and the
bond lifetime τb = τ0 exp(βε), where τ0 is a microscopic
time which we take to be sequence-independent. Figure
5(c) shows the inferred dense-phase viscosity. Sequences
with large domains have more viscous droplets due to the
strong dependence on inter-polymer bonds, which are the
main repository of elastic “memory” in the melt. By the
same arguments leading to Eq. 3, diffusivity scales as
1/t [13], so polymers with large domains will also diffuse
more slowly within droplets.

The motif sequence also affects the polymer radius of
gyration in both phases (Fig. 5(d)). In the dense phase,
polymers with large domains adopt expanded conforma-
tions which allow them to form more trans-bonds. Poly-
mers of all sequences are more compact in the dilute
phase, where there are fewer trans-bonds and nonspe-
cific interactions with neighbors. Thus self-bonds cause
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polymers to contract, while trans-bonds cause them to
expand.

In summary, we developed a simple lattice-polymer
model to study how the sequence of specific-interaction
motifs affects phase separation. We found that motif se-
quence determines the size of the two-phase region by
setting the relative entropy of intra- and inter-polymer
bonds. In particular, large domains disfavor self-bonds
and thus favor phase separation. This is consistent with
recent experimental [17] and theoretical [6, 8] studies on
coacervation (phase separation driven by electrostatics)
where small charge-domains lead to screening of the at-
tractive forces driving aggregation. However, electro-
static interactions (generic, longer-range, promiscuous)
are qualitatively very different from the interactions in
our model (specific, local, saturating). This points to a
different underlying mechanism: in the former sequence
changes the electrostatic energetics of the dense phase,
but in the latter sequence controls the conformational
entropy of the dilute phase. Thus specific interactions
provide a distinct physical paradigm for the control of
intracellular phase separation.

We then analyzed how sequence influences conden-
sates’ physical properties such as viscosity and diffusiv-
ity. Previous studies have related such physical proper-
ties to overall amino acid composition [10, 18] and par-
ticular RNA-binding domains [19], and simulations of
amphiphilic polymers have linked sequence to aggregate
morphology [9]. We found that motif sequence strongly
affects both droplet density and inter-polymer connectiv-
ity, and, in particular, that sequences with large domains
form more viscous droplets with slower internal diffusion.
All sequences expand in the dense phase to form more
trans-bonds, and notably, small-domain sequence are al-
ways more compact than large-domain sequences. This
contrasts with results on single polyampholytes, where
“blocky” sequences with large domains are more com-
pact [20, 21].

Taken together, these results suggest that motif se-
quence provides cells with a means to tune the formation
and properties of intracellular condensates. For example,
motif stoichiometry could be an active regulatory target
– a cell could dissolve droplets by removing just a few
binding motifs per polymer through post-translational
modifications. The negative correlation between Tc and
φc provides another regulatory knob: if a particular con-
densate density is required at fixed temperature, this
can be achieved by either tuning the binding strength
or modifying the sequence. However, the physics under-
lying condensation via specific interactions also implies
biological constraints: the same trans-bonds that drive
condensation for high-Tc sequences also lead to high vis-
cosity.

We have used a simple model of biological condensates
to show how the sequence of specific-interaction motifs
affects phase separation, thus linking the microscopic

details of molecular components to the emergent prop-
erties relevant for biological function. However, many
open questions remain: how are distinct droplets main-
tained by networks of specific-interaction motifs? How
do specific interactions shape the phases of more com-
plex condensates with many components and a variety of
interaction types? We hope our work encourages further
research across a range of theoretical and experimental
systems.
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