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Abstract—We study the performance of wireless links for
a class of Poisson networks, in which packets arrive at the
transmitters following Bernoulli processes. By combining stochas-
tic geometry with queueing theory, two fundamental measures
are analyzed, namely the transmission success probability and
the meta distribution of signal-to-interference-plus-noise ratio
(SINR). Different from the conventional approaches that assume
independent active states across the nodes and use homogeneous
point processes to model the locations of interferers, our analysis
accounts for the interdependency amongst active states of the
transmitters in space and arrives at a non-homogeneous point
process for the modeling of interferers’ positions, which leads to
a more accurate characterization of the SINR. The accuracy
of the theoretical results is verified by simulations, and the
developed framework is then used to devise design guidelines
for the deployment strategies of wireless networks.

Index Terms—Poisson bipolar network, spatially interacting
queues, stochastic geometry, queueing theory.

I. INTRODUCTION

In recent years, there has been considerable progress toward

understanding the performance of wireless links in large-scale

networks by using tools from stochastic geometry [1]–[4].

By modeling the locations of transmitter-receiver pairs as

spatial point processes, one can obtain simple expressions for

a variety of key network statistics, e.g., coverage, throughput,

or delay [3], by capturing the spatial and physical layer at-

tributes. This intrinsic elegance has made stochastic geometry

a disruptive method for performance evaluation among various

wireless systems [1], [5]–[8]. However, the majority of these

stochastic geometry based analysis heavily relies on the full

buffer assumption, i.e., every link is active in the network,

and do not allow one to represent temporal attributes such as

packet generation and queue occupation. Clearly, for complete

network analysis, location tells just half the story and traffic

assessment is of necessity. To that end, the main purpose

of this paper is to develop an analytical framework for the

understanding of the impacts of spatial topology and temporal

traffic dynamics, as well as their interdependence, on the link

performance of a wireless network.

A. Motivation and Related Work

The main impediment of incorporating traffic dynamics

into stochastic geometry based frameworks stems from the
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interdependency amongst the queueing evolutions, which is

commonly known as the spatially interacting queues [9]. Par-

ticularly, because wireless communications are conducted over

a shared spectrum, transmissions in space will couple with

each other via the interference they cause. In consequence, the

evolution of queue at a given transmitter is fully entangled with

those of its geographic neighbors, hence imposing a causality

problem on the space-time interactions of the queues [10].

Understanding these causative interactions isn’t easy, but it

holds much of the key to understanding and coping with the

design questions in wireless networks [11].

In response, a recent line of studies has been conducted

[10], [12]–[21], where stochastic geometry is combined with

queueing theory to develop spatiotemporal models for large-

scale wireless systems. The particular approaches taken by

these works can be classified into the following categories:

a) Favorable/Dominant System Argument [12], [13]: This

approach puts the focus on deriving bounds for the

transmission success probability and delay. Specifically,

by considering a favorable system where transmitters

send out packets without retransmissions, an upper (resp.

lower) bound can be derived for the transmission success

probability (resp. delay). Analogously, by considering a

dominant system where every transmitter is backlogged,

lower (resp. upper) bounds are attainable for the trans-

mission success probability (resp. delay). However, the

favorable/dominant systems are often either too optimistic

or too pessimistic compared to the real setup and hence

result in, as we will show later loose bounds.

b) Stationary Approximation [14]–[16]: This approach eval-

uates the network performance under very light traffic

condition, in which the majority of queues are stable. In

this context, simple expressions are attainable for a num-

ber of network statistics, including the SINR coverage

probability [14], throughput [15], and stable conditions

[16]. However, the accuracy of the analysis decays rapidly

with an increase in the traffic load. Because that prolongs

the active period of transmitters which in turns rise up the

interference level thus incur many queues to switch from

stationary into non-stationary regimes.

c) Geo/PH/1 Model [10]: This approach borrows advanced

models from queueing theory and treats the geometry-

dependent departure process as a phase type (PH) queue.

The casuality of queueing interactions is then abstracted

into a system of fixed point equations whose solutions

can be used to evaluate the performance of different

transmission schemes in large networks in terms of

http://arxiv.org/abs/2007.10821v1
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coverage and delay. The framework developed in [10] is

particular relevant to the uplink transmissions of narrow-

band Internet-of-Things (NB-IoT), for which the single

queue analysis is shown to attain good accuracy due to

random codes. However, the analysis is carried out using

the spatially averaged performance for all coexisting

transmitters, which does not always result in an accurate

estimation [20], [21].

d) Meta Distribution Based Analysis [18]–[21]: This ap-

proach utilizes the meta distribution of SINR to capture

the diverse qualities of different transmission links and ar-

rives at a refined characterization of the buffer-nonempty

probability of each link. As a result, the coverage proba-

bility, as well as meta distribution of SINR, can be derived

to quantify different levels of the quality-of-service (QoS)

under various network models, ranging from cellular

networks [18], [19], Poisson bipolar networks [20], to

those with power controls and multiple channel access

[21]. However, as pointed out by [22], the accuracy of

these results deteriorates when the network is operating

under a high SINR threshold or the infrastructure is

densely deployed.

Whilst the details vary from one approach to another in the

aforementioned categories, the analysis is commonly carried

out utilizing double averaging [23]: over time and network

geometry. Specifically, the mean-field approximation [24],

which assumes the queues evolve independently of each other,

is first adopted to decouple the correlations in the packet

dynamics at each node. Then, one can leverage the Little’s

law from classical queueing theory to calculate the mean

active rates at individual link pairs, and, by conditioning

on the positions of transceivers, obtain the time-averaged

transmission success probability of each node. Finally, the

stochastic geometry is employed to average out the spatial

randomness, and analytical expressions for the SINR related

metrics can be subsequently obtained. In these procedures,

although assuming the queues evolve independently over

time is of necessity toward a tractable analysis, the time-

averaged transmission success probabilities, which are often

in the form of a system of fixed-point equations, remain

mutually dependent in space. However, the previous analysis

implicitly assumes the distributions of these transmission

success probabilities are independent and identical distributed

(i.i.d.) across the transmitters, which result in homogeneous

spatial distributions of interferers’ locations. In networks with

sparsely deployed infrastructures, such approximation is jus-

tifiable because the mutual interference between any pair of

transmitters is relatively “weak” and hence the interactions can

be viewed as in a “global” manner. However, as the network

density increases, which is an inexorable trend of modern

architecture [25], transmitters in proximity will incur strong

mutual interference and present a non-negligible correlation

in their buffer status, making the interactions “local”. As

such, adopting homogeneous models in the spatial averaging

step, as already pointed out, lead to a potential repercussion

of inaccurate analysis with which network designers bear

the risk of making misleading conclusions. Recognizing such

constraint from the conventional tools, the central thrust of

this paper is to improve the analysis of SINR from a joint

queueing-geometry perspective – by accounting for not just the

spatial and temporal randomness, but also the interdependency

amongst queue status – such that the results can be used at

any particular scale of a wireless network.

B. Approach and Summary of Contributions

In this paper, we deploy the transmitter-receiver dipoles

as a Poisson bipolar network, in which the locations of

transmitters follow a homogeneous Poisson point process

(PPP) and each transmitter has a receiver at a fixed distance

with random orientation1. From an engineering point of view,

this network model is relevant to applications like Device-to-

Device (D2D) communications, mobile crowdsourcing, and

Internet-of-Things (IoT), which do not require a centralized

infrastructure. We employ a discrete time queueing system

to model the temporal dynamic whereas the packet arrivals

at each transmitter follow independent Bernoulli processes.

Every transmitter in this network maintains an infinite capacity

buffer to store the incoming packets. At each time slot,

transmitters with non-empty buffers send out the packets from

head of the line. Transmissions are successful only if the SINR

received at the destination nodes exceed a predefined thresh-

old, upon which the packet can be removed from the buffer.

Because of the shared spectrum, buffer state at each transmitter

is correlated with others. We thus combine the stochastic

geometry and queueing theory to characterize the interference

based interactions amongst the queues. Specifically, on the

macroscopic scale, we use stochastic geometry to account for

the mutual interference among the transmitting nodes. On the

microscopic scale, we adopt queueing theory to account for

the per-node buffer state. In consequence, we extract a non-

homogeneous PPP from the homogeneous setup to model the

locations of interferers. And based on that we derive accurate

expressions for several key performance metrics. Our main

contributions are summarized below.

• We derive a tractable expression to characterize the

transmission success probability by taking into account

not only the randomness from packet arrival and network

topology, but more importantly, the coupling effect of the

queue states in space.

• We derive an analytical expression for the meta distri-

bution of SINR, which provides refined information of

the fraction of wireless links that achieve SINR at any

desired levels.

• Using the mathematical framework, we obtain the op-

timal deployment densities that maximize the spatial

throughput under different traffic conditions. Moreover,

the performance fluctuation, as well as the 95%-likely

rate, of the wireless links are shown to be significantly

1Note that such a setting is a large-scale analog to the classical model
of Random Networks [26], in which the distance between any transmitter-
receiver pair is fixed to represent the average value. Nevertheless, building
upon the results from [10] and [19], the analysis developed in this paper
can be extended to investigate networks with centralized infrastructures and
multiple access/broadcast channels where transmitters are located at random
distances to their receivers.
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TABLE I
NOTATION SUMMARY

Notation Definition

Φ̃; λ PPP modeling the spatial positions of transmitters;
transmitter deployment density

Φ̂; λ PPP modeling the spatial positions of receivers;
receiver deployment density

Φ Superposition of the PPPs Φ̃ and Φ̂, i.e., Φ = Φ̃∪ Φ̂

Ptx; α Transmit power; path loss exponent

δ An auxiliary notion defined as δ = 2/α

ξ; ξc Packet arrival rate; critical arrival rate

θ SINR decoding threshold

r Distance between a typical transmitter-receiver pair

ζj,t Indicator of active state at link j during time slot t,
which takes value 1 if the queue is nonempty and 0
otherwise

aΦj Queue nonempty probability at transmitter j, condi-
tioned on the point process Φ

µΦ

0,t Transmission success probability of the typical link
0 at time slot t, conditioned on the point process Φ

ps; Fθ(·) Transmission success probability; SINR meta distri-
bution

affected by the traffic dynamics, and hence calls for new

designs that jointly optimize the network performance

with respect to the space-time attributes.

Compared to the existing results [18]–[21] that rely on

the mean field approximation from both spatial and temporal

perspectives to approach tractable analysis, this work success-

fully accounts for the effects of spatially queueing interactions

in the analysis of SINR and hence advances the toolset for

performance evaluation of large-scale networks with traffic

dynamics. The developed theories provide a useful method

for network operators to cope with various planning and

optimization problems.

We organize the rest of this paper as follows. The configura-

tion of the network is detailed in Section II. In Section III, we

present the analysis of the transmission success probability, as

well as the SINR meta distribution, in Poisson networks with

traffic dynamics. The accuracy of our analysis is verified by

simulations in Section IV, along with design insights drawn

from numerical examples. Finally, several concluding remarks

are made in Section V.

II. SYSTEM MODEL

In this section, we introduce the network topology and prop-

agation model, the packet arrival and transmission protocol, as

well as the concept of spatially interacting queues. The main

notations used throughout the paper are summarized in Table I.

A. Network Structure

We consider an ad-hoc wireless network in which nodes

are scattered according to a Poisson bipolar network in the

Euclidean plane. The locations of transmitters follow a ho-

mogeneous Poisson point process (PPP) Φ̃ of spatial density

λ. Each transmitter Xi ∈ Φ̃ has a dedicated receiver whose

location yi is at distance r in a random orientation. According

to the displacement theorem [3], the locations Φ̂ = {yi}∞i=0

also form a homogeneous PPP with spatial density λ. A

realization of the network configuration is shown in Fig. 1. In

this network, all the transmitters transmit with unified power

Ptx
2. We assume the signal propagated between any two

nodes is affected by the small-scale Rayleigh fading, which is

independent and identical distributed (i.i.d.) across space and

time, and the large-scale path loss that follows a power law.

Moreover, the received signal is also subject to white Gaussian

thermal noise with variance σ2. For the sake of analytical

tractability, we adopt a co-channel deployment on the network,

i.e., all the nodes share the same spectrum for transmissions

[27].

We model the evolution of the queues as a discrete time

system. In particular, we segment the time axis into equal-

duration slots where the time to transmit a single packet

takes exactly one slot. The packet arrivals to the transmit-

ters form a collection of i.i.d. Bernoulli processes3 of rate

ξ. All the incoming packets are stored in a single-server

queue with infinite capacity under the first-come-first-serve

(FCFS) discipline. At each time slot, every transmitter with a

nonempty buffer sends out one packet from the head of the

line. The transmission succeeds if the signal-to-interference-

plus-noise ratio (SINR) at the intended receiver exceeds a

predefined threshold. Upon successful reception, the receiver

feedbacks an ACK and the packet can be discarded at the

sender side. Otherwise, the receiver sends a NACK message

and the packet is retransmitted in the next time slot. We assume

the ACK/NACK transmissions are instantaneous and error-

free, as commonly done in the literature. Because the time

scale of packet transmissions is much smaller than the dynamic

of spatial positions, we assume the network topology is static,

i.e., the locations of transmitters and receivers are generated

once and remain unchanged in all the time slots.

Using the Slivnyak’s theorem [3], we can concentrate on a

typical receiver y0 that is located at the origin with a tagged

transmitter situated at X0. Then, if a packet is sent out by

the transmitter at the beginning of time slot t, the signal will

propagate to the receiver at the end of the same slot with an

SINR as

γ0,t =
PtxH00r

−α

∑

j 6=0 PtxHj0ζj,t‖Xj − y0‖−α + σ2
(1)

in which Hji ∼ exp(1) is the channel fading from transmitter

j to receiver i, α denotes the path loss exponent, ζj,t ∈ {0, 1}
indicates the buffer state of transmitter j at time slot t is empty

(in this case, ζj,t = 0) or not (in this case, ζj,t = 1).

Remark 1: Although this work is focused on dipoles, in

similar spirits to [31], [32], one may extend the framework

to consider multi-hop transmissions, given rise to a higher

degree of spatial coupling amongst the queues.

2 We unify the transmit power to keep the analysis tractable, it shall be
noted that the results from this paper can be extended to account for power
control via a similar approach as in [10].

3The Bernoulli processes are essentially Poisson processes projected in a
discrete time setting [28], which is a reasonable choice for the modeling of
traffic attributes. Note that this model can be easily extended to represent more
complicated traffic patterns by versions like Markov-Modulated Bernoulli
Process (MMBP) [29], [30].
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X0

Fig. 1. Example of a Poisson bipolar network with random traffic dynamics,
the black squares and dots denote the transmitters and receivers, respectively.
Each transmitter accumulates all the incoming packets into a buffer that has
infinite size.

B. Spatially Interacting Queues

In a wireless network, transmitters share the spectrum in

space can impact each other’s queueing states through the

interference they cause. As such, the active state of a generic

link j, ζj,t, is dependent on both the spatial and temporal

factors. A pictorial interpretation of this concept is given in

Fig. 2, which illustrates the spatiotemporal interactions among

the queues of four wireless transmitter-receiver pairs. From a

spatial perspective, we can see that transmitters X1 and X2 are

located in geographic proximity and hence their transmissions

incur strong mutual interference, which slows down the rate

of service4 and eventually prolongs their queue lengths. In

sharp contrast, transmitters X3 and X4 are at relatively long

distances to their geographic neighbors. Such advantageous

locations benefit the transmissions in these links as they do

not suffer severe crosstalk, and hence their buffer lengths

are generally much shorter compared to those of transmitters

X1 and X2. From a temporal perspective, the packet arrival

rate also plays a critical role in the process of service and

further affects the queue length. Particularly, if packets arrive

at a high rate, all the transmitters will be active, which

raises up the total interference level and that can incur many

transmission failures, which prolong the active duration of the

senders. On the contrary, when packet arrival rates are low,

some transmitters may flush their queues and become silent,

the reduced interference will also accelerate the depletion of

packets at other nodes, which in turn leads to a shorten active

period.

As such, in the context of a large-scale network, even

if the packet arrivals are homogeneous in time, the spatial

interactions result in a large variation of queue status across

the nodes because the transmitters located in a crowded area

of space will face poor transmission conditions and eventually

have longer queue lengths than those situated at far distances

4The service in this paper mainly refers to the packet transmission process,
and hence the service rate is equivalent to the radiation rate which is only
determined by the SINR.

X1 X2

X3XX4

Transmission

Interference

Fig. 2. Illustration of a wireless network with spatially interacting queues.
All the transmitter-receiver pairs are configured with the same distance and
packet arrival rates.

from their neighbors. Therefore, seen from any given link pair,

the locations of interfering nodes are distributed inhomoge-

neously in space. In the sequel, we aim to characterize this

phenomenon into the analysis of SINR.

C. Performance Metric

In the rest of this paper, we elaborate the analysis on two

fundamental metrics, i.e., the transmission success probability

and the SINR meta distribution, that can be used to assess

the network performance in terms of rate and reliability,

respectively5. More formal definitions are detailed below.

1) Transmission success probability: In order to success-

fully deliver a packet within one time slot, the transmitters

need to operate at certain rate level. Equivalently, that re-

quires the SINR received at the destination nodes to exceed

a decoding threshold. Because the SINR is governed by a

number of random quantities, e.g., the channel fading and

interference, we use the probability that the SINR is larger than

a predefined threshold, usually referred to as the transmission

success probability, to characterize this condition

ps = P(γ0,t > θ). (2)

This quantity can be thought of equivalently as, at any given

time slot t, that (i) given an SINR target, the probability that

a randomly chosen link can achieve successful transmission,

or (ii) the average fraction of transmitters that can operate at

SINR θ.

2) SINR meta distribution: Aside from the transmission

success probability, statistics of the SINR can also be measured

by a more fine-grained metric, namely the meta distribution

[34]. Formally, if we conditioned on the positions of the nodes

Φ , Φ̃ ∪ Φ̂, the conditional transmission success probability

of a typical link is given by

µΦ
x0,t = P (γx0,t ≥ θ|Φ) , (3)

5The main focus of this paper is on the SINR performance, although our
model and its analysis can be carried out for any metrics regarding the delay
in a straightforward way [33].
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and the SINR meta distribution is defined as [13], [34]:

Fθ(u) = P
(

µΦ
x0,t < u

)

. (4)

Different from (2) that gauges the average performance, (4)

allows one to obtain more subtle information such as the

fraction of links that cannot achieve a certain transmission

success probability and is often used for assessing the network

reliability.

III. ANALYSIS

This is the main technical section of this paper, in which

we derive analytical expressions for the transmission success

probability as well as the SINR meta distribution in a general

wireless network.

A. Transmission Success Probability

According to (1), the SINR received at each link is depen-

dent on the particular time slot as well as its relative location

in the network, which can introduce memory in the queueing

process via the spatiotemporal correlations and highly com-

plicate the analysis. That necessitates the introduction of the

following approximation.

Assumption 1: In this network, each queue observes the

time-averages of the activity indicators of other queues but

evolves independently of their current state.

In essence, the approximation above makes the dynamic

processes of packet transmissions conditionally independent,

given positions of all transmitters and receivers, which is

a mean-field approximation in the temporal domain. Conse-

quently, we can put our focus on the asymptotic regime and

drop the time index in the subsequential analysis.

In order to fully characterize the probability of successful

transmissions, we first condition on the network topology Φ =
Φ̃ ∪ Φ̂ and average out the effect from the random channel

fading. When the network parameters are chosen to guarantee

the stability of the queues, as will be detailed in Section III-B,

a conditional form of the transmission success probability is

attainable.

Lemma 1: Given the spatial configuration Φ, the prob-

ability of achieving successful transmissions over the typical

link is given by

µΦ
0 = e−

θrα

ρ

∏

j 6=0

(

1−
aΦj

1+Dj0

)

(5)

where ρ = Ptx/σ
2, Dij = ‖Xi − yj‖α/θrα, and aΦj =

limT→∞

∑T
t=1 ζj,t/T is the active probability of transmitter

j in the steady state.

Proof: Being conditional on the node positions, a packet

delivered over the typical link can succeed with the following

probability

P (γ0>θ|Φ) = P

(

H00 >
∑

j 6=0

Hj0ζj,tθr
α

‖Xj − y0‖α
+
θrα

ρ

∣

∣

∣
Φ

)

= E

[

e−
θrα

ρ

∏

j 6=0

exp
(

− θrα
Hj0ζj,t

‖Xj − y0‖α
)∣

∣

∣
Φ

]

(a)
= e−

θrα

ρ

∏

j 6=0

(

1− aΦj +
aΦj

1 + 1/Dj0

)

, (6)

where (a) follows by using Assumption 1 and noticing that

Hj0 ∼ exp(1). The result can then be obtained by further

simplifying the product factors.

From (5), we can immediately identify the randomness

in the conditional SINR coverage probability, which mainly

arises from (a) the random location of each transmitter and (b)
its corresponding active state. Furthermore, when conditioned

on the point process Φ, the packet transmission process at a

generic link j can be viewed as a Geo/Geo/1 queue with the

rate of arrival and departure being ξ and µΦ
j , respectively. As

such, by using the Little’s law, we know the fraction of active

period at link j is given by

aΦj =

{

1, if µΦ
j ≤ ξ,

ξ
µΦ
j

, if µΦ
j > ξ.

(7)

Putting (5) and (7) together, it is clear that the transmission

success probability, as well as the active state, of any given

node is a function of the transmission success probabilities

of the others. In other words, while Assumption 1 allows us

to decouple the evolution of queues over time, the transmis-

sion success probability at individual links remains however

mutually dependent in space due to interactions caused by

interference. Seen from the perspective of a typical transmitter,

the level of mutual dependency to a given link j can be re-

flected by the active probability aΦj . In particular, closer a link

j to the typical transmitter, higher their mutual interference

and that leads to a larger value of aΦj , and vice versa. Such

interdependency between the transmitter active states and their

geographic locations can be formalized in the lemma below.

Lemma 2: When the typical link is activated6, given the

transmission success probability ps and the distance between

receivers y0 and yj as ‖y0 − yj‖ = u, we have the following

P(ζj = 1
∣

∣‖y0 − yj‖ = u, ζ0 = 1)

≈
∫ 2π

0

min
{ ξ

ps

[

1 +
θrα

(u2 + r2 − 2ur cosψ)
α
2

]

, 1
}dψ

2π
. (8)

Proof: Please see Appendix A.

The above result elucidates the change to the active proba-

bility at each link when the activation of a typical transmitter

ripples through the network and deteriorates the transmissions

of other nodes. In comparison to [14], [19], [21] which assign

6The reason of conditioning on the active state of the typical link is that
the transmission success probability is evaluated as the number of successful
transmissions over the total transmission times, which requires us to look at
the transmission phase.
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Fig. 3. Conditional active probability at link j vs the distance between
receiver j and the typical transmitter: r = 50 m, ξ = 0.1, α = 3.8, and
λ = 10−4 m−2.

universally equal active probability to each node, Lemma 2

quantifies the distance-dependent local interference in the

active probability. To better illustrate such differences, Fig. 3

plots the active probability at any given link j as a function of

the distance from receiver j to the typical transmitter located

at X0, in which the simulations are drawn according to the

setting in Section IV. From this figure, we can see that the links

in the vicinity of a typical transmitter have high probabilities of

being activated, while the active states of links located far away

are less affected. In sharp contrast, the approaches in [14],

[19], [21] assume universally equal active probabilities at each

transmitter, which underestimates the impact from interferers

in the proximity and thus, as will be shown later, results in an

upper bound of the SINR coverage probability.

We summarize the above discussions into the following

proposition.

Proposition 1: Conditioned on the typical link being active,

a transmitter-receiver pair located at (Xj , yj) activates with

probability G(u) = P(ζj = 1
∣

∣‖y0 − yj‖ = u, ζ0 = 1)
and the propagation of interfering points constitute a non-

homogeneous PPP with spatial density Λ(u) = G(u)du.

The resultant point process from Proposition 1 has an

intensity that decreases with increasing distance from the

typical link. While the characterization of such an intensity

is performed on a pair-wise basis, with focus on every single

interfering link by averaging over the underlining Poisson

configuration, it captures the – what we term as – “first order

interdependency” and, as we will show later, leads to a good

numerical result. Using Proposition 1, we can conduct the

computation via tools from non-homogeneous PPP, and that

brings us to the main technical result of this paper.

Theorem 1: The transmission success probability of the

depicted wireless network can be approximated by the solution

to the following fixed-point equation:

ps ≈ exp
(

− θrα

ρ
−λr2

∫ ∞

0

∫ 2π

0

Z(v, ps, ξ, θ)vdϕdv

1+(1+v2−2v cosϕ)
α
2/θ

)

(9)

≈ exp
(

− θrα

ρ
−λπr2θδ

∫ ∞

0

min
{

ξ
ps
(1+u−

α
2 ), 1

}

1 + u
α
2

du
)

(10)

where δ = 2/α and Z(v, ps, ξ, θ) is given as follows:

Z(v, ps, ξ, θ) =

∫ 2π

0

min
{ ξ

ps

[

1+
θ

(1−2v cosψ+v2)
α
2

]

, 1
}dψ

2π
.

(11)

Proof: Please see Appendix B.

Following Theorem 1, a few observations can be immedi-

ately remarked.

Remark 2: Due to the causative nature of spatially inter-

acting queues, the transmission success probability is given in

the form of a fixed-point (a.k.a. invariant point) equation.

Remark 3: The approximation in (10) gives a lower bound

to the transmission success probability and the approximation

is tight when
√
λr ≪ 1.

Note that the fixed-point equations (9) and (10) are numeri-

cally solvable for, and that several computing tools offer builtin

routines, e.g., the fsolve function in Matlab, to accomplishing

this task efficiently. Furthermore, (9) also contains a special

case version of closed-form solution:

Corollary 1: When
√
λr ≪ 1, ξ ≪ 1, and σ2 ≪ Pst,

the transmission success probability can be approximated as

follows:

ps ≈
−λξπr2θδ

∫∞

0
1+u−

α
2

1+u
α
2
du

W
(

− λξπr2θδ
∫∞

0
1+u−

α
2

1+u
α
2
du
)

(12)

where W(·) is the Lambert function [35].

Proof: On the one hand, when
√
λr ≪ 1 and σ2 ≪

Pst, the transmission success probability in (9) can be tightly

approximated as follows:

ps ≈ exp
(

−λπr2θδ
∫ ∞

0

min
{

ξ
ps
(1 + u−

α
2 ), 1

}

1 + u
α
2

)

. (13)

On the other hand, when ξ ≪ 1, the network can be

approximated as stationary. Therefore, we have the following

holds

min
{ ξ

ps
(1 + u−

α
2 ), 1

}

≈ ξ

ps
(1 + u−

α
2 ). (14)

The result then follows from substituting (14) into (13) and

perform further algebraic manipulation.

Corollary 1 clearly shows the joint effect from spatial and

temporal domains on the transmission success probability.

Particularly, we note that under low traffic profile, the packet

arrival rate ξ and the deployment density λ affect the proba-

bility of successful transmissions at the same level.

B. Stable Conditions

From the temporal perspective, transmissions on each wire-

less link in the employed network can be abstracted as a

queueing system in which the service rate is determined by

the SINR statistics (i.e., the transmission success probability)

at the intended receiver. If the queues evolve in an isolated

environment, then the stability can be guaranteed via the
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Loynes’ theorem [36], by restricting the packet arrival rate to

not exceed the average departure rate. However, this condition

cannot be directly extended to the depicted system where

infinitely many transmitters interact with each other. In fact,

owing to the irregularity of the infrastructure, there are always

some transmitters located in a congested spatial area with

unbounded queue lengths. To that end, in lieu of restricting

every individual queue to be stable, which can only be

achieved under trivial circumstances (i.e., either ξ = 0 or

θ = 0), we opt for an alternative condition that keeps the

fraction of unstable queues below an acceptable threshold.

Formally, this is described by the concept of ε-stability [13].

Definition 1: For any ε ∈ [0, 1], the ε-stable region Sε is

defined as

Sε =
{

ξ ∈ R
+ : P

(

lim
T→∞

1

T

T
∑

t=1

µΦ
0,t ≤ ξ

)

≤ ε

}

(15)

and the critical arrival rate ξc is given as

ξc = supSε. (16)

According to (15), we know that when ξ ≤ ξc, at most ε
fraction of the links are unstable. By setting ε at a small value,

it can then guarantee the majority of links have stable queues.

Nonetheless, an exact expression of the critical arrival rate ξc
is still an open question, we thus resort to a few bounding

techniques to find an approximation for the stable conditions.

Theorem 2: The sufficient condition for the network to

remain ε-stable is

ξ ≤ ξScc = sup

{

ξ∈R
+:

1

2
−
∫ ∞

0

Im

{

ξ−jω exp

(

− jωθrα

ρ

− λπ2r2δ2

sin(πδ)

∞
∑

k=1

(

jω

k

)(

δ−1

k−1

))}

dω

πω
≤ ε

}

(17)

where j =
√
−1 and Im{·} denotes the imaginary part of a

complex variable, and the necessary condition for the network

to remain ε-stable is

ξ ≤ ξNc
c = sup

{

ξ∈R
+:

1

2
−
∫ ∞

0

Im

{

ξ−jω exp

(

− jωθrα

ρ

− λπ2r2δ2

sin(πδ)

∞
∑

k=1

ξk
(

jω

k

)(

δ−1

k−1

))}

dω

πω
≤ ε

}

.

(18)

Proof: According to (15), the condition of the network to

remain ε-stable can be equivalently written as follows:

ξ ≤ supSε = sup
{

ξ ∈ R
+ : P

(

µΦ
0 ≤ ξ

)

≤ ε
}

. (19)

To obtain the sufficient condition, let us consider a dominant

system, in which all the links are active regardless of the

buffer states at the transmitters (if the buffer of a given

node becomes empty, a “dummy packet” will be sent out).

Because transmissions in this system undergoes a higher level

of interference than the original one, if ε-stability can be

achieved in this system, it is also guaranteed under the original

one. Under the dominant system, each link is active and hence

the conditional transmission success probability µ̂Φ
0 can be

obtained by assigning aΦj = 1, ∀j in (5). As such, we can

evaluate the s-th moment of µ̂Φ
0 as follows:

E
[

(µ̂Φ
0 )
s
]

= e−
sθrα

ρ E

[

∏

j 6=0

(

1− 1

1 + ‖Xj‖α/θrα
)s
]

= e−
sθrα

ρ exp
(

− λ

∫

x∈R2

[

1−
(

1− 1

1 + ‖x‖α/θrα
)s]
dx
)

= exp

(

−sθr
α

ρ
− λπδ

πθδr2

sin(πδ)

s
∑

k=1

(

s

k

)(

δ−1

k−1

))

)

. (20)

By using the Gil-Pelaez theorem [37], we have

P(µ̂Φ
0 < ξ) =

1

2
− 1

π

∫ ∞

0

Im
{

ξ−jωE
(

µ̂Φ
0

)jω
}dω

ω
. (21)

The sufficient condition can then be obtained by substituting

(21) and (20) back into (19).

Next, to obtain the necessary condition, we consider a

favorable system where, at each node, every incoming packet

is sent out once and discarded without retransmission. In this

context, each link experiences a lower level of interference

than that in the original system. Therefore, if the original sys-

tem is ε-stable, the favorable system will follow suit. And that

constitutes the necessary condition. Note that the conditional

transmission success probability, µ̌Φ
0 , of the favorable system

can be obtained by taking aΦj = ξ, ∀j in (5) and the derivation

of ε-stability follows a similar approach as above.

The critical arrival rates ξScc and ξNc
c in (17) and (18), re-

spectively, defines the boundaries in which the largest possible

arrival rate, upon which the network remains stable, lies in.

To calculate these quantities, we need to solve for inequalities

where ξ appears at the both sides.

C. SINR Meta Distribution

We now turn our attention to the aspect of network reliabil-

ity and derive the expression for the meta distribution of SINR.

It is worth noting that compared to the transmission success

probability, which provides information about the average, the

SINR meta distribution answers more fine-grained questions,

for instance: “How are the transmission success probabilities

of individual links distributed in a realization of the Poisson

network?” which directly leads to the performance of, e.g., the

top 95% of transmitters, and is an important design criterion

for network operators.

Theorem 3: The SINR meta distribution is given by the

fixed-point equation (22) at the top of next page, in which the

auxiliary function Hθ(x, y) is given as follows:

Hθ(x, y) = ξ +
ξθ

(1− 2x cos y + x2)
α
2
. (23)

Furthermore, (22) can be iteratively solved as follows:

Fθ(u) = lim
n→∞

Fθ,n(u) (24)
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Fθ(u) =
1

2
−
∫ ∞

0

Im

{

u−jω exp
(

− jωθrα

ρ
− 2λπr2

∞
∑

k=1

(

jω

k

)

(−1)k+1

∫ ∞

0

∫ 2π

0

[

1− ξ

Hθ(v, ψ)

]k dψ

2π

×
∫ 2π

0

[

Fθ
(

Hθ(v, ϕ)
)

+

∫ 1

Hθ(v,ϕ)

Hk
θ (v, ϕ)

tk
Fθ(dt)

]dϕ

2π
vdv
)

}

dω

πω
(22)

where Fθ,n(u) is given by

Fθ,n(u) =
1

2
−
∫ ∞

0

Im

{

u−jω exp
(

− jωθrα

ρ

− λr2

2π

∞
∑

k=1

(

jω

k

)

(−1)k+1η̃
(k)
n−1

)

}

dω

πω
(25)

whereas η̃
(k)
n−1 is given by

η̃
(k)
n−1 =

∫ ∞

0

∫ 2π

0

[

1− ξ

Hθ(v, ψ)

]k
dψ

∫ 2π

0

[

Fθ,n−1

(

Hθ(v, ϕ)
)

+

∫ 1

Hθ(v,ϕ)

Hk
θ (v, ϕ)

tk
Fθ,n−1(dt)

]

dϕvdv.

(26)

If n = 1, we have η̃
(k)
0 given as follows:

η̃
(k)
0 =

(

δ − 1

k − 1

)

2π2δθδξk

sin(πδ)
(27)

Proof: Please see Appendix C.

Different from the analysis presented in [19], the result in

(22) successfully captures the spatial interdependency of queue

active states between a typical transmitter and its geographical

neighbors and provides an expression for the SINR meta

distribution computed from a non-homogeneous PPP. If we

treat the dynamics on a typical link as a Geo/G/1 queue,

function (22) corresponds to the distribution of the service

rate. And we can use it to assess the performance of time-

domain metrics such as delay or throughput, though that is

beyond the scope of this paper and leave as future works. To

carry out the computation, we can set an accuracy threshold

ǫ, which is sufficiently small, and stop the iteration when

|η̃(k)n − η̃
(k)
n−1| < ǫ, ∀k where η̃

(k)
n is given in (26). Actually,

such a iteration can converge in very few, e.g., less than 10,

steps as demonstrated in [22].

While Fθ(u) can be solved in a recursive manner, each

iteration requires the computation of all moments of the

conditional transmission success probability which can be

time consuming. One way to get around this difficulty is to

approximate the function Fθ(u) by a Beta distribution. The

detailed approaches are summarized in the following corollary:

Corollary 2: The probability density function (pdf) of Fθ(u)
in Theorem 3 can be tightly approximated via the following

fX(u) = lim
n→∞

fXn
(u)

= lim
n→∞

u
µn(βn+1)−1

1−µn (1− u)βn−1

B(µnβn/(1− µn), βn)
(28)

where B(a, b) denotes the Beta function [35], µn and βn are

respectively given as

µn =M (1)
n , (29)

βn =
(µn −M

(2)
n )(1 − µn)

M
(1)
n − µ2

n

(30)

where M
(m)
n can be written as

M (m)
n =exp

(

−mθrα

ρ
−λr2

m
∑

k=1

(

m

k

)

(−1)k+1 η̂(k)n

)

, (31)

and η̂
(k)
n is given by

η̂
(k)
n−1 =

∫ ∞

0

∫ 2π

0

[

1− ξ

Hθ(v, ψ)

]k
dψ

∫ 2π

0

[

∫ Hθ(v,ϕ)

0

fXn−1(t)dt

+

∫ 1

Hθ(v,ϕ)

Hk
θ (v, ϕ)

tk
fXn−1(t)dt

]dϕ

2π
vdv. (32)

Particularly, when n = 1, we have η̂
(k)
0 given by the following

η̂
(k)
0 =

(

δ − 1

k − 1

)

2π2θδξk

α sin(πδ)
. (33)

Proof: It can be observed from (4) that the approximated

function Fθ,n(u) in each iteration step is supported on [0, 1].
We are thus motivated to approximate the distribution via a

Beta distribution. First, using results in (44) we can derive the

moments in (31). Next, by respectively matching the mean and

variance to a Beta distribution B(an, bn), it yields

an
an + bn

=M (1)
n , (34)

anbn
(an + bn)2(an + bn + 1)

=M (2)
n −

[

M (1)
n

]2
(35)

and the result follows from solving the above system equa-

tions.

IV. SIMULATION AND NUMERICAL RESULTS

In this section, we validate the accuracy of our analysis

through simulations and evaluate different network statistics

based on the numerical results. Particularly, we consider

a square region with side length of 1 km, in which link

pairs are scattered according to a Poisson bipolar network

with spatial density λ and once the topology is generated it

remains unchanged. To eliminate the favorable interference

coordinations induced by network edges, we use wrapped-

around boundaries [38] that allow dipoles that leave the region

on one side to reappear on the opposite side, thus mirroring

the missing interferers beyond the scenario boundary. Then,

the packet dynamics at each link are run over 10,000 time

slots. Specifically, at the beginning of each time slots, channel
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Fig. 4. Transmission success probability vs detection threshold.

gains are independently instantiated and packets are generated

at each sender with probability ξ. The nodes with non-empty

buffers then send out packets according to a FCFS discipline

with failure retransmission occur at the next time slot. And

a packet can be dropped from the transmitter queue if the

received SINR at the intended node exceeds the decoding

threshold. The SINR statistics of the receivers of all active

links are recorded to construct the transmission success proba-

bility (calculated as the ratio between the number of successful

transmissions over the total transmission times) as well as

the meta distribution of SINR. Unless otherwise stated, we

set the system parameters as follows: α = 3.8, θ = 0 dB,

ξ = 0.1 packet/slot, Ptx = 17 dBm, σ2 = −90 dBm,

r = 25 m, and λ = 10−4 m−2.

A. SINR and Rate Performance

In Fig. 4, the simulated transmission success probability

is compared to the analytical ones derived via different ap-

proaches. Particularly, the analytical results are calculated by

means of the a) favorable/dominant system arguments [12], b)
homogeneous approach [10], [19], and c) analysis developed

in Theorem 1. The figure shows that analytical results and sim-

ulations well match, validating the accuracy of Theorem 1. We

also find that the upper and lower bounds derived according

to [12] are not just loose, but more crucially, the tendency of

the analysis deviates a lot from the simulations. The reason

is attributed to the fact that both the favorable and dominant

systems are essentially modified versions of the conventionally

full buffer assumption, and hence not capturing the intrinsic

effect from the space-time interactions between the queues.

In fact, compared to the dominant system, the lower bound

given in (10) is much tighter because it takes into account the

non-homogeneity property from the interference point process.

Similarly, we can see that the success probability derived under

the homogeneous approach [10], [19] also fails to characterize

the true distribution. This is because the spatial interactions

of queues lead to a location-dependent active probability at

each node, as illustrated per Fig. 3, but the homogeneous

approach assumes the active states are i.i.d. across transmitters
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and thus results in an underestimation of the interference. In

summary, through the space-time interactions, the resulting

point process of the active nodes is non-homogeneous, and we

can include this fact in the analysis to attain a comprehensive

understanding of the transmission success probability.

Fig. 5 depicts the throughput density [3], defined as S =
λ · log2(1 + θ) · P(γ0 > θ), as a function of the spatial

density. From this figure, we can clearly observe the impacts

of network parameters on the throughput density from the

perspective of both space and time. On the one hand, an

optimal deployment density exists due to a tradeoff between

the increasing number of active links and the rising inter-

ference power. On the other hand, the traffic pattern also

plays a critical role in determining the maximally achievable

throughput density. Specifically, in the light traffic regime,

one can deploy a large number of transceiver pairs and attain

high throughput density thanks to the low activity rate of

transmitters. In contrast, when the nodes are heavily loaded,

both the optimal deployment density and throughput density

drop quickly since most of the links are activated and the

interference level is high.
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Fig. 7. Simulation versus analysis: SINR meta distribution. In Fig. (a), the packet arrival rate is fixed as ξ = 0.1, and the decoding threshold varies as
θ = −5, 0, 10 dB. In Fig. (b), the SINR threshold is set as θ = 0 dB, while the packet arrival rates change according to ξ = 0.1, 0.3, 0.5.

B. Stability and Reliability

Fig. 6 plots the critical arrival rates of both the sufficient

and necessary conditions as functions of ε, under two sets of

transmitter-receiver distance r, in which the critical arrival rate

of the employed system lies in between. The figure reveals that

increasing the rate of packet arrival leads to a larger portion

of queues being unstable. Note that if ε is set to be 0.3, the

maximum arrival rate can be high, i.e., ξc ≈ 0.9 for r =
15 m and ξc ≈ 0.7 for r = 25 m. This is because, in both

scenarios, the distances between transmitter-receiver pairs are

smaller than the average inter-link distance, which results in

relatively high signal power at the receiver side. Nonetheless,

it is more desirable to set the packet arrival rates at small

so as to maintain the majority of all the queues stable in the

network.

In Fig. 7, we put the spotlight on the SINR meta distribution,

with varying values of decoding threshold θ and packet arrival

rate ξ. First of all, we note that the results obtained via

simulations match well with those from Theorem 3, thus con-

firming the analysis. Next, we can use Fig. 7(a) to assess the

confidential level about the network reliability under different

rate thresholds. Specifically, for a decoding threshold of -5 dB,

93% of the links can successfully achieve the targeted SINR

with a probability of at least 0.90. However, when the decoding

threshold raises to 10 dB, only 30% of the links are able to

attain successful transmissions with the same probability (i.e.,

0.90). This can serve as guidance for the operators to adjust the

transmission rate targets in accordance with different levels of

reliability. Furthermore, results from Fig. 7(b) also shows the

impact of temporal factors on the SINR. In particular, with an

increase of packet arrival rate, the SINR will be deteriorated,

which is reflected by a steady, but non-linear, uptrend to the

meta distribution. It can be seen that the change of SINR meta

distribution is more noticeable when the packet arrival rate

grows from small (ξ = 0.1) to a medium value (ξ = 0.3),

and the trend slows down as the traffic load further increases

(to ξ = 0.5). This is because, on the one hand, many links
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Fig. 8. Variance of transmission success probability versus decoding
threshold.

are deactivated in the light traffic condition, as the packet

arrival rate increases, it not just activates more transmitters, but

more crucially, gives rise to a higher interference level. And

that incurs more delivery failures and retransmissions which

prolong the active duration of the nodes. This composite effect

accelerates the degradation of SINR across the nodes, leading

to a sharp change of the meta distribution. On the other hand,

when the traffic load is relatively high, most of the queues are

non-empty, the additional interference then contributes less to

the total level, and thus the trend slows down.

Fig. 8 shows the variance of the transmission success

probability as a function of θ. Similar to [33], the value

of variance in this figure is calculated by using the meta

distribution of SINR given in (22). Note that as the variance

neccisarily tends to zero at the two extreme ends of θ, i.e.,

θ → 0 or θ → ∞, it assumes the maximum at some finite

value of θ. Particularly, from this figure we can see that the

network peaks at different variance as the traffic condition
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varies, therefore the performance fluctuation of the wireless

links is directly affected by the traffic pattern.

In Fig. 9 we plot the 95%-likely rate, i.e., 1−Fθ(0.95), as

a function of the spatial density λ. This quantity gives infor-

mation about the performance of the “worst 5% transmitters”,

namely the link pairs in the bottom 5th percentile in terms of

data rate performance, and is particularly interested to opera-

tors [34], [39]. We observe from Fig. 9 that a) the 95%-likely

rate declines precipitously when the network grows in size and

b) an increase of the packet arrival significantly defects the

95%-likely rate. These observations confirm the intuition that

the worst 5% transmitters are also the most vulnerable ones

to the change of space-time situation of a wireless network.

As such, developing advanced channel access mechanism to

boost up the 95%-likely rate is of necessity to enhance the

overall network performance.

V. CONCLUSION

In this paper, we have introduced a mathematical toolset

that allows one to evaluate the SINR performance of wireless

networks from a space-time perspective. Our model is general

and accounts for a congeries of key features including the

channel fading, path loss, network topology, traffic dynamics,

and spatially interacting queues. By jointly using queueing

theory and stochastic geometry, we have characterized the

locations of the interfering nodes to be a non-homogeneous

PPP and obtained accurate expressions for both the transmis-

sion success probability and SINR meta distribution. Based

on the analysis, we obtained an optimal deployment density

that achieved the maximum throughput density under different

traffic conditions. We also confirmed that the traffic pattern

directly affects the performance fluctuation of wireless links.

Moreover, the analysis revealed that the worst 5% transmitters

are vulnerable to a change in space-time condition, and that

calls for advanced technologies to accommodate the transmis-

sions of these nodes.

The spatiotemporal framework established in this paper can

facilitate the design and understanding of various wireless

systems. For stance, one can use it to devise channel access

schemes for internet-of-things (IoT) networks with a guarantee

to the latency and reliability or obtain accurate evaluation

to the performance of next-generation wireless local access

networks by taking into account the space-time queueing

interactions. Investigating to what degree the power controls

affect the spatiotemporal analysis is also a concrete direction

for future research.

APPENDIX

A. Proof of Lemma 2

Conditioned on the event that the typical link is active, i.e.,

ζ0 = 1, we can adopt Lemma 1 and rewrite the conditional

SINR coverage probability at a given link j in the following

way

µΦ
j = e−

θrα

ρ

∏

i6=0,
i6=j

(

1− aΦi
1+Dij

)(

1− 1

1+D0j

)

=
D0j

1 +D0j
× µΦ!0

j , (36)

where µΦ!0

j denotes the conditional transmission success prob-

ability of link j given the point process Φ except the node at

X0, i.e., a reduced point process Φ!0 [3]. Using the expression

in (7), we can then take an expectation with respect to Φ!0 in

the conditional success probability and obtain the conditional

active probability at link j as follows:

P(ζj = 1|‖y0 − yj‖ = u, ζ0 = 1)

= E

[

min
{(

1 +
1

D0j

)

· E
[ ξ

µΦ!0

j

]

, 1
}

]

≈ E

[

min
{(

1 +
1

D0j

)

· ξ

E[µΦ!0

j ]
, 1
}

]

. (37)

In order to calculate the right hand side (R.H.S.) of (37), on

the one hand, we use Slivnyark’s theorem [3] and arrive at the

following

E
[

µΦ!0

j

]

= E
!0
[

µΦ
j

]

= E
[

µΦ
j

]

= ps. (38)

On the other hand, by noticing that D0j = ‖X0 − yj‖α/T rα
and ‖y0 − yj‖ = u, we can use the cosin law and express

‖X0 − yj‖ as follows (see e.g., Fig. 10):

‖X0 − yj‖ =
√

r2 + u2 − 2ur cosΨ (39)

where Ψ is the angle, which is a random variable, between

the line segment connecting X0 and y0 and that of yj and y0.

Under the Poisson bipolar network, this quantity is uniformly

distributed on [0, 2π), with the probability density function

(PDF) given as

fΨ(ψ) =
1

2π
, ψ ∈ [0, 2π). (40)

The result in Lemma 2 immediately follows by taking (38),

(39), and (40) into (37) and conduct algebraic computation.
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X0

Xj

r

y0 yj

Transmission links

Interference links

Fig. 10. Example of a two-points location topology given the distance
between receivers being ‖y0 − yj‖ = u.

B. Proof of Theorem 1

Given the typical link is active, we can take an expectation

on both sides of (5) and arrive at the following

e
θrα

ρ ps = E

[

∏

j 6=0

(

1−
aΦj

1 +Dj0
)

]

(a)
= E

0
Φ̂

[

∏

j 6=0

E
[

1−
aΦj

1 +Dj0
∣

∣‖yj − y0‖ = l
]

]

(b)
= EΦ̂

[

∏

j 6=0

(

1− P(ζj = 1
∣

∣‖yj − y0‖ = l, ζ0 = 1)

1 + ‖
√
l2 + r2 − 2rl cosΨ‖α/θrα

)

]

= exp
(

− λ

2π

∫

R2

∫ 2π

0

P(ζx = 1
∣

∣‖x‖ = l, ζ0 = 1)

1+(l2+r2−2rl cosϕ)
α
2/θrα

dϕdx
)

,

(41)

where (a) is to take the expectation of the point process

Φ by firstly conditioning with respect to the locations of

receivers Φ̂, and (b) follows by applying the cosine law and

the Slivnyark’s theorem [3]. The expression in (9) can then

be attained by substituting (8) into (41) and perform further

algebraic manipulations.

Note that the equation (9) involves two sets of integrals with

respect to random angles, e.g., ϕ and ψ in Fig. 10, on [0, 2π).
This is because we are deconditioning the point process Φ with

respect to Φ̂. To that end, a simplified approximation of the

SINR coverage probability, i.e., equation (10), can be attained

by replacing the distances ‖Xj−y0‖ and ‖X0−yj‖ by ‖yj−
y0‖, which largely accelerates the computational efficiency.

C. Proof of Theorem 3

For ease of exposition, let us denote Ft as the σ-algebra

that contains all the information about the queueing state

of every link up to time slot t. Note that in a queueing

system, such σ-algebra forms a filtration, i.e., Ft−1 ⊂ Ft.
We further introduce two parameters Y Φ

0,t and qu,t whereas

Y Φ
0,t = lnP(γΦ0,t > θ|Φ) and qu,t = 1{ζj,t = 1|‖yj − y0‖ =
u, ζ0,t = 1}, respectively.

At the initial state (i.e., t = 0) of the queueing network,

packets arrive at each node with probability ξ, and hence

E[qu,0] = ξ. As such, the moment generating function of Y Φ
0,0

at the typical transmitter can be calculated as follows:

MY Φ
0,0
(s) = E

[

P(γ0,0 > θ|Φ)s
]

= e−
sθrα

ρ E

[

∏

j 6=0

(

1− ξ

1 + ‖Xj−y0‖α/θrα
)s
]

= exp

(

−sθr
α

ρ
− λ

δπ2r2θδ

sin(πδ)

∞
∑

k=1

(

s

k

)(

δ−1

k−1

)

(−1)k+1ξk

)

.

(42)

We can then compute the CDF of µΦ
0,0 using the Gil-Pelaez

theorem [37], as follows:

Fθ,0(u) = P(P(γ0,0 > θ|Φ) < u) = P(Y Φ
0,0 < lnu)

=
1

2
− 1

π

∫ ∞

0

Im
{

u−jωMY Φ
0,0
(jω)

}dω

ω
. (43)

Next, let us consider the queueing system has involved to

the n-th state, i.e., t = n. At this stage, the CDF of µΦ
j,n−1,

namely P(µΦ
j,n−1 < u) = Fθ,n−1(u), can be readily attained

in an iterative manner. By leveraging Lemma 1, we compute

the moment generating function of Y Φ
0,n as

MY Φ
0,n

(s) = E
[

P(γ0,n > θ|Φ)s
]

=e−
sθrα

ρ E

[

∏

j 6=0

(

1−
aΦj,n

1 + ‖Xj−y0‖α/θrα
)s
]

(a)
= e−

sθrα

ρ E
0
Φ̂

[

∏

j 6=0

(

1−
aΦj,nθ

θ+|(‖yj−y0‖/r − cosΨ)2+sin2Ψ|α2
)s
]

(b)
= exp

(−sθrα
ρ

−
∫ ∞

0

∫ 2π

0

λ
∑s

k=1

(

s
k

)

(−1)k+1
E[qku,n]dϕudu

[

1+(r2+u2−2ur cosϕ)
α
2/θrα

]k

)

,

(44)

where (a) is by using the cosine law and (b) follows from

applying the Slivnyark’s theorem and taking expectation ac-

cording to the point process Φ̂. The complete expression of

(44) requires us to calculate E[qku], which can be written as

follows:

E[qku,n] = E

[

(ξ+ξ/D0j

µΦ!o

j,n

)k

1

{

µΦ!o

j,n ≥ ξ
(

1 +
1

D0j

)

}

+1
{

µΦ!o

j,n < ξ
(

1 +
1

D0j

)

}
∣

∣

∣
‖yj − y0‖ = u,Fn−1

]

. (45)

As such, using the Slivnyark’s theorem another time, the first

term on the right hand side (R.H.S.) of (45) can be computed

as

E

[

(ξ+ξ/D0j

µΦ!o

j,n

)k

1

{

µΦ!o

j,n≥ξ
(

1+
1

D0j

)

}∣

∣

∣
‖yj−y0‖=u,Fn−1

]

=

∫ 2π

0

∫ 1

Hθ(u/r,ψ)

Hk
θ (u/r, ψ)

Fθ,n−1(dt)

tk
dψ

2π
. (46)
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Similarly, we can obtain the expression for the second term

on the R.H.S. of (45) as follows:

E

[

1

{

µΦ!o

j,n <ξ
(

1+
1

D0j

)

}∣

∣

∣
‖yj−y0‖=u,Fn−1

]

=

∫ 2π

0

Fθ,n−1

(

Hθ(u/r, ψ)
)dψ

2π
. (47)

Using the Gil-Pelaez theorem for another time, we have the

CDF of µΦ
0,n given as follows:

Fθ,n(u) = P(P(γ0,n > θ|Φ) < u) = P(Y Φ
0,n < lnu)

=
1

2
− 1

π

∫ ∞

0

Im
{

u−jωMY Φ
0,n

(jω)
}dω

ω
. (48)

Note that Fθ,n(u) appears on the left hand side of (48), and

Fθ,n−1(·) is implicitly contained in the right hand side of (48).

Because ∀u ∈ [0, 1] and n ∈ N, it holds that Fθ,n(u) ≤
Fθ,0(u), by the Dominated Convergence Theorem, we have

Fθ,n(u) → Fθ(u) as n → ∞. To this end, by substituting

(46), (47), and (44) into (48) and taking n→ ∞, we have the

desired result.
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