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ABSTRACT
In this paper, the interactions and energy exchange desisio
of a number of geographically distributed storage units are
studied under decision-making involving end-users. Irigalar,
a noncooperative game is formulated between customerébwne

the users’ behavior but also from computational errors oty

at the smart grid devices that are often resource-consttain
There are many studies that have applied PT to solve problems
in the social sciences [19], [22], [23] as well as recent reffdo
study the influence of end-users on wireless networks [28}-[

storage units where each storage unit's owner can decide onHowever, our work here is the first to break new ground in using

whether to charge or discharge energy with a given prothgbili
so as to maximize a utility that reflects the tradeoff between
the monetary transactions from charging/discharging dml t
penalty from power regulation. Unlike existing game-thegior
works which assume that players make their decisions mtion
and objectively, we use the new framework of prospect theory
(PT) to explicitly incorporate the users’ subjective p@ttens

of their expected utilities. For the two-player game, wevgho
the existence of a proper mixed Nash equilibrium for both the
standard game-theoretic case and the case with PT cortgidera
Simulation results show that incorporating user behaviarRT
reveals several important insights into load managememieds

as economics of energy storage usage. For instance, thiésresu
show that deviations from conventional game theory, asigexti

PT to study end-user influence on the workings of the smadit gri
The main contribution of this paper is to propose a new frame-
work for energy management in the smart grid using the tools
of prospect theory. In particular, we formulate a noncoates
game between the customer-owned storage units, in which the
decision of each customer explicitly incorporates dibjective
perception on the actions taken by other customers. In #riseg
each customer can decide whether to charge its storage unit o
sell the available surplus to the grid, while optimizing iyt
that captures the associated costs and benefits, undereztbiej
observation of the other customers’ actions. Compared|abeic
works on smart grid markets and demand response [2]-[5}, [7]
[15], our paper has several new contributiori$: in contrast
to the conventional expected utility theory (EUT), we dexel

by PT, can lead to undesirable grid loads and revenues thusa novel PT-based framework that allows proper modeling of

requiring the power company to revisit its pricing schemed a
the customers to reassess their energy storage usageschoice
Index Terms— Smart grid, game theory, prospect theory,

energy storage.

I. INTRODUCTION

realistic user behavior during energy managemntye design

a novel game-theoretic model that allows incorporation @thb
economic (pricing) and power factors (grid regulation)d &8)

we show the existence of a mixed Nash equilibrium for the
proposed game under PT considerations. Extensive simnlati
results show that deviations from the rational, EUT behavio

Customer participation in energy management is seen as ancan lead to unexpected, and possibly undesirable perfaenan

integral feature of the smart grid [1]. In particular, théraduc-
tion of customer-owned storage units will provide the mefams
active user participation in managing energy transactiorthe
grid. For instance, these storage units provide the grith wie
opportunity of storing energy at customer premises and &y
allow customers to sell any surplus of energy available eir th
premises [1]. This represents a key feature for deployingrsm
grid applications such as demand response [2]-[6].

The integration of storage units into the smart grid, partic
larly at the customer side, requires overcoming many teeni
challenges [7]-[13]. The authors in [7] addressed the probbf
intermittent renewable energy generation by using enegage
to deal with dynamic loads and sources. In [8], the authors
studied the use of storage units as a means for complemehgéng
stochastic generation of wind farms. In this work, the atgtadso
investigate the impact of the presence of such storage anits
the market price. Other related game-theoretic solutionsrhart
grid pricing and energy management are discussed in [18]-[1

Game theory has been a popular tool for smart grid design.
However, most existing works assume that customers witleabi
by the rules of the game and act in a rational manner [2], [3],
[10]-[15]. Indeed, none of these works incorporates théstea
behavior of the users which, in practice, can deviate from th
conventional, rational norm set by game theory as obsemved i
[16]-[18]. In this respect, prospect theory (PT), a Nohete
winning theory, provides the needed tools to explain howtlitsa
user decisions can deviate from those predicted by correaiti
game theory [19]-[21]. In particular, PT has shown that, in
real life, users often act irrationally when faced with riakd
uncertainty of outcome, as is the case in the smart grid, evter
decisions of the customers are largely interdependentrigad
risky outcomes. These irrational decisions can stem ngtfooin

in terms of power company revenues and average grid load.
The remainder of the paper is organized as follows: Sefflon |
presents the studied system model and formulates the pmnoble
as a game with PT considerations. In Seclioh I, we analiee t
equilibrium for the two-player case. Simulation results are-
sented in Section IV, while conclusions are drawn in Sed¥bn

Il. SYSTEM MODEL AND PT GAME FORMULATION

Consider a smart grid in whichV customers are present.
Let NV be the set of allV customers. Under normal operating
conditions, we assume that each customer A/ constitutes a
constant loadD; on the grid. Among allN customers, a subset
K C N of K customers is assumed to be “active”. Here, an active
customer refers to a user equipped with a smart home andable t
actively participate in the energy management of the snradlt g
as allowed by the power company. Every customer I owns a
storage unit that initially stores an amount of enefgy< D;.. At
a given period of time, we assume that the participation ahea
customerk € K is restricted to one of two actions: a) charge the
needed amounD;, (act as load) or b) discharge/sell the surplus
Sk to the other customers (act as source).

Naturally, any given action by a customere K will affect
both the power system (needed generation, losses, etcthand
market economics (prices). We assume that the power company
allows the customers to charge or discharge, but it requiras
the total generation power remains within a nominal, deéra
value to maintain the power system’s stability [29]. In thigdied
scenario, all participating users use storage units to charge and
discharge so as to optimize their overall monetary benéftts.
decisions of the customers are, however, largely couplédchy
leads to a game-theoretic setting as discussed next.
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II-A. Noncooperative Game Model

We analyze the interactions between the active customarg us
noncooperative game theory [30]. As the strategy choicahef
customers are largelyterdependent, we can formulate a strategic
noncooperative gam& = (K, {Ax}rex, {ur}rex), that is
characterized by three main elemerasthe players are the active
customers in the sé€, b) the actiona, € Ay := {Ds, S} of
each player is to either charge/buy a total amount of enérgy
(ar = Dy) or discharge/sell the available surplfis (ax = Sk),
and c¢) the utility function u;, of each playerk which captures
the benefit-cost tradeoffs associated with the differertioes.
Each customek is assumed to have enough storage capacity to
handle an amounD,, + Si. Here, we note that, although the
customers may have other demands, our model is solely fdcuse
on the discharge/charge actions and their impact on theamgdd
customers. The utility function achieved by a playee K that
chooses an actioay, is given by

- O‘(akya—k)(Dk + Ly (ar, afk))

+(an,a—k)Sk - B(Glar,ag) -

ug(ak,a_g) =

where a_, = [a1,a2,...,ak-1,ak+1,...,ax] IS the vector

of action choices of all players other th@n Li(axr,a—x) are
the total losses over the distribution/transmission lingsich
depend on the total demand and are computed using convahtion
optimal power flow algorithms [29]G(ax,a—r) denotes the
total generation byhe power company (not the customers) under
current action choices, angl is a regulation penalty factor, that
allows the power company to maintain a regulated power suppl
i.e. GG. Maintaining such a regulation is important for many
operational aspects of the grid, such as the conversionelestw

II-B. Expected Utility Theory

In a smart grid, owing to uncertainty in power generation as
well as the fact that the customers can make certain desision
(such as whether to allow the use of their storage device 9r no
with different frequency over time, it is reasonable to assu
that customers make probabilistic choices. Therefore, vee a
interested in studying the game undeixed strategies [30].
As customers are often uncertain when presented with differ
choices in practice, a mixed-strategy solution can betgtwre
their realistic behavior. Lep = [p1, ..., px] be the vector of all
mixed strategies, where, for every custorket K, px(ax) is the
probability distribution over the pure strategies € Ay.

Under the conventional EUT model, the utility of each user
is simply the expected value over its mixed strategies. Tthes
EUT utility of a playerk is given by

=3 (f[m(az))uk(ak,ak),

4
acA

where a is the vector of aIIToIayers’ strategies aptd = A; X
Az x -+ X Agk.

II-C. Prospect Theory

As previously mentioned, EUT evaluates an objective exgabct
utility in which users are assumed to act rationally and obje
tively. However, it has been observed that, in real life,rsise
behavior deviates considerably from the rational path ipted
by EUT. For the proposed game, a custorméas to decide on its
action, in the face of uncertainty induced by the mixed egis
of its opponents, which impact directly its utility as il (4h
order to capture such behavioral factors in the proposedygne
trading game, we turn to the framework of prospect theory.[19

One important PT notion is the so-callegighting effect. In
particular, in PT [32] it is observed that in real-life deois

UgT(p

AC and DC. We note that, in our game, the actions are positive making, people tend to subjectively weight uncertain ontes.

and we have positively/negatively defined charging/disging
unit paymentsy and~ in (@). Here, we define the charging price
and the discharging price, respectively, set by the powepamy
and participating users as follows:

alag,a_y) = {g(alm a_g)

if ap = Dk,
otherwise, @
with ¢(ax, a—r) being the unit price in the energy market which
follows the pricing strategy of the power company. Morepver

b
YWeram) = {¢"

if ap, = Sk,
otherwise,

(©)

with b, being the unit price at which a certain custonterould

sell its surplusS,. We assume that each customer can set its own
price, but the power company will impose a pricing restoiati

B, such thath, < B, Vk € K.

The utility function in [1) captures both the economic besefi
of customer participation as well as the impact on the power
system (via the regulation term). Here, while the power camyp
allows the K active customers to actively decide on whether to
buy or sell energy, it mandates that the generated powerein th
considered geographical area remains within desired|estaiz
erating conditions. Also, we note that both demand and fss |
determine the total generation level and, excessive amgrgr
discharging might damage the generator due to a frequengy va
ation thus requiring regulation [31]. Without loss of geality, we
assume that the normal, stable operating conditions qunes
to the case in which allV customers act as loads and we let
G =Y, v (Di+ L;i) denote the total generated power required
for this distribution area during normal operatiab; represents
the losses incurred over the distribution/transmissioredi for
delivering D; to customer; which depend on the total demand
and are computed using power flow algorithms. Therefore, for
the case in whictu, = Dy, Vk € K, we haveG(a) = G (with
a being the vector of all strategies). Consequently, anyoasti
taken by a certain customer that shifts the generated power f
its nominal valueG will require the power company to regulate
the generation. The need for this regulation indirectlyldsea
cost penalty on the active participants as capturefin (1).

In the proposed game, this weighting effect allows capture o
each user’s subjective evaluation on the mixed strategytsof i
opponents. Thus, under PT, instead of objectively obsgrtie
mixed strategy vectop_j, chosen by the other players, each
user perceives a weighted version oft, (p—r). Here, wi(+)

is a nonlinear transformation that maps an objective pritibab
to a subjective one. PT studies have shown that most people
could often overweight low probability outcomes and oveghie
high probability outcomes [19]. Hereinafter, we assume ik
players utilize a similar weighting approach, such that-) =
w(-), Yk € K. While many weighting functions exist in the PT
literature, we choose the popular Prelec function (for aemgiv
probability o) [32]:

w(o) =exp(—(—Ino)¥), 0<a <1, (5)
whereq is a parameter used to characterize the distortion between
subjective and objective probability. Note that when= 1, (5)
is reduced to the conventional EUT probability.

Under PT, the expected utility achieved by a plajemgiven
the weighting effect, is X«

UTp) = 3 (pk(ak) Hw(pl(am) ur(ax, a_y).
acA 1€\ {k}
Here, we assume that a player uses a subjective evaluation
only on the other players’ strategy probabilities. Thusstoemer
k's subjective evaluation of its own probability is equal ts i
objective probability. Given the set of probability distitions
‘P over its set of strategied,,, the solution of the game can be
found via the notion of a mixed-strategy Nash equmbrlum
Definition 1: A mixed strategy profilep™ € P = H
is a mixed strategy Nash equilibrium if, for each playere
{1,2,..., K}, we have (for either PT or EUT)

Uk(pi, P 1) = Ur(pr, P 1), Vo € Py.

Ill. SOLUTION: THE TWO-PLAYER CASE

To gain greater insight into the solution of the proposed gam
we analyze a case study for the scenario in which dily= 2
customers are active. In particular, we are interested atyaimg
the proper mixed Nash equilibrium of the game. A proper mixed-
strategy Nash equilibrium is the solution in which each ptay
chooses a certain actiar, with probability 0 < p, < 1. While

(6)

@)



the existence of a mixed-strategy Nash equilibrium is \wathwn
for conventional EUT games [30], it is of interest to studyetiter
the PT game admits such an equilibrium. Moreover, for bo¢h th
EUT and PT games, we are interested in guaranteeipigpyaer
mixed strategy Nash equilibrium, in which the users willeed
mix between their strategies. With this in mind, we can stage
following result:

Theorem 1: For the proposed two-player smart grid game
(K, { Ak }rei, {ur trex), there exists a unique, proper
mixed Nash equilibrium for both the EUT and PT games if
—C(Dk7 ka)Dk +5(Dk —‘rSk)Q < bpSk < —C(Dk7 ka)Dk +
B(Dy, 4 Sk)* + 28 T1r_,(Di + Si), wherek = {1,2}.

Proof: In the proposed model, there always exists at least
one mixed NE under EUT as guaranteed by Nash’s result [30].
Thus, our proof mainly focus on finding a condition to guaeant
1) there exists @roper mixed NE under EUT and PT, ar®) such
a proper mixed NE is unique. By using the indifference pptei
under EUT, a proper mixed-strategy Nash equilibriupi, p3),
exists when the average charging utility is equal to the ayer
discharging utility. For example, computing custon&raverage
utility by p3, we havepiui (D1, D2) + (1 — p3)ui (D1, S2) =
psu1(S1, D2) + (1 — p3)ui1(St, S2); that is,
u1(S1,S2) —u1(D1, S2) ®)
ul(Dl,Dg) — u1(51,D2) + U1(S1,52) — ul(D1,52) '

A sufficient condition to have a proper mixed strategy Nash
equilibrium, such that < p5 < 1, is to have

*
P2 =

sgn (ul(Sl,Sg)—ul(Dl, Sg)) = sgn <u1 (D1, D2)—u1 (Sl,Dg)) ,

where sgn(-) denotes the algebraic sign of its argument é?%d
w1 (D1, D2)= —c11(D1 + L1(D1, D2)),
u1 (D1, 52) = —c12(D1 + L1 (D1, S2)) — B(G(D1, S2)
u1(S1, D2) = b1S1 — B(G(S1, D2) — G)?,
u1(S1,52) = b1S1 — B(G(S1, S2) — G)2.

On the other hand, we assume that playersubjective eval-
uation of its own probability is equal to its objective probiy,
such thatwi(p1) = p1 and wa(p2) = p2. Then, using the
indifference principle under PT, player's average utility of
chargingw: (p3)u1 (D1, D2) + wi(1 — p3)ui (D1, S2) is equal
to its average discharging utility: (p3)u1(S1, D2) + w1 (1 —
p;‘)ul(Sl, 52); that iS,

wi(ps)  wi(S1,S2) —ui(D1,S2)

wi(l—p3)  ui(D1, D2) —ui(S1, D2)

which is analogous to the conditiop] (9) under EUT. Computing
player2's average utility bypi, we also have the condition

sgn <u2(81, S2)—u2(S1, Dz)) = sgn (UQ(Dl, Dy)—u2(D1, Sg)) :

To solve [9), we need to simplify
u1 (D1, D2) —u1(S1, D2)
= —c11(D1 + L1(D1, D2)) — b1S1 + B(G(S1, D2) — G)?,
= —c11(D1 + L1(D1,D2)) — b1S1 + B{[D2 — S1 + Dothers (12)
+ L(S1, D2)] — [D1 + D2 + Doters+ L(D1, D2)]}?,
= —c11D1 — b1S1 + B(D1 + S1)2,
where Doers represents the total constant demand of non-
participating users. Here, we have assumed that the Idsses
are negligible with respect to the demand, which is a reddena
assumption when dealing with two players only, i.8;, <<
Dy, k= 1,2. Similarly,
u1(S1, S2) — u1(D1, S2)
=b1S1 — B(D1 + S1 + D2 + S2)% + c12D1 + B(D2 + S2)2, (13)
=ci12D1 + 6151 — ﬁ(Dl + 51)2 — Qﬁ(Dl + 51)(D2 + Sz).
If @2) is greater than O[{13) cannot be greater than 0 dubeo t
fact that, in practice, as the locational marginal pricihd/1P)

= o)

>0, (11)
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Fig. 1. Probability of charging under EUT and PT tasaries.

be negative and then, we obtain the rangé,d}, in Theorenf]L.
[ ]

Under given loads and surpluses, TheorEm 1 provides a
relationship between the unit selling priag of each player, the
LMP pricec(a1,a2), and the penalty factor for regulatigh such
that we could obtain a proper mixed strategy equilibriunonfr
the utility functions in[(#) and{6), we can mathematicakeshe
difference between EUT and PT. Here, given the players’ thixe
strategies, we define the company’s expected revenues under
the equilibrium probabilities(p}, p3) for EUT and (p:*", p3 ™"
for PT. The power company generates a revenue depending on
the energy sold to the two customers, although the custémers
probability of charging or discharging can be differentvietn
EUT and PT. Thus, the power company revenues obtained from
customersl and2 are as follows:

Rpur=pipsc11(D1 + D2+ Li12) + pi(1 — p5)ci2(D1 + L)

+ (1 = pT)p3ca1 (D2 + L),

PT PT PT PT
Rpr=p;" 'py" c11(D1+ D2+ L12) +p;" (1 —py
*, PT

(D1 + La) + (1 = p;PN)pyPTear (Da + La),

where L(-) is the loss in power flon[{1)Rrur is the expected
revenue obtained by the power company. AR@r is the PT
revenue obtained by the power company, in which playand

player2 use their subjective perspectives.

IV. SIMULATION RESULTS AND ANALYSIS
For simulating the proposed system, we consider a geo-

graphical region in which two active customers equippechwit
storage units exist. We choose typical values for the denaadd
surplus:D1 = 20 kWh7 Dy = 15 kWh7 S1 = 10 kWh7 Sy =
5 kWh, « = 0.25, 8 = 0.0018. The constant load is set as 200
kWh, and power line parameters are set from a typical 4-bus
system [34]. The following examples assume that the geioerat
power (kW) is numerically equal to the energy (kWh) in a one-
hour time unit. For pricing, we assume thdt, az2) follows a
conventional LMP scheme, such as the following:

$0.05kWh power company generation i§ 200 kWh

$0.10/kWh power company generation between 2@%0 kWh

$0.15kWh power company generation between 2800 kWh

$0.20/kWh power company generation is 300 kWh

In Fig.[, we depict the impact of the unit selling price on the

behavior of the customers. Without loss of generality, wauase
that both customers use the same prige= b, = b and we
vary the price within the range in which the equilibrium éxas
per Theoreni]1. Fig.]1 shows how the probability of charging fo
both players varies dsincreases, for both the EUT and PT cases.
Clearly, as the selling price increases, both players whalde
more incentive to discharge than to charge, as the benefiidwou
start outweighing the regulation penalty. More interegltinFig.[
shows that, for both customers, the PT behavior signifigantl
differs from the EUT behavior. For example, for custoner
below a selling price of = $0.07 per kWh, the probability of

Jeiz (14)

[33] increases with the generated power, the price at a lower charging at the equilibrium for PT is much higher than EUT.

generation level cannot exceed that charged at a highel; leve
thus, mathematically;12 < c11. Thus, both sides of 19) have to

This implies that for low gains, each customer follows a more
conservative, risk-averse strategy under PT and is less interested
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in reaping the benefits of selling energy than in the EUT case.
However, as the selling price crosses the threshold, tHeapitity

of charging for customel under PT becomes much smaller
than under EUT. This implies that once the selling benefies ar
significant (and the risks decrease), custothstarts selling more
aggressively under PT than under EUT. A similar behavior can
be observed for customer, although the benefit threshold of
customerl is smaller § = $0.05), since customei has more
energy to sell/buy.

Fig.[2 evaluates the total revenues of the power company in
(@4) as the customers’ unit selling pribaéncreases, for both PT
and EUT. Fig[® clearly shows that, as the unit selling prite o
the customers increases, the total revenue of the poweramgmp
will decrease, as the customers start to sell more and bsy les
Further, we can clearly see how the deviations from the EUT
behavior, as predicted by PT can have a major impact on the
market. First, as the customers’ unit selling price is betdout
$0.06 per kwh, under PT, the total revenue collected would be
much higher than that expected under EUT. In contrast, if the
customers are allowed to set prices that are higher a6
per kWh (and basically higher than the minimum unit price of
the company’s LMP model), PT predicts that the total revenue
will be much smaller than in the EUT case. In this case, it isano
beneficial for the power company to regulate the customeni’ u
selling price to be below#0.06 per kwWh (which is comparable to
the minimum LMP price of80.05 per kWh). Fig[2 demonstrates
the importance of incorporating the customers’ behavits the
analysis of the power market. In particular, if the power pamy
utilizes EUT to regulate the customers’ selling price, iagtice,
this may incur losses in revenues (relative to EUT) if re@ligser
behavior models are not accounted for. Finally, we note tiiat
“crossing point” between PT and EUT in F[d. 2 depends largely
on . As 3 becomes higher, a higher unit selling price would be
required for the customers to more aggressively sell energy
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more profits. Clearly, ignoring the fact that users’ behawan
deviate from the rational EUT path can yield undesirabled$oa
on the grid which further motivates the need for PT analysis.

In Fig.[, we show how the power company revenues under
EUT and PT vary as the regulation parameteincreases. In
particular, we vary3 from 0.0014 to 0.0024 while satisfying the
existence of a proper mixed Nash equilibrium. First, thedsol
lines show that the revenue under EUT is concave. This is due
to the fact that the objective probability of charging is ¢gurred
from a nonlinear utility that integrates power regulatidss the
parameterg increases, both players want to store/charge more,
since discharging increases the penalty of power regulaitso,
we can see that, after the crossing point (3.e= 0.0018 when
b = 0.06), the power company would obtain a high revenue from

In Fig. [3, we show that the expected load on the grid the PT actions of players. This is because players are maiy li
significantly differs between PT and EUT. For PT, when the to charge (act more conservatively) at a highcomparable to
unit price for buying energy is small, the customers are less their objective action. Thus, the power company must cheose
interested (compared to EUT) in selling energy now. However optimal 3 while balancing the tradeoff between its own revenues
as the unit price crosses a threshold, the customers will sel and effective customer participation via discharging.
more aggressively and, thus, the overall load on the gritbweil
smaller than expected. Fifgl 3 can provide important guigsli V. CONCLUSIONS
for demand-side management in the smart grid. For example, In this paper, we have introduced a novel approach for stigdyi
assume the power company wants to increase its price to drivethe problem of customer-owned energy storage integratiadhe
customers to sell more and reduce their average load to aboutsmart grid. We have developed a novel game-theoretic agiproa
10 kWh while keeping the generation regulation within limits. based on prospect theory, using which each player subgéctiv
Based on EUT, the company would have to increase the minimumobserves and determines its actions so as to optimize &y utili
LMP price to roughly$0.077 per kWh. In reality, because users function that captures the benefit from selling energy as ael
behave subjectively when faced with risk, the company dags n the associated regulation penalty. For the two-playerao@nwe
need to introduce such a high price increase. In contrasgnit have shown the existence of an equilibrium for both EUT and PT
increase it to abou$0.06 per kWh and obtain the desired load Simulation results have shown that prospect theory enahkes
reduction. On the other hand, if the company wants to redisce i power company to better decide on its pricing parametevengi
price to sustain up t@3 kWh of load (from the two customers realistic behavior of the users which deviate considerdigyn
in question), based on EUT, it would have to offer a relayivel conventional EUT behavior. This paper only scratches thiacel
low price of $0.035 per kWh. In contrast, based on PT, a price of prospect theory, which is expected to become a key teakniq
of about$0.047 per kwWh can achieve the same impact yet yield in the design and analysis of a user-centric smart grid.
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