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Abstract
Quorum sensing is the regulation of gene expression in response to changes in cell density.

To measure their cell density, bacterial populations produce and detect diffusible molecules

called autoinducers. Individual bacteria internally represent the external concentration of

autoinducers via the level of monitor proteins. In turn, these monitor proteins typically regu-

late both their own production and the production of autoinducers, thereby establishing in-

ternal and external feedbacks. Here, we ask whether feedbacks can increase the

information available to cells about their local density. We quantify available information as

the mutual information between the abundance of a monitor protein and the local cell densi-

ty for biologically relevant models of quorum sensing. Using variational methods, we dem-

onstrate that feedbacks can increase information transmission, allowing bacteria to resolve

up to two additional ranges of cell density when compared with bistable quorum-sensing

systems. Our analysis is relevant to multi-agent systems that track an external driver implic-

itly via an endogenously generated signal.

Author Summary

Bacteria regulate gene expression in response to changes in cell density in a process called
quorum sensing. To synchronize their gene-expression programs, these bacteria need to
glean as much information as possible about their cell density. Our study is the first to
physically model the flow of information in a quorum-sensing microbial community,
wherein the internal regulator of the individuals response tracks the external cell density
via an endogenously generated shared signal. Combining information theory and Lagrang-
ian formalism, we find that quorum-sensing systems can improve their information capa-
bilities by tuning circuit feedbacks. Our analysis suggests that achieving information
benefit via feedback requires dedicated systems to control gene expression noise, such as
sRNA-based regulation.

Introduction
To successfully colonize an environment, many bacteria engage in collective tasks, for instance
the synthesis of a biofilm matrix or the secretion of enzymes or virulence factors. In general,
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such tasks can only be performed efficiently in a prescribed temporal order and at high enough
cell density. Bacteria achieve the necessary level of coordination through quorum sensing,
whereby individual cells monitor local cell density to synchronize their programs of gene ex-
pression [1–3]. In quorum sensing, bacteria infer cell density by producing and detecting freely
diffusing molecules called autoinducers (AIs). As cells grow and divide, the increasing external
AI concentration constitutes a shared signal at the population level. To represent this signal
within each cell, the quorum-sensing circuit regulates the abundance of one or more internal
monitor proteins (MPs). In turn, these MPs act as regulators of gene expression, often inducing
the genes responsible for AI production, hence the term “autoinducer” [4, 5]. Autoinduction
thus establishes a positive feedback loop that can lead to switching at the population level be-
tween two stable states of gene expression, e.g. as observed in the symbiotic bioluminescent
marine bacterium Vibrio fisherii [6, 7]. However, negative feedbacks from MP expression to AI
detection are present in a related bioluminescent bacterium, Vibrio harveyi, which exhibits a
graded quorum-sensing response [8–10]. While V. fisherii primarily alternates between plank-
tonic and symbiotic states [11], quorum sensing in V. harveyi implements multiple—at least
three—states of gene expression during host infections [12–15]. To optimize their program of
gene expression during cycles of colonization, bacteria such as V. harveyi need to glean as
much information as possible from AI concentration. Here we address the question: can feed-
backs fromMP expression to AI production and to AI detection increase the information avail-
able to cells about their local density?

A natural way to quantify information transfer in quorum sensing is via the concept of mu-
tual information (MI). The MI between two random variables provides a general measure of
their statistical dependence. When evaluated between an input and output variable, the MI
quantifies the amount of information, in bits, that the output conveys about the input [16, 17].
In the context of quorum sensing, the fidelity of information processing can be quantified via
the MI between cell density and the abundance of an internal monitor protein. Biologically, we
interpret this information as the number of distinct cell-density ranges that a bacterium can re-
solve by reading out its MP’s abundance, though how bacteria utilize the available information
about cell density may be complex. For example, a bistable quorum-sensing system that only
discriminates between high and low cell density can transmit at most one bit of MI. In contrast,
bacteria with a graded quorum-sensing response can resolve more than one bit, thus enabling
more than two differentiated cell-density stages.

Here, we formulate the quorum-sensing circuit as an information channel that encodes cell
density in the abundance of an internal MP. We then optimize the MI between cell density and
the MP by varying the feedbacks from MP expression to AI production and to AI detection.
We consider each bacterium as an imperfect detector and quantify its private information
about cell density. For biologically relevant models of quorum sensing, optimizing feedback
approximatively doubles the information available to a cell, providing a justification for the in-
creased complexity of the quorum-sensing circuit required to implement feedback. Our find-
ings about the role of feedbacks in promoting information transfer can be understood
intuitively. External feedback allows bacteria to adjust the shared AI input to match the cells’
detection capabilities, preferentially exploiting AI concentration ranges where detection is
most sensitive. Internal feedback allows a bacterium to adjust its quorum-sensing response
time to achieve an optimal trade off between output noise reduction and signal tracking ability.

Results
We imagine a bacterial population colonizing a surface, such as a clonal patch of V. harveyi
forming a biofilm [18, 19]. We model AI diffusion in a volume with length scale L = 100μm, a
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typical biofilm dimension. Schematic Fig 1A shows this volume V at time t when it contains Nt

bacteria and At freely diffusing AI molecules, thus defining the cell density ρt = Nt/V and AI
concentration at = At/V. Quorum sensing implies that, in each bacterium i, 0� i< Nt, the MP
abundance, defined as the intracellular MP concentrationmi,t, somehow tracks the evolution
of the AI concentration at. We consider that the MP abundancesmi,t, which differ among bac-
teria, follow the same statistics and we refer to the MP abundance in a representative cell asmt.
Assuming large numbers of molecules and cells, we adopt continuous descriptions of ρt, at, and
mt. In practice, the quorum-sensing system is only responsive to cell densities for which the AI
concentration lies between the receptors’ detection threshold a− and saturation threshold a+.
We therefore assume that the bacteria begin to engage in collective behaviors at the cell density
ρ− at which the AI concentration reaches a−, while quorum sensing becomes insensitive above
the cell density ρ+ at which the AI concentration reaches a+. Over this range, the quorum-sens-
ing circuit raises the MP concentration from a basal levelm− to a peak levelm+. We treat the
extremal values of ρt, at, andmt as fixed boundary conditions set by a combination of physical,
chemical, and biological constraints.

Fig 1. Signals, statistics, and dynamics in quorum sensing. A. A growing bacterial colony tracks the concentration of endogenously produced
autoinducers (AIs) via the internal abundance of a monitor protein (MP).B. The quorum-sensing system responds to changing cell density ρ by regulating the
concentration of external autoinducers at and the internal concentration of MPsmt. A succession of identical growth cycles yields stationary distributions for
ρ, a, andm within the operational range of quorum sensing (shaded frames). C. Dependency graph modeling quorum sensing with feedback fromMP
expression to AI signaling and to AI sensing.D. Functions parametrizing the stochastic dynamics of the quorum-sensing response. The AI output rate fext and
the self-regulation level fint are emphasized as the external and internal feedback, respectively.

doi:10.1371/journal.pcbi.1004238.g001
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Quorum-sensing model
What specifies the input distribution p(ρ) for cell densities? Intuitively, p(ρ) represents the like-
lihood for a bacterium to find itself at density ρ, while engaged in quorum sensing. As depicted
in Fig 1B, this suggests we identify p(ρ) as the fraction of time that ρt spends at cell density ρ,
averaged over many cycles of colonization, growth, and dispersal. For simplicity, we consider
that the cell density evolves continuously as a deterministic exponential function ρt = λ(t)/
eγt, over growth periods of a single duration T. The boundary conditions λ(0) = ρ− and λ(T) =
ρ+ specifies the growth rate γ = log(ρ+/ρ−)/T so that the cell-density time course is

lðtÞ ¼ r�
rþ
r�

� �t=T

: ð1Þ

We specify the input distribution p(ρ) as the transform of the uniform distribution dt/T via the

deterministic function λ(t), i.e. by writing p(ρ)dρ = p(ρ)λ0(t)dt = dt/T. Thus, p(ρ) is determined

as pðrÞ ¼ 1= Tl
0 ðl�1ðrÞÞ

� �
, where λ0 is the time derivative of the exponential time course and

λ−1 is the inverse of the function λ, which implies p(ρ)/ 1/ρ. Similarly, the distribution of AI
concentrations q(c) as well as the distribution of MP abundance q(m) are defined over (a−, a+)
and (m−,m+) as the fraction of time that at andmt spend in the vicinity of a andm. Given a
time course for colony growth, the output distributions q(c) and q(m) are determined by the
coupled dynamics of AI concentration at and MP concentrationsmi,t. Fig 1C depicts the inter-
actions between fluctuating variables at and {mi,t}, driven by bacterial growth ρt, represented
schematically as ρ! a$m ↺. The figure highlights that the output rate of AIs depends on the

AI concentration via the MP abundance, thus establishing an external feedback loop in addi-
tion to an internal feedback loop of self-regulated MP production.

To specify the dynamics of the quorum-sensing response, we model the evolution of at and
{mi,t}, 0� i< Nt, through stochastic differential equations [20, 21]:

at
ta

¼ rt hfextðmi;tÞii ; ð2Þ

dmi;t ¼ �mi;t

tm
þ fmðat;mi;tÞ

� �
dt þ ffiffiffi

2
p

sm dW
ðiÞ
t ; ð3Þ

where the angular brackets denote an average over the population of bacteria (see S1 Text). Eq
(2) describes the evolution of the AI concentration at in response to the AI production of the
whole colony. The set of Eq (3) characterizes the accumulation of MPs inside each bacterium
in the colony. The function fext is the output rate for AI in molecules per second per cell, while
fm is the output rate for MP in molecules per second per cell volume. We model MP self-regula-
tion via the dependence of fm on the MP abundancem, which characterizes the internal feed-
back. To be concrete, we consider that the MP output rate fm is proportional to the probability
that the MPs bind some regulatory site times a bare MP expression rate, which is independent-
ly regulated by AI detection. Thus, fmðat;mi;tÞ ¼ f ð1Þm ðatÞfintðmi;tÞ where fint quantifies the level
of self-induction (fint > 1) or self-repression (fint < 1) and f ð1Þm is the bare output rate in the ab-
sence of MP-mediated feedback (fint = 1). The constant τa denotes the time for AIs to diffuse
out of the volume V, while τm denotes the lifetime of the MP set by active degradation or dilu-
tion by cell growth. Very generally, the timescale τm � 30min will be long compared with the
correlation time of the AI concentration τa � L2/D� 10s (taking D� 103 μm2/s as the diffu-
sion constant of autoinducers). This separation of timescales τa� τm effectively eliminates the
AI-output noise as a source of stochasticity because the fast fluctuations of the AI
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concentration average out over the time τm (see S1 Text). The MP-output noise is modeled via
independent Gaussian white noise dW(i), with noise coefficient σm considered as a function of
at andmt. Thus, the MP abundancem results from a nonlinear temporal averaging of the AI
concentration a over the MP lifetime, distorted by the internal noise in gene expression. To-
gether, the functions fext, fm ¼ f ð1Þm fint, and the noise function σm specify our quorum-sensing
model. We only consider fext and fint as variables of optimization, hereafter referred to as the
external feedback and internal feedback (green arrows in Fig 1C and 1D), respectively.

For clarity, we recap the biologically relevant assumptions upon which our dynamical
model relies: (i) the collective production of fast diffusing AI molecules gives rise to a homoge-
neous external AI concentration, (ii) the fast fluctuations of the internal AI signal time average
over the MP lifetime, and finally, (iii) the feedback mechanisms are also fast with respect to the
MP fluctuations. Taken together, assumptions (i) and (ii) justify considering the internal MP
expression noise as the dominant source of stochasticity. Assumptions (ii) and (iii) justify the
simple dependence of the expression noise function σm and the feedback functions fext and fint
on the level of MP expression.

Quorum-sensing information channel
The coupled dynamics of ρt, at, and {mi,t} allow us to specify the output distributions q(c) and
q(m) as shown schematically in Fig 1B. These dynamics also prescribe the processing of infor-
mation by each bacterium’s quorum-sensing circuit. Thus our model defines an information
channel that transforms input cell density into output MP abundance according to a specific
encoding scheme. To see this, we consider Eqs (2) and (3) in a large bacterial population. In
this case, fluctuations of the shared AI concentration a due to the propagation of the MP noise
average out over the population. As a consequence, the AI concentration a is related to the cell

density ρ by a one-to-one mapping and the fluctuations of MP abundances dmðrÞ
i;t are indepen-

dent between cells. With cell density ρ treated as a fixed input value, the MP abundancemðrÞ
t

becomes a stationary process, where the notation indicates fixed ρ. The fraction of time that

mðrÞ
t spends at any given MP abundancem yields p(m|ρ), the conditional probability of finding

a concentrationm of MPs in a bacterium at cell density ρ. As an encoding scheme, p(m|ρ) spec-
ifies a feedback information channel ρ! a$m ↺, which stochastically maps inputs ρ onto

outputsm via the shared intermediate a.
For bacteria such as V. harveyi, the fluctuations of the quorum-sensing response are small

with respect to the mean amplitude of the response [9, 22]. This justifies our use of the small-
noise approximation. Accordingly, the encoding scheme p(m|ρ) will be well-described by a

family of Gaussian distributionsN mðrÞ;S2ðrÞ� �
, wheremðrÞ and S2ðrÞ are, respectively, the

mean and the variance ofm(ρ). This formulation of quorum sensing as a Gaussian information
channel is shown schematically in Fig 2, for a growing bacterial clone that engages in a series of
plausible collective tasks, e.g. matrix synthesis, adhesion, antibiotic resistance, virulence and
matrix degradation. Despite this assumption of a stationary cell density, the encoding scheme p
(m|ρ) can still realistically describe quorum sensing in a growing colony with slow MP turn-
over, set only by dilution, with τm � Td ln 2 for cell-cycle period Td (see S1 Text). Moreover,
for abundant MP transcriptional factors (TFs), we can neglect the stochastic bindings of TFs to
their cognate regulatory sequences as a source of noise in MP expression [23, 24]. This simplifi-
cation permits us to consider a noise function σm that only depends on the MP expression level
at steady statem (see S1 Text). In practice, noise in MP expression is more conveniently quan-

tified via the steady-state MP Fano factor F ¼ S2
m=m. In the absence of feedbacks, the explicit

expression of the Fano factor F ¼ tms
2
mðmÞ=m defines the Fano function F(1)(m), whose
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functional form can be inferred for simple models of gene expression [25, 26]. For convenience,
we use this Fano function F(1)(m) instead of the noise function σm to characterize noise in
quorum sensing.

Mutual information and information capacity
In our dynamical model, a bacterium continuously monitors the AI concentration a, a proxy
for the local cell density ρ, via its internal MP abundancem. In principle, exploiting past mea-
surements, i.e. consecutive uses of the quorum-sensing channel, could allow a bacterium to ex-
tract more information about ρ than is available from instantaneous measurements. However,
in practice, a bacterium can only perform a simple temporal average of past measurements.
Specifically, in the case we consider, the instantaneous MP abundance, which controls the ex-
pression of downstream quorum-sensing genes, constitutes a long-time average of AI concen-
tration measurements. Consequently, we quantify information transfer through the quorum-
sensing channel—cell density! AI concentration$MP abundance ↺ (or ρ! a$m ↺)—by

Im,ρ, the MI between cell density ρ and monitor abundancem.
Given a specific instance of a quorum-sensing channel, i.e. for fixed functions fext; f

ð1Þ
m ; fint;

and Fano function F(1)(m), the optimal information transfer, called the information capacity C,
is a characteristic of the channel [16, 17]. In the small-noise regime, the capacity in bits is well-
approximated by the integral

~C ¼ log 2

Z rþ

r�

1ffiffiffiffiffiffiffi
2pe

p
dr

dr ; ð4Þ

where dr ¼ SmðrÞ=m
0 ðrÞ quantifies the smallest difference in cell density that a bacterium can

Fig 2. Quorum-sensing information channel. A. In this illustration, bacteria engage sequentially in five fictitious collective tasks, represented by five colors,
that are homogeneously distributed in time.B. During the growth of a colony, the increasing cell density drives the quorum-sensing system.C. To perform the
desired tasks, bacteria need to resolve the five cell-density stages, whose probability is shaped by bacterial growth.D. At fixed cell density, individual
bacteria exhibit fluctuating levels of MPs, with meanmðrÞ and variance S2

mðrÞ. E. The smallest difference in cell density that a bacterium can resolve by
reading out its fluctuating MP abundance specifies the resolution of the channel, defined as δρ = Σm(ρ)/m0(ρ). Thus, the information available to individual
bacteria via quorum sensing depends both on the cell density dynamics and the channel resolution.

doi:10.1371/journal.pcbi.1004238.g002
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resolve by reading out its MP abundance [27]. We refer to δρ as the “resolution” of the quo-
rum-sensing channel. Importantly, the inverse of this quantity yields the input distribution for
which the channel operates at capacity, p(ρ)/ 1/δρ. In other words, to fully exploit the capacity
of the quorum-sensing channel, bacteria would need to grow such that the fraction of time
they spend at a given cell density is inversely proportional to the resolution of the channel at
that density. To intuitively understand the above result, it helps to recognize that, at capacity,
the output MP distribution satisfies

qðmÞ / 1=ðdr m 0 ðrÞÞ ¼ 1=SmðmÞ ;

where S2
mðmÞ is the MP variance for a mean abundance levelmðrÞ ¼ m. Hence, in the small-

noise approximation, the capacity input distribution p(ρ) is such that the MP output is distrib-
uted inversely with respect to its standard deviation Sm. This is consistent with the intuition
that efficient encodings of cell-density information should preferably utilize MP values associ-
ated with low output noise.

For a fixed input distribution p(ρ), one can contemplate optimizing Im,ρ by varying the en-
coding scheme p(m|ρ). For continuous variables, this is generally an ill-posed problem since
Im,ρ diverges for deterministic mappings pðmjrÞ ¼ d m�mðrÞð Þ, where δ is the Dirac delta
function. This divergence is avoided by considering only quorum-sensing channels that always
include a finite amount of noise. Then, specifying Gaussian encoding schemes

N mðrÞ;S2
mðrÞ

� �
in terms of fext; f

ð1Þ
m ; fint; F

ð1Þ allows us to write the MI Im,ρ as a functional of

the external feedback fext and the internal feedback fint. In Methods, we present the small-noise

approximation of Im,ρ, denoted ~Im;r, and formulate the optimization of ~Im;r over fext and fint as a

problem in the calculus of variations. The solution of this variational problem for the quorum-
sensing system yields the main results of our analysis.

Optimal mutual information in the small-noise approximation

Optimizing the approximate MI ~Im;r over the external and internal feedbacks (fext, fint) can be

performed analytically for any quorum-sensing circuit satisfying the small-noise assumption
(see S1 Text). The optimal small-noise MI is

~I ?m;r ¼
1

2
log 2 ln

mþfint;�
m�fint;þ

 !Z mþ

m�

dm
2pe Fð1ÞðmÞ

 !
; ð5Þ

where fint,− and fint,+ are the boundary values for the level of self-regulation via internal feed-
back. Given a specified bare MP expression rate f ð1Þm ðcÞ, the boundary values fint,− and fint,+ can
be deduced from the AI boundary values (a−, a+) and MP boundary values (m−,m+). Alterna-
tively, as the optimal MI Eq (5) does not depend on f ð1Þm ðcÞ explicitly, we can consider fint,− and
fint,+ as boundary values on their own, indicating the level of self-regulation at the limits of low
and high cell density. If we constrain fint,− = fint,+ = 1, we find that the optimal internal feedback
yields only a modest increase in information transmission over the capacity of the feedforward

channel a!m (see S1 Text). Without this constraint, the optimal information transfer ~I ?m;r in-

creases if self-regulation induces MP synthesis in the low expression regime and represses MP
synthesis in the high expression regime [23], i.e. if fint,− > 1 and fint,+ < 1. In V. harveyi, the
level of self-regulation of the monitor protein LuxR has been measured for both low and high
levels of expression [10], yielding fint,− � 2 and fint,+ � 1/2, which suggests a role for internal
feedbacks in increasing information.
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Singularly, the optimal MI ~I ?m;r is independent of the input distribution p(ρ) and of the AI

concentration range (a−, a+). This suggests that ~I ?m;r is characteristic of the truncated detection

channel a!m ↺, taking the AI concentration a as freely tuned input and without external

feedback fext, as opposed to the full quorum-sensing channel ρ! a$m ↺. In fact, ~I ?m;r is equal

to ~C?, the optimal small-noise capacity of a!m ↺, obtained by varying the internal feedback

fint (see S1 Text). To understand this equality, note that the deterministic dynamics of the AI
concentration is shaped by the external feedback fext. By varying the external feedback fext, one
can deterministically match the distribution q(c) to the resolution of a!m ↺ so that the quo-

rum-sensing circuit operates at capacity ~C ½fint�, for any density distribution p(ρ). Then, one can

always find the internal feedback f ?int for which a!m ↺ has the optimal capacity ~C?. We stress

that using a feedback to tune an input to match a downstream channel is a general strategy to
increase information transfer in biological systems.

Models for MP expression

To further specify ~I ?m;r, we infer the Fano function F(1)(m) from models of genetic regulation. A

simple biologically relevant model posits that AIs freely diffuse across the bacterial membrane
and induce the MP gene by regulating a TF. In a slightly more complex example, the control of
the MP gene by the TF is mediated by a small regulatory RNA (sRNA) [28], which is also
the target of the internal feedback. In Fig 3A and 3B, we schematically represent a TF regula-
tion model and an sRNA regulation model, for which quorum-sensing information transmis-
sion can be computed [29, 30]. Both regulatory schemes can be modeled via Langevin
equations, which prescribe the fluctuations of the MP at steady state (see S1 Text). Solving the
Langevin equations yields the simple Fano functions F(1)(m) = (1+b)/v for TF regulation and
F(1)(m) = (1+bm/m1)/v for sRNA regulation, where the burst size b is the average number of
MPs translated per mRNA transcript without sRNAs,m1 = max(m+,m+/fint,+) is the MP con-
centration at saturation without self-inhibition, and v is the cellular volume averaged over the
bacterial population [31, 32]. These Fano functions are represented in Fig 4E.

The difference between the TF Fano function and the sRNA Fano function can be under-
stood intuitively. Stochasticity in MP expression is mainly due to transcription noise, which is
amplified by the burst size of the MP protein. For TF regulation, MP expression is downregu-
lated by reducing the MP mRNA copy number. As a result, the MP transcriptional noise aris-
ing from low mRNA copy number becomes substantial at low MP expression levels.
Compared with TF regulation, sRNA regulation downregulates MP expression by shortening
the MP mRNA lifetime rather than reducing the MP mRNA copy number. As the burst size b
equals the MP translation rate times the MP mRNA lifetime, shorter MP mRNA lifetime yields
an effective burst size that is smaller than the TF burst size b (see S1 Text). Hence, sRNA regu-
lation reduces the Fano function at low MP expression levels. This reduction of noise supposes
that sRNA regulation operates in the regime where MPs are expressed above a base level [29],
as is the case for LuxR in V. harveyi [9].

Optimal quorum-sensing response
By adopting these simple models for genetic regulation, the knowledge of the bare AI output
rate f ð1Þm allows us to fully characterize the quorum-sensing response with optimal feedbacks

(see S1 Text). As shown in the inset of Fig 4A, f ð1Þm is determined by a Hill activation curve with

Hill coefficient h = 2 and induction constant K = 15nM [33]. For this choice of f ð1Þm , Fig 4A and
4B shows the optimal time courses of AI concentration a?ðtÞ and of MP abundancem?ðtÞ.
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These time courses show that the optimal response maximizes the fraction of time for which
the quorum-sensing channel has high resolving power: The nonlinear time course a?ðtÞ re-
duces the effective range of AI concentrations to a small range around K, where MP expression
is strongly inducible by AI detection via f ð1Þm . Independent of the choice of f ð1Þm and in accor-
dance with experimental observations [9], the quasi-linear increasem?ðtÞ exploits the full
range of MP abundances to encode information about cell density. In Fig 4C and 4D, we exhib-
it the external feedback f ?ext and the internal feedback f

?
int that achieve the optimal response. The

role of f ?ext is to transform the exponential growth function ρt into the optimal time course of AI
concentration a?ðtÞ: when increasing, f ?ext implements a positive feedback to skip low and high
AI concentration stages; when decreasing, f ?ext implements a negative feedback that stabilizes
the AI concentration around K. The function f ?int similarly regulates the optimal MP output
rate to yield the optimal time course of MP abundancem?ðtÞ. Interestingly, the nature of the
optimal feedback for TF and sRNA regulation differ markedly at low MP abundance, where

Fig 3. Models for the regulation of the monitor protein (MP) expression. A. In the TF regulation model, AI molecules induce the production of MPs by
allosterically regulating the transcription factor (TF), which only binds to its cognate DNA regulatory sequence when complexed with AI. B. In the sRNA
regulation model, a TF positively regulates a small regulatory RNA (sRNA) that represses MP expression. In both models, the expression of MP is positively
regulated by binding of AIs to the TF and MP proteins regulate their own expression. For strong sRNA-mRNA pairing, sRNA regulation reduces the
stochasticity in MP expression compared with TF regulation. The internal feedback regulates the transcription of the MPmRNA for TF regulation, whereas it
regulates the sRNA level for sRNA regulation.

doi:10.1371/journal.pcbi.1004238.g003
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Fig 4. Optimal quorum-sensing response. TF regulation is shown by dashed curves and sRNA regulation by solid curves.A. The bare MP expression rate
f ð1Þm ðcÞ, in the absence of self-regulation of the MP, obeys a Hill function with h = 2 (inset). Temporal dynamics of the optimal mean AI concentration andB.
temporal dynamics of the optimal mean MP abundance.C.Optimal external feedback f?ext with f

−

= a
−

/(τa ρ−) andD. optimal internal feedback f?int. E. Fano
function with optimal feedback F? and without feedback F as functions of MP abundancem. The ratio of effective correlation times τ?/τ = F?/F is shown inset.
In all panels, red curves indicate the optimal quorum-sensing response, black curves indicate the absence of all feedbacks ðf 0ext ¼ 0; fint ¼ 1Þ. Parameter
values: ρ+/ρ− = 104, a

−

= 0.1nM, a+ = 1mM,m
−

= 100nM,m+ = 600nM, fint,− = 2, fint,+ = 1/2, K = 15nM, h = 2, b = 20 and v = 1μm3.

doi:10.1371/journal.pcbi.1004238.g004
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stochasticity in MP expression is substantially larger for TF regulation than for sRNA regula-
tion. For TF regulation, f ?int is increasing and acts as a positive feedback to skip low MP abun-
dance, whereas for sRNA regulation f ?int is decreasing to reduce stochasticity in this regime via
negative feedback.

Information increase via feedbacks
To quantify the benefit of feedback to information transmission, we compare the MI for opti-
mal feedbacks I?m;r with the MI without feedback Ið1Þm;r. As opposed to the analytical but approxi-

mate MIs ~Im;r and ~I
?
m;r, we compute numerically the MI Ið1Þm;r for the feedforward channel

ρ! a!m and the MI I?m;r for the optimal feedback channel ρ! a$m ↺. Specifically, we

use the analytical expressions for the optimal feedbacks to specify Gaussian information chan-
nels, but compute numerical MIs without the small-noise approximation (see S1 Text). Table 1
gives the number of cell-density states that a bacterium can discriminate with or without feed-

back ð2I?m;r versus 2I
ð1Þ
m;r) and with TF or sRNA regulation, for a fixed range of MP abundance

(m−,m+). As the stochasticity in MP expression is less for sRNA regulation than for TF regula-
tion, quorum-sensing channels with sRNA regulation can transmit more information than
those with direct TF regulation [32]. For biologically-relevant values of the parameters, the
total MI I?m;r barely exceeds 1 bit of information for TF regulation (� 2 states) but typically

amounts to 2 bits of information for sRNA regulation (� 4 states). For exponential growth, the
external feedback only contributes marginally and most of the information increase is due to
the internal feedback f ?int (see S1 Text). To understand the benefit of f

?
int to information trans-

mission, we compare the Fano function, which is a convenient measure of noise, for optimal
feedbacks F?(m) to the Fano function without feedback F(1)(m):

F?ðmÞ
Fð1ÞðmÞ ¼ 1�m

f ?int
0ðmÞ

f ?intðmÞ
� ��1

: ð6Þ

Thus, an increasing f ?int acts as a positive feedback and increases the Fano function, while a de-
creasing f ?int acts as a negative feedback and reduces the Fano function. In Fig 4E, we plot F?

and F as functions of the MP abundancem. For TF regulation, f ?int is increasing at low MP
abundance and incurs a loss of fidelity that approximatively cancels the information benefit
achieved by more rapidly reaching the enhanced resolution at higher MP abundance. By con-
trast, for sRNA regulation, the steadily decreasing f ?int improves information transmission
markedly (by 0.7 bits), allowing a bacterium to resolve two additional cell-density states. In
both cases, the large regions of negative feedback (f ?int decreasing) shorten the effective correla-

tion time of MP abundance, defined as t?m ¼ tmF
?=Fð1Þ. Thus, the effective quorum-sensing

Table 1. Number of discernible cell-density stages.

Monitor regulation No feedback Optimal feedback

TF 2 (1.2 bits) 2 (1.3 bits)

sRNA 2–3 (1.4 bits) 4 (2.1 bits)

Information quantities are computed numerically using an analytical expression for the optimal feedback

(see S1 Text). Parameter values: ρ+/ρ− = 104, a
−

= 0.1nM, a+ = 1mM, m
−

= 100nM, m+ = 600nM, fint,− = 2,

fint,+ = 1/2, K = 15nM, h = 2, b = 20 and v = 1μm3

doi:10.1371/journal.pcbi.1004238.t001
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timescale t?m becomes shorter than the division time Td/ln2, validating our use of the quasi-stat-
ic approximation for dilution-limited MPs, with lifetime τm = Td/ln 2 (see S1 Text).

Focusing on our two simple models of regulation, what is the influence of the biological pa-
rameters on the quorum-sensing information transfer? An obvious strategy to increase the
quorum-sensing information transfer would be for bacteria to increase the output MP range
(m−,m+). However, because MP abundances are plausibly bounded above and below to avoid
toxicity to the cell or to maintain short response time, we treatm− andm+ as boundary condi-
tions. Then, information transfer can be increased by widening the range (fm,−, fm,+) of the bare
output rate fm, and by adjusting the resulting MP range (m−,m+) via negative feedback, e.g.
with self-repression at high MP level fint,+ =m+/(τm fm,+)< 1. For a fixed MP range (m−,m+),
Fig 5 illustrates the dependence of the MI I?r;m and of the MI increase DI?r;m ¼ I?r;m � Ið1Þr;m on the

burst size b of MPs and on the level of self-repression fint,+ < 1 at AI saturation. In particular,
we plot the isoinformation curves, defined as the values b and fint,+ that yield the same optimal
MI I?r;m. For TF regulation, i.e. F

(1) = 1+b, the isoinformation curves are straight lines in the

(b, ln fint,+)-plane, as expected from expression Eq (5). Similarly, for sRNA regulation, i.e.
F(1)(m) = 1+bfint,+ m/m+, the isoinformation curves follow the predictions of Eq (5), even with

large burst sizes (b� 50) for which the small-noise approximation ~I ?r;m underestimates I?r;m.

Large burst sizes b impact sRNA regulation much less than TF regulation since, in the sRNA
case, the MP burst size bfint,+ m/m+ is smaller for small MP levelm. Moreover, the MI increase
DI?r;m in Fig 5 reveals that internal feedbacks can improve information transmission for sRNA

regulation but not for TF regulation. Why doesn’t internal feedback improve MI for TF regula-
tion? In principle, noise reduction in MP expression is possible for both TF regulation and
sRNA regulation if bacteria can achieve strong enough feedbacks (fint,+ � 1), and correspond-
ingly large enough bare output rates fm,+ =m+/(τm fint,+). However, there are biophysical limits
to self-regulation efficacy and protein production rate, which limit the ability of feedback to
control MP fluctuations, especially when gene expression noise is large. For a realistic negative
feedback and realistic burst size (fint,− = 2, fint,+ = 1/2, and b = 20), we find that sRNA regulation
is in the regime where feedback can pay off in terms of increased information, but TF regula-
tion is not due large gene expression noise at low MP abundance. For sRNA regulation, the
range of information transfer achievable (over 2 bits) is significantly larger than the MI calcu-
lated in most circuits [27, 34, 35]. We believe that such an increase in achievable MI illustrates
the power of assessing the benefit of feedback on MP time course rather than on static
MP abundance.

Discussion
As an information channel, the quorum-sensing system encodes input cell density ρ into out-
put MP abundancem via the intermediary of AI concentration a. While the external AI con-
centration a determines the production rate of self-regulating MPs, the per-cell AI-output rate
depends on the concentrationm of the internal MP, thus establishing a channel of the form ρ
! a$m ↺. To assess the information benefit of feedbacks fromMP level to AI production

and to MP expression, we optimized the small-noise MI ~Im;r over both the external and internal

feedbacks. In our model, external and internal feedbacks actually decouple to increase informa-
tion transmission: the external feedback adjusts the time course of the AI concentration to the
inherent noise of the detection channel a!m ↺ [24, 36, 37], while the internal feedback opti-

mizes the information capacity of the detection channel [38]. This result constitutes a general-
ized form of “histogram equalization” for a noisy information channel. For a channel with
uniform output noise, i.e. constant Sm, and fixed output bandwidth (m−,m+), specifying the
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Fig 5. Optimal MI and optimal MI increase.Dependence of the optimal MI I? and the optimal MI increase ΔI? (in bits) on the burst size b and on the level of
self-repression fint,+ (in logarithmic scale) for both TF and sRNA regulations. The Xs indicate the values fint,+ = 1/2 and b = 20 for which Table 1 was
computed. In the top panels, the white curves are isoinformation curves separating regions where the optimal quorum-sensing channel can discriminate the
indicated number of cell-density ranges. In the bottom panels, the white curves represent parameters for which feedbacks cannot improve information
transfer (0 bits) or can double the number of distinguishable cell density ranges (1 bit). Note that, in both cases, a decrease in fint,+ has to be matched by a
larger bare MP output rate to ensure the boundary condition tmfint;þf

ð1Þ
m ðaþÞ ¼ mþ. Parameter values: ρ+/ρ− = 104, a

−

= 0.1nM, a+ = 1mM,m
−

= 100nM,m+ =
600nM, fint,− = 2, K = 15nM, h = 2 and v = 1μm3.

doi:10.1371/journal.pcbi.1004238.g005
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input/output mappingm?ðrÞ as the scaled input cumulative distribution function

m ?ðrÞ ¼ m� þ ðmþ �m�ÞPðrÞ ; PðrÞ ¼
Z r

r�
pðuÞ du ; ð7Þ

optimizes information transfer in the small-noise approximation. Indeed, for uniform output
noise, optimizing the MI Iρ, m amounts to maximizing the output entropy of p(m). In this re-
gard, the mappingm?ðrÞ defined by Eq (7) transforms the input distribution p(ρ) into the uni-
form output distribution p(m) over (m−,m+), thereby maximizing the output entropy: This is
classical histogram equalization that ensures a uniform use of the output bandwidth [39]. For a
noisy channel, direct histogram equalization fails to optimize information transfer in general.
Rather than using the output bandwidth uniformly, one has to preferentially exploit the output
bandwidth where the output noise is low. Our information analysis indicates the optimal way
to allocate bandwidth in the small-noise approximation. As in histogram equalization, the in-
formation transfer is optimized by adjusting the shape of smooth curves, namely the time-
courses of AI concentration and MP abundance. However, unlike histogram equalization,
these feedback-mediated adjustments not only depend on the input statistics but also on the
noise characteristics of the encoding channel. As a result, determining the optimal adjustments
is a problem in the calculus of the variations and the optimal information transfer will depend
on the noise properties of the channel. Specifically, tuning the quorum-sensing feedbacks yields
contrasting benefits for two biologically relevant models of MP genetic regulation: for sRNA-
based regulation, optimal feedback can double the number of distinguishable cell-density
ranges, while feedbacks are only marginally beneficial for TF-based regulation. In both cases,
for exponential growth, the quorum-sensing circuit operates close to capacity at constant AI
output rate (i.e. no external feedback). Thus, the only feedback we find that substantially in-
creases MI is internal feedback on MP levels for sRNA-based regulation.

During the growth of a colony, quorum-sensing bacteria activate different programs of gene
expression based on their MP levels. If only cells that respond appropriately to cell density sur-
vive, the gain of fitness is theoretically equal to the MI between MP abundance and cell density
[40, 41]. This formal identification of MI with fitness gain can account for the optimization of
MI as the result of competition among bacterial strains. In this context, a natural strategy for a
bacterium to increase its MI is to use a genetic circuit that reduces noise by averaging many
consecutive measurements. In our model, because the MP lifetime is only dilution limited, the
MP abundance performs a long-time average of the discrete random events inherent to signal
transduction and gene expression. Such a temporal average allows a bacterium to exploit tem-
poral correlations in the input to maximize available information. In fact, temporal averaging
is the only possible memory management in quorum sensing since a bacterium cannot store
past molecular abundances as distinct time-stamped values. Moreover, the averaging time
should be as long as possible for optimal noise filtering, but short enough to accurately track
the changes in cell density relayed by the AI signal. By tuning internal feedbacks, a bacterium
can adjust the dynamics of its quorum-sensing response to achieve the optimal trade-off be-
tween noise reduction and input tracking ability. Biologically, such internal feedbacks suppress
molecular fluctuations dynamically, which generally requires fast feedbacks involving many
molecular events, i.e. high turnover rates for intermediary molecules [23]. In our case, effective
feedback can be achieved by expressing MP mRNA at a maximal rate, while increasing the ex-
pression rate of the complementary sRNA, effectively increasing mRNA/sRNA turn-over rates.
In this regard, the self-regulation of a slow monitor protein via fast sRNA regulation appears as
a trademark of high-MI signal tracking by a genetic circuit [32].
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In reality, many bacterial species use multiple AIs, multiple MPs, as well as multiple mecha-
nisms of gene regulation [1, 3, 4]. In addition, bacteria grow in complex communities, such as
biofilms, that comprise many species that possibly communicate and compete via quorum
sensing [2]. Our information-theoretic approach can be extended to address these real-world
considerations. If the communal AI-concentration signals self-average in interacting bacterial
populations, external feedbacks can always increase information transfer by tuning the AI con-
centrations to the specifics of the detection channels. For a densely packed biofilm, the constant
reshaping of the AI diffusion volume due to bacterial growth can be modeled by variable AI
diffusion times. Corrugated geometries or complex diffusive environments can lead to inho-
mogeneous AI concentrations [42]. In such cases, the local AI concentration may be plagued
by slow fluctuations due to the stochastic AI output from a small number of neighboring cells,
each of which is subject to slow internal monitor protein fluctuations and therefore slow AI
output fluctuations. These AI fluctuations represent a form of extrinsic noise. Such irreducible
noise in the AI signal restrains the ability of feedback to reshape the AI distribution p(c) by tun-
ing the AI concentration. In particular, it generally becomes impossible for p(c) to match the
capacity input distribution of the detection channel c!m. Therefore, the optimal MI will no
longer achieve channel capacity. As for bacteria where MP expression is controlled both by
sRNA regulation and TF regulation, such as V. harveyi [43], our analysis suggests there is no
benefit to using both modes of regulation simultaneously. Rather, TF regulation should be ac-
tive at the earliest stage of quorum sensing, where the noise level is high, to encode one bit of
information. Triggered by this one bit, sRNA regulation can then take over for faithful infor-
mation processing at higher cell densities.

More generally, the feedback structure of the quorum-sensing system x! y$ z ↺ is ubiq-

uitous in multi-agent systems that need to monitor their resources in order to synchronize
their activity, be it a multicellular community, a developing organ [44], or a computing net-
work system [45]. As a strategy, agents in such systems infer a changing resource density from
a common self-generated signal, whose dynamics is driven by the process to be monitored. In
that respect, our analysis is relevant to a wide range of statistical systems that track an extrinsic
driver implicitly, via an endogenously generated signal.

Methods

We first formulate the encoding scheme pðmjrÞ � N ðmðrÞ;S2
mðrÞÞ, expressingmðrÞ and

S2
mðrÞ as functionals of fext; f ð1Þm ; fint; F

ð1Þ. This requires the analysis of the coupled dynamics of

the stationary process ðcðrÞ; fmðrÞ
i gÞ, which describes quorum sensing in a colony of bacteria

held at fixed cell density ρ.
At any time in such a colony, the AI concentration and the MP abundances fluctuate

around their respective mean values aðrÞ andmðrÞ. This defines ðaðrÞ;mðrÞÞ as the stable
fixed point of the deterministic versions of Eqs (2) and (3) (i.e. with σm = 0). The fixed-point
condition imposes the self-consistent relations

a ¼ tarfextðmÞ and m ¼ tmf
ð1Þ
m ðaÞfintðmÞ ; ð8Þ

which implicitly define the cell density-AI concentration mapping aðrÞ and the cell density-
MP abundance mappingmðrÞ. We impose the constraints that aðrÞ andmðrÞ are differentia-
ble increasing mappings, thus avoiding multistability [6], which is known to impair informa-
tion transmission [24]. In particular, these constraints allow fext and fint to be non-monotonic,

while imposing that f
0
intðmÞ=fintðmÞ < 1=m (see Eq (6). It is convenient to consider the MI as a

function of the cell density-AI concentration mapping aðrÞ and the AI concentration-MP
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abundance mappingmðrÞ instead of as a function of fext and fint. Thus, the optimization of the
MI is carried out over the space of increasing functions aðrÞ andmðrÞ satisfying aðr�Þ ¼ a�
and aðrþÞ ¼ aþ, as well asmðr�Þ ¼ m� andmðrþÞ ¼ mþ.

In the small-noise approximation, the fluctuations ðdcðrÞ; fdmðrÞ
i gÞ around ðaðrÞ;mðrÞÞ sat-

isfy the linearized versions of Eqs (2) and (3). The integral expression for the covariance matrix

of the stationary process fdmðrÞ
i g yields the variance S2

mðrÞ ¼ hdmðrÞ
i dmðrÞ

i i of the MP abun-
dance in a bacterium at cell density ρ. When the shared AI concentration is self-averaging, i.e.

S2
aðrÞ ¼ hdaðrÞ daðrÞi ¼ 0, it is possible to obtain a simple expression for S2

mðrÞ, revealing
that the noise amplitudes are modified by the feedback mechanisms through the first deriva-

tives f
0
ext and f

0
int. This implies that, as a functional of aðrÞ andmðrÞ, S2

mðrÞ depends not only
on aðrÞ andmðrÞ, but also on the sensitivity of the AI concentration a

0 ðrÞ and of the MP

abundancem
0 ðrÞ with respect to the cell density ρ (see S1 Text).

We employ a variational method to optimize ~Im;r over the feedback functions fext and fint,

while holding f ð1Þm and F(1) fixed. In the small-noise approximation, the trajectories ofmt fluctu-
ate closely around their deterministic meanmðtÞ during colony growth. Assuming a fixed time
course for the growth of cell density, we may neglect the contribution of the small transient
fluctuations δmt in shaping the AI concentration distribution q(c) and the MP abundance dis-
tribution q(m). The cell density-MP abundance mappingmðrÞ deterministically maps the

input distribution p(ρ) onto the output distributions qðmÞ ¼ pðrÞ=m0 ðrÞ. Thus, the small-

noise MI ~Im;r can be written

~Im;r ¼ Hr þ
Z rþ

r�
pðrÞ log 2

1ffiffiffiffiffiffiffi
2pe

p m
0 ðrÞ

SmðrÞ
� �

dr ; ð9Þ

whereHρ is the continuous entropy associated with p(ρ) (see S1 Text). As the approximation

qðmÞ ¼ pðrÞ=m0 ðrÞ neglects noise, ~Im;r underestimates Hm the entropy of q(m), yielding only

a lower bound to the true MI ~Im;r. However, expression Eq (9) has a clear interpretation. The

larger the sensitivity-to-noise ratiom
0 ðrÞ=SmðrÞ, the more faithful the encoding becomes at

local density ρ: the ratio dr ¼ SmðrÞ=m
0 ðrÞ, referred as the resolution of the quorum-sensing

channel, quantifies the smallest difference in cell density that a bacterium can resolve by read-
ing out its MP abundance. The logarithmic contribution of this resolution to the overall infor-
mation is weighted by the probability p(ρ), which captures the fraction of time the colony
spends at density ρ.

Sincem
0 ðrÞ=SmðrÞ implicitly depends on the mean mappings aðrÞ,mðrÞ, and their first de-

rivatives, the optimization of ~Im;r over a andm, that is over fext and fint, becomes a problem of

the calculus of variations. If there are optimal mean mappings a?ðrÞ andm?ðrÞ, these necessar-
ily define a stationary path solving the Euler-Lagrange equations of the variational problem.

Moreover, a simple analysis of ~Im;r confirms that the stationary path a? andm? actually gives a

local maximum of the MI (see S1 Text). The Euler-Lagrange equations corresponding to our
quorum-sensing model are nonlinear second-order equations that depend on the functional
parameters f ð1Þm ; Fð1Þ. As such, their analytical resolution is in principle a formidable task. How-

ever, the variational optimization of ~Im;r can be carried out analytically in our case.
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Supporting Information
S1 Text. General supplementary information. The text contains detailed accounts of the
model for quorum sensing, the formulation as a Gaussian channel, and the optimization of the
quorum-sensing response.
(PDF)

S1 Fig. Models for the regulation of monitor protein expression. In the expressed regime of
MPs and for strong sRNA-mRNA pairing: A. The mean MP expression rate follows the same
Hill function for both TF regulation and sRNA regulation with Hill coefficient h = 2, with in-
duction constant K = 15nM, and over the range of AI concentration (a−, a+) with a− = 0.1nM
and a+ = 1μM. B. sRNA regulation reduces the stochasticity in MP expression compared with

TF regulation, as revealed by the scaling of the Fano factors F ¼ S2
m=m where, for simplicity,

we take the saturation level of MP abundance to bem1 = τm(α+β)�m+/fint,+ = 1200nM with
m− = 100nM andm+ = 600nM.
(EPS)

S2 Fig. Optimization of quorum-sensing feedbacks in the mean-field regime. Parameter val-
ues: a+/a− = ρ+/ρ− = 104,m− = 100nM,m+ = 600nM, fint,− = 2, fint,+ = 1/2, K/a− = 150, h = 2,
b = 20. A. Temporal dynamics of the cell density growth for different growth exponents γ =
−0.2, −0.1, 0, 0.1, 0.2. B.Optimal MI I? with feedback (green curve) and MI I without feedback
(black curves), both in bits, as functions of the growth exponent γ, for TF regulation (dashed
curves) and sRNA regulation (solid curves). C.Optimal time course of the AI concentration.
D.Optimal time course of the MP abundance. E.Optimal external feedback f?. FOptimal in-
ternal feedback f?int. In E. and F. the gray lines indicate the mean response in the absence of

feedback ðf 0ext ¼ 0; fint ¼ 1Þ. For constant lifetime τm, only the optimal external feedback repre-
sented in E depends on the growth exponent γ. In all panels, the dashed curves correspond to
TF regulation and the solid curves to sRNA regulation.
(EPS)

S3 Fig. Numerical simulation of the optimal quorum-sensing response. Time course of the
MP abundance in response to the optimal time course of AI concentration and with optimal
internal feedback: the colored curves represent three independent realizations of the time
course and the black line represents the empirical mean time course.
(EPS)

S4 Fig. Optimal internal feedbacks. A.For zero budget of negative feedback with small burst
size (fint,− = fint,+ = 1, b = 1), f?int is increasing then decreasing for both TF and sRNA regulations.
For large burst sizes, f?int is unchanged for TF regulation but becomes nearly flat for sRNA regu-
lation. B. For small burst size, a finite budget of negative feedback (fint,−> 1, fint,+< 1, b = 1) al-
lows f?int to be decreasing over the whole MP range. C. For large burst sizes (b = 20), the optimal
feedback f?int expends its budget of negative feedback preferentially at low MP abundance for
sRNA regulation, as opposed to the TF regulation case. The level of self regulation f?int is repre-
sented in linear scale in A and in logarithmic scale in B and C.
(EPS)

S5 Fig. Capacity and numerical MI. Dependence of the optimal MI I?, the exact capacity C?,
and the relative MI error Δ on the burst size b and on the level of self-repression fint,+ (in loga-
rithmic scale) for both TF and sRNA regulations. The Xs indicate the values fint,+ = 1/2 and
b = 20 for which Table 1 was computed. The top panels reproduce the numerical MI values
plotted in Fig 5 of the main manuscript. The middle panels shows the exact capacity computed
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via the Blahut Arimoto algorithm and using the analytically obtained feedbacks. In the top and
middle panels, the white curves are isoinformation curves separating regions where the optimal
quorum-sensing channel can discriminate the indicated number of cell-density ranges. Param-
eter values: ρ+/ρ− = 104, a− = 0.1nM, a+ = 1mM,m− = 100nM,m+ = 600nM, fint,− = 2,
K = 15nM, h = 2 and v = 1μm3.
(EPS)

S6 Fig. Optimal MI as capacity. A. The fluctuations of the AI concentration self-average over
the slow timescale τm � 30min and the large population of bacteria N� 100. B. Varying fext al-
lows us to arbitrarily modify the distribution of the AI concentration a, which can be seen as a
free input. As a result, the optimal information transfer of the quorum-sensing channel is the
optimal information capacity of the embedded detection channel.
(EPS)

Acknowledgments
We thank William Bialek, Bonnie Bassler and Curt Callan for many insightful discussions.

Author Contributions
Conceived and designed the experiments: TT NSW. Analyzed the data: TT NSW. Wrote the
paper: TT NSW.

References
1. Miller MB, Bassler BL. Quorum sensing in bacteria. Annual Review of Microbiology. 2001 2013/04/26;

55(1):165–199. doi: 10.1146/annurev.micro.55.1.165 PMID: 11544353

2. Fuqua C, Winans SC, Greenberg EP. Census and consensus in bacterial ecosystems: The LuxR-LuxI
family of quorum-sensing transcriptional regulators. Annual Review of Microbiology. 1996 2013/04/26;
50(1):727–751. doi: 10.1146/annurev.micro.50.1.727 PMID: 8905097

3. Nadal Jimenez P, Koch G, Thompson JA, Xavier KB, Cool RH, QuaxWJ. The multiple signaling sys-
tems regulating virulence in Pseudomonas aeruginosa [10.1128/MMBR.05007-11]. Microbiology and
Molecular Biology Reviews. 2012; 76(1):46–65. Available from: http://mmbr.asm.org/content/76/1/46.
abstract. doi: 10.1128/MMBR.05007-11

4. NgWL, Bassler BL. Bacterial quorum-sensing network architectures. Annual Review of Genetics. 2009
2013/04/26; 43(1):197–222. doi: 10.1146/annurev-genet-102108-134304 PMID: 19686078

5. Pompeani AJ, Irgon JJ, Berger MF, Bulyk ML, Wingreen NS, Bassler BL. The Vibrio harveyimaster
quorum-sensing regulator, LuxR, a TetR-type protein is both an activator and a repressor: DNA recog-
nition and binding specificity at target promoters. Molecular Microbiology. 2008; 70(1):76–88. doi: 10.
1111/j.1365-2958.2008.06389.x PMID: 18681939

6. Angeli D, Ferrell JE, Sontag ED. Detection of multistability, bifurcations, and hysteresis in a large class
of biological positive-feedback systems. Proceedings of the National Academy of Sciences of the Unit-
ed States of America. 2004; 101(7):1822–1827. Available from: http://www.pnas.org/content/101/7/
1822.abstract. doi: 10.1073/pnas.0308265100 PMID: 14766974

7. Kramer BP, Fussenegger M. Hysteresis in a synthetic mammalian gene network. Proceedings of the
National Academy of Sciences of the United States of America. 2005; 102(27):9517–9522. Available
from: http://www.pnas.org/content/102/27/9517.abstract. doi: 10.1073/pnas.0500345102 PMID:
15972812

8. Long T, Tu KC, Wang Y, Mehta P, Ong NP, Bassler BL, et al. Quantifying the integration of quorum-
sensing signals with single-cell resolution. PLoS Biology. 2009 03; 7(3). doi: 10.1371/journal.pbio.
1000068

9. Teng SW,Wang Y, Tu KC, Long T, Mehta P, Wingreen NS, et al. Measurement of the copy number of
the master quorum-sensing regulator of a bacterial cell. Biophysical Journal. 2010 5; 98(9):2024–2031.
Available from: http://www.sciencedirect.com/science/article/pii/S000634951000175X. doi: 10.1016/j.
bpj.2010.01.031 PMID: 20441767

Optimal Census by Quorum Sensing

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004238 May 12, 2015 18 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004238.s007
http://dx.doi.org/10.1146/annurev.micro.55.1.165
http://www.ncbi.nlm.nih.gov/pubmed/11544353
http://dx.doi.org/10.1146/annurev.micro.50.1.727
http://www.ncbi.nlm.nih.gov/pubmed/8905097
http://mmbr.asm.org/content/76/1/46.abstract
http://mmbr.asm.org/content/76/1/46.abstract
http://dx.doi.org/10.1128/MMBR.05007-11
http://dx.doi.org/10.1146/annurev-genet-102108-134304
http://www.ncbi.nlm.nih.gov/pubmed/19686078
http://dx.doi.org/10.1111/j.1365-2958.2008.06389.x
http://dx.doi.org/10.1111/j.1365-2958.2008.06389.x
http://www.ncbi.nlm.nih.gov/pubmed/18681939
http://www.pnas.org/content/101/7/1822.abstract
http://www.pnas.org/content/101/7/1822.abstract
http://dx.doi.org/10.1073/pnas.0308265100
http://www.ncbi.nlm.nih.gov/pubmed/14766974
http://www.pnas.org/content/102/27/9517.abstract
http://dx.doi.org/10.1073/pnas.0500345102
http://www.ncbi.nlm.nih.gov/pubmed/15972812
http://dx.doi.org/10.1371/journal.pbio.1000068
http://dx.doi.org/10.1371/journal.pbio.1000068
http://www.sciencedirect.com/science/article/pii/S000634951000175X
http://dx.doi.org/10.1016/j.bpj.2010.01.031
http://dx.doi.org/10.1016/j.bpj.2010.01.031
http://www.ncbi.nlm.nih.gov/pubmed/20441767


10. Teng SW, Schaffer JN, Tu KC, Mehta P, LuW, Ong NP, et al. Active regulation of receptor ratios con-
trols integration of quorum-sensing signals in Vibrio harveyi. Molecular Systems Biology. 2011 05; 7.
doi: 10.1038/msb.2011.30 PMID: 21613980

11. Ruby EG. Lessons from a cooperative, bacterial-animal association: The Vibrio fischeri–Euprymna sco-
lopes light organ symbiosis. Annual Review of Microbiology. 1996 2014/07/07; 50(1):591–624. doi: 10.
1146/annurev.micro.50.1.591 PMID: 8905092

12. Henke JM, Bassler BL. Quorum Sensing Regulates Type III Secretion in Vibrio harveyi and Vibrio para-
haemolyticus [10.1128/JB.186.12.3794-3805.2004]. Journal of Bacteriology. 2004; 186(12):3794–
3805. doi: 10.1128/JB.186.12.3794-3805.2004 PMID: 15175293

13. Anetzberger C, Pirch T, Jung K. Heterogeneity in quorum sensing-regulated bioluminescence of Vibrio
harveyi. Molecular Microbiology. 2009; 73(2):267–277. doi: 10.1111/j.1365-2958.2009.06768.x PMID:
19555459

14. Austin B, Zhang XH. Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Let-
ters in Applied Microbiology. 2006; 43(2):119–124. doi: 10.1111/j.1472-765X.2006.01989.x PMID:
16869892

15. Yang Q, Defoirdt T. Quorum sensing positively regulates flagellar motility in pathogenic Vibrio harveyi.
Environmental Microbiology. 2014;Available from: http://dx.doi.org/10.1111/1462-2920.12420.

16. Shannon C. A mathematical theory of communication. Bell system technical journal. 1948; 27. doi: 10.
1002/j.1538-7305.1948.tb01338.x

17. Cover TM, Thomas JA. Elements of information theory. New York, NY, USA: Wiley-Interscience;
1991.

18. Pai A, You L. Optimal tuning of bacterial sensing potential. Molecular Systems Biology. 2009 07; 5. doi:
10.1038/msb.2009.43 PMID: 19584835

19. Nadell CD, Bucci V, Drescher K, Levin SA, Bassler BL, Xavier JB. Cutting through the complexity of cell
collectives. Proceedings of the Royal Society B: Biological Sciences. 2013; 280 (1755). doi: 10.1098/
rspb.2012.2770 PMID: 23363630

20. Karatzas I, Shreve SE. Brownian motion and stochastic calculus. vol. 113 of Graduate Texts in Mathe-
matics. 2nd ed. New York: Springer-Verlag; 1991.

21. Gardiner CW. Handbook of stochastic methods for physics, chemistry and the natural sciences. vol. 13
of Springer Series in Synergetics. 3rd ed. Berlin: Springer-Verlag; 2004.

22. Campagna SR, Gooding JR, May AL. Direct quantitation of the quorum sensing signal, autoinducer-2,
in clinically relevant samples by liquid chromatography-tandemmass spectrometry. Analytical Chemis-
try. 2009 2013/01/04; 81(15):6374–6381. doi: 10.1021/ac900824j PMID: 19594136

23. Paulsson J. Summing up the noise in gene networks. Nature. 2004 01; 427(6973):415–418. doi: 10.
1038/nature02257 PMID: 14749823

24. Tkačik G, Walczak AM, Bialek W. Optimizing information flow in small genetic networks. III. A self-inter-
acting gene. Physical Review E. 2012 04; 85(4):041903. doi: 10.1103/PhysRevE.85.041903

25. Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J, et al. Quantifying E. coli Proteome and Tran-
scriptome with Single-Molecule Sensitivity in Single Cells. Science. 2010 07; 329(5991):533–538.
Available from: http://www.sciencemag.org/content/329/5991/533.abstractN2 doi: 10.1126/science.
1188308 PMID: 20671182

26. Munsky B, Neuert G, van Oudenaarden A. Using Gene Expression Noise to Understand Gene Regula-
tion [10.1126/science.1216379]. Science. 2012; 336(6078):183–187. Available from: http://www.
sciencemag.org/content/336/6078/183.abstract. doi: 10.1126/science.1216379 PMID: 22499939

27. Tkačcik G, Callan CG, Bialek W. Information flow and optimization in transcriptional regulation
[10.1073/pnas.0806077105]. Proceedings of the National Academy of Sciences. 2008; 105
(34):12265–12270. Available from: http://www.pnas.org/content/105/34/12265.abstract. doi: 10.1073/
pnas.0806077105

28. Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL. The small RNA chaperone Hfq
and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell. 2004 7; 118
(1):69–82. Available from: http://www.sciencedirect.com/science/article/pii/S0092867404005732. doi:
10.1016/j.cell.2004.06.009 PMID: 15242645

29. Mehta P, Goyal S, Wingreen NS. A quantitative comparison of sRNA-based and protein-based gene
regulation. Mol Syst Biol. 2008 10; 4. doi: 10.1038/msb.2008.58 PMID: 18854820

30. Mehta P, Goyal S, Long T, Bassler BL, Wingreen NS. Information processing and signal integration in
bacterial quorum sensing. Mol Syst Biol. 2009 11; 5. doi: 10.1038/msb.2009.79 PMID: 19920810

31. Thattai M, van Oudenaarden A. Intrinsic noise in gene regulatory networks. Proceedings of the National
Academy of Sciences. 2001; 98(15):8614–8619. Available from: http://www.pnas.org/content/98/15/
8614.abstract. doi: 10.1073/pnas.151588598

Optimal Census by Quorum Sensing

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004238 May 12, 2015 19 / 20

http://dx.doi.org/10.1038/msb.2011.30
http://www.ncbi.nlm.nih.gov/pubmed/21613980
http://dx.doi.org/10.1146/annurev.micro.50.1.591
http://dx.doi.org/10.1146/annurev.micro.50.1.591
http://www.ncbi.nlm.nih.gov/pubmed/8905092
http://dx.doi.org/10.1128/JB.186.12.3794-3805.2004
http://www.ncbi.nlm.nih.gov/pubmed/15175293
http://dx.doi.org/10.1111/j.1365-2958.2009.06768.x
http://www.ncbi.nlm.nih.gov/pubmed/19555459
http://dx.doi.org/10.1111/j.1472-765X.2006.01989.x
http://www.ncbi.nlm.nih.gov/pubmed/16869892
http://dx.doi.org/10.1111/1462-2920.12420
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1038/msb.2009.43
http://www.ncbi.nlm.nih.gov/pubmed/19584835
http://dx.doi.org/10.1098/rspb.2012.2770
http://dx.doi.org/10.1098/rspb.2012.2770
http://www.ncbi.nlm.nih.gov/pubmed/23363630
http://dx.doi.org/10.1021/ac900824j
http://www.ncbi.nlm.nih.gov/pubmed/19594136
http://dx.doi.org/10.1038/nature02257
http://dx.doi.org/10.1038/nature02257
http://www.ncbi.nlm.nih.gov/pubmed/14749823
http://dx.doi.org/10.1103/PhysRevE.85.041903
http://www.sciencemag.org/content/329/5991/533.abstractN2
http://dx.doi.org/10.1126/science.1188308
http://dx.doi.org/10.1126/science.1188308
http://www.ncbi.nlm.nih.gov/pubmed/20671182
http://www.sciencemag.org/content/336/6078/183.abstract
http://www.sciencemag.org/content/336/6078/183.abstract
http://dx.doi.org/10.1126/science.1216379
http://www.ncbi.nlm.nih.gov/pubmed/22499939
http://www.pnas.org/content/105/34/12265.abstract
http://dx.doi.org/10.1073/pnas.0806077105
http://dx.doi.org/10.1073/pnas.0806077105
http://www.sciencedirect.com/science/article/pii/S0092867404005732
http://dx.doi.org/10.1016/j.cell.2004.06.009
http://www.ncbi.nlm.nih.gov/pubmed/15242645
http://dx.doi.org/10.1038/msb.2008.58
http://www.ncbi.nlm.nih.gov/pubmed/18854820
http://dx.doi.org/10.1038/msb.2009.79
http://www.ncbi.nlm.nih.gov/pubmed/19920810
http://www.pnas.org/content/98/15/8614.abstract
http://www.pnas.org/content/98/15/8614.abstract
http://dx.doi.org/10.1073/pnas.151588598


32. Jost D, Nowojewski A, Levine E. Regulating the many to benefit the few: role of weak small RNA tar-
gets. Biophysical Journal. 2013 4; 104(8):1773–1782. Available from: http://www.sciencedirect.com/
science/article/pii/S0006349513002373. doi: 10.1016/j.bpj.2013.02.020 PMID: 23601324

33. Alon U. An introduction to systems biology: Design principles of biological circuits. Boca Raton: Chap-
man and Hall/CRC; 2006. Available from: http://www.amazon.ca/exec/obidos/redirect?tag =
citeulike09-20&path=ASIN/1584886420.

34. Cheong R, Rhee A, Wang CJ, Nemenman I, Levchenko A. Information Transduction Capacity of Noisy
Biochemical Signaling Networks [10.1126/science.1204553]. Science. 2011; 334(6054):354–358.
Available from: http://www.sciencemag.org/content/334/6054/354.abstract. doi: 10.1126/science.
1204553 PMID: 21921160

35. Tabbaa OP, Jayaprakash C. Mutual information and the fidelity of response of gene regulatory models.
Physical Biology. 2014; 11(4):046004. doi: 10.1088/1478-3975/11/4/046004 PMID: 25051099

36. Tkačik G, Walczak AM, Bialek W. Optimizing information flow in small genetic networks. Physical Re-
view E. 2009 09; 80(3):031920–. doi: 10.1103/PhysRevE.80.031920

37. Walczak AM, Tkačik G, Bialek W. Optimizing information flow in small genetic networks. II. Feed-for-
ward interactions. Physical Review E. 2010 04; 81(4):041905. doi: 10.1103/PhysRevE.81.041905

38. Yu RC, Pesce CG, Colman-Lerner A, Lok L, Pincus D, Serra E, et al. Negative feedback that improves
information transmission in yeast signalling. Nature. 2008 12; 456(7223):755–761. doi: 10.1038/
nature07513 PMID: 19079053

39. Laughlin S. A simple coding procedure enhances a neuron’s information capacity. Zeitschrift für Natur-
forschung Section C: Biosciences. 1981; 36(9–10):910–912. Available from: http://view.ncbi.nlm.nih.
gov/pubmed/7303823.

40. Rivoire O, Leibler S. The value of information for populations in varying environments. Journal of Statis-
tical Physics. 2011; 142(6):1124–1166. doi: 10.1007/s10955-011-0166-2

41. Kussell E, Leibler S. Phenotypic diversity, population growth, and information in fluctuating environ-
ments. Science. 2005; 309(5743):2075–2078. Available from: http://www.sciencemag.org/content/309/
5743/2075.abstract. doi: 10.1126/science.1114383 PMID: 16123265

42. Youk H, LimWA. Secreting and Sensing the SameMolecule Allows Cells to Achieve Versatile Social
Behaviors. Science. 2014 02; 343(6171). doi: 10.1126/science.1242782 PMID: 24503857

43. Rutherford ST, Bassler BL. Bacterial Quorum Sensing: Its Role in Virulence and Possibilities for Its
Control [10.1101/cshperspect.a012427]. Cold Spring Harbor Perspectives in Medicine. 2012; 2(11).
doi: 10.1101/cshperspect.a012427 PMID: 23125205

44. Hietakangas V, Cohen SM. Regulation of tissue growth through nutrient sensing. Annual Review of Ge-
netics. 2009 2013/05/22; 43(1):389–410. doi: 10.1146/annurev-genet-102108-134815 PMID:
19694515

45. Olfati-Saber R, Fax JA, Murray RM. Consensus and cooperation in networked multi-agent systems.
Proceedings of the IEEE. 2007; 95(1):215–233. doi: 10.1109/JPROC.2006.887293

Optimal Census by Quorum Sensing

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004238 May 12, 2015 20 / 20

http://www.sciencedirect.com/science/article/pii/S0006349513002373
http://www.sciencedirect.com/science/article/pii/S0006349513002373
http://dx.doi.org/10.1016/j.bpj.2013.02.020
http://www.ncbi.nlm.nih.gov/pubmed/23601324
http://www.amazon.ca/exec/obidos/redirect?tag�=�citeulike09-20&amp;path=ASIN/1584886420
http://www.amazon.ca/exec/obidos/redirect?tag�=�citeulike09-20&amp;path=ASIN/1584886420
http://www.sciencemag.org/content/334/6054/354.abstract
http://dx.doi.org/10.1126/science.1204553
http://dx.doi.org/10.1126/science.1204553
http://www.ncbi.nlm.nih.gov/pubmed/21921160
http://dx.doi.org/10.1088/1478-3975/11/4/046004
http://www.ncbi.nlm.nih.gov/pubmed/25051099
http://dx.doi.org/10.1103/PhysRevE.80.031920
http://dx.doi.org/10.1103/PhysRevE.81.041905
http://dx.doi.org/10.1038/nature07513
http://dx.doi.org/10.1038/nature07513
http://www.ncbi.nlm.nih.gov/pubmed/19079053
http://view.ncbi.nlm.nih.gov/pubmed/7303823
http://view.ncbi.nlm.nih.gov/pubmed/7303823
http://dx.doi.org/10.1007/s10955-011-0166-2
http://www.sciencemag.org/content/309/5743/2075.abstract
http://www.sciencemag.org/content/309/5743/2075.abstract
http://dx.doi.org/10.1126/science.1114383
http://www.ncbi.nlm.nih.gov/pubmed/16123265
http://dx.doi.org/10.1126/science.1242782
http://www.ncbi.nlm.nih.gov/pubmed/24503857
http://dx.doi.org/10.1101/cshperspect.a012427
http://www.ncbi.nlm.nih.gov/pubmed/23125205
http://dx.doi.org/10.1146/annurev-genet-102108-134815
http://www.ncbi.nlm.nih.gov/pubmed/19694515
http://dx.doi.org/10.1109/JPROC.2006.887293

