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ABSTRACT
The demands on mobile networks are constantly evolving, but de-
signing and integrating new high-speed packet processing remains
a challenge due to the complexity of requirements and opacity
of protocol specifications. 5G data planes should be implemented
in programmable hardware for both speed and flexibility, and ex-
tending or replacing these data planes should be painless. In this
paper we implement the 5G data plane using two P4 programs:
one that acts as a open-source model data plane to simplify the
interface with the control plane, and one to run efficiently on hard-
ware switches to minimize latency and maximize bandwidth. The
model data plane enables testing changes made to the control plane
before integrating with a performant data plane, and vice versa.
The hardware data plane implements the fast path for device traffic,
and makes use of microservices to implement functions that high-
speed switch hardware cannot do. Our data plane implementation
is currently in limited deployment on three university campuses
where it is enabling new research on mobile networks.
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1 INTRODUCTION
The emergence of 5G promises high speed and low latency, enabling
a wide range of innovative applications like Internet of Things (IoT)
and augmented/virtual reality. As a result, many organizations—
from global carriers and cloud providers to university campuses
and small businesses—want to deploy their own 5G networks, and
customize them for their users and applications. Historically, mo-
bile network technology has been closed and vertically integrated,
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Figure 1: UPF is configured by the control plane via PFCP, a
niche protocol specific to cellular networks. The UPF routes
traffic destined for user devices (i.e., downlink traffic) to-
wards the correct base station, and acts as a gateway for in-
ternet traffic sent by user devices (i.e., uplink traffic).

making customization frustratingly difficult, if not impossible. For-
tunately, this is changing with 5G due to the availability of open-
source mobile core implementations, including Aether [6], Magma-
Core [8], OpenRAN [10], and Free5GC [7], as well as the adoption of
software-defined networking and cloud services in these platforms.

The heart of the 5G data plane is the User-Plane Function (UPF),
as shown in Figure 1. The UPF not only serves as a full-fledged
IP router, but also routes traffic to mobile devices as they move
between base stations, buffers traffic for idle devices, enforces QoS
constraints, accounts for subscriber usage, and more. The UPF
must execute these features at ever-growing speeds for an ever-
increasing number of mobile devices.

The UPF interacts with a complex control plane consisting of
many components with different responsibilities (e.g., authentica-
tion, billing, etc.), where the control interface is defined by the
Packet Forwarding Control Protocol (PFCP). At the same time, the
set of features the UPF needs to support continuously evolves, due
in part to specification changes, but also in response to deploy-
ments that require customization and new features. As a result,
designers of Mobile Core platforms face the dual challenges of (i)
implementing a sophisticated control plane, and (ii) implementing
an extensible, high-speed UPF data plane.

This paper argues that specifying UPF functionality in the P4
language can help address both of these challenges. To this end, we
present two P4-based UPF designs. The first,model UPF, defines the
PFCP interface as a series of match-action tables, with match keys
based on packet metadata and actions that process the packet. Here,
the P4 program distills the essence of PFCP from a complex and
evolving standards document [4]. With the model UPF data plane
specified in P4, a P4 compiler can generate an RPC-based PFCP
interface automatically, simplifying the process of implementing
the control plane. The model UPF is also a functional UPF, suitable
for running correctness tests on the control-plane implementation.
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Running on a software switch, the model UPF supports developing
control-plane software in emulation environments like Mininet [9],
without developers requiring access to special-purpose data-plane
hardware. Additionally, recent research focused on automatically
generating test cases based on P4 programs would allow the model
UPF to be used to test other UPF implementations [16, 21].

The model UPF P4 program serves as a useful starting point
for creating full-fledged UPF implementations for specific hard-
ware targets. This leads to our second design, the performant UPF,
which runs on the Intel Tofino programmable data-plane switch.
While earlier open-source 5G platforms implemented the UPF en-
tirely in software, hardware network interface cards (NICs) and
switches offer higher speed and lower power. The performant UPF
P4 program must grapple with the realities of limited data-plane
resources. Some match-action tables in the model UPF are too large,
requiring optimizations that break “wide" match-action tables into
a collection of smaller tables. Other capabilities of a performant UPF
cannot be expressed in P4, or cannot be supported in high-speed
packet-processing hardware at all. Here, we rely on microservices
to support certain functionality, such as buffering traffic for idle
mobile devices. The end result is an efficient system with a hard-
ware data plane processing most traffic, an a set of microservices
handling other UPF functionality.

Many existing works aim to solve issues present in both LTE
and 5G such as control signalling load [19, 22, 24], fault toler-
ance [14, 20], and software data-plane performance [23] but few
seek to implement the data-plane in hardware, although there are
proprietary P4-based solutions [2]. TurboEPC [24] implements
LTE’s equivalent of the UPF in P4 switches and reduces control-
plane load by processing some common control messages in the
data-plane, but it requires control plane modification and does not
discuss features like idle buffering that are currently unsupported
by P4. Aghdai et. al [13] introduce a new P4-based network func-
tion to the mobile core for reducing latency between user devices
and edge services, but they do not implement the UPF or its LTE
equivalent.

The remainder of the paper is organized as follows. §2 presents
background on the User Plane Function and the control-plane in-
terface. §3 presents the model UPF, including how to synthesize the
control-plane interface and specify the data plane. We release the
model UPF P4 program as open source, to serve as executable UPF
documentation for the community. [12] §4 describes the perfor-
mant UPF for the Intel Tofino switch, including how to work within
limited data-plane memory and interface to an external buffering
microservice. §5 presents our experiences with the two UPFs in the
Aether mobile core platform (including deployments on university
campuses), and §6 discusses future research directions.

2 USER PLANE FUNCTION (UPF)
The User Plane Function (UPF) connects the base stations of the
Radio Access Network (RAN) to the Internet. It performs packet
processing for user devices, including supportingmobility, buffering
for idle devices, traffic accounting, and quality-of-service based on
rules configured by the control plane, as summarized in Table 1.

Traffic classification: Each packet corresponds to a user device
attached to the cellular network. The UPF associates a packet with
the corresponding user device and traffic class, based on Packet

Rule Rule Key(s) Rule Parameters
Packet Detection Rule IP Address, 5-Tuple,

Tunnel Headers,
Endpoint DNS Name
Regex

FAR-ID, QER-ID, URR-ID,
Decapsulation Flag

Forwarding Action Rule FAR-ID (Forward, Buffer, Notify)
Flags, Tunnel Headers (op-
tional), BAR-ID (optional)

Buffering Action Rule BAR-ID Buffer Depth, Buffer Duration
Usage Reporting Rule URR-ID Counter Index, Reporting

Frequency or Threshold
QoS Enforcement Rule QER-ID QoS Flow ID (QFI), Guaran-

teed BitRate, Maximum Bi-
tRate

Table 1: The rules a 5G control plane uses to configure a UPF,
the match keys used to look up a rule, and the parameters
loaded into a packet’s metadata by said rule. Italicized fields
are either scaffolded or not present in the model UPF.

Detection Rules (PDRs). A PDR may simply match the device’s IP
address, or consider tunnel headers, the five-tuple, or even the do-
main name of the other end-point. The matching PDR determines
how other parts of the UPF process the packet. Each attached user
device has at least two PDRs, for uplink and downlink traffic, re-
spectively, and possibly more to support multiple traffic classes
(e.g., for different QoS levels, pricing plans, etc.). The control plane
installs, changes, and removes PDRs when a device attaches, moves
to another base station, and detaches, respectively.

Mobility and packet forwarding:User devices connect to new
base stations as the user moves. To tunnel downlink packets to the
right base station, the UPF applies a Forwarding Action Rule (FAR)
identified by the PDR during packet classification. The FAR for
downlink traffic indicates the tunnel header field and the IP address
of the base station. More generally, a FAR specifies a set of actions
(using flags) to apply to the packet, including tunneling, forwarding,
buffering, and notifying the control plane. For example, a typical
FAR for uplink traffic contains only a ‘forward’ flag, signifying that
the packet is permitted to enter the UPF’s IP router functionality.
In contrast, the ‘notify’ flag sends an alert to the control plane to
wake an idle device. FARs are installed and removed when a device
attaches or detaches, respectively, and the downlink FAR changes
when the device moves, goes idle, or wakes.

Buffering for idle devices:When a user device goes idle, the
UPF buffers downlink traffic that arrives for that device until it
reawakens; this feature is increasingly important as battery opti-
mizations and limited radio spectrum push devices to spend more
time idle. When traffic first arrives, the UPF sends an “Downlink
Data Notification” alert to the control plane, which triggers the base
station to attempt to wake the device. Once the device awakens, the
UPF releases the buffered traffic and resumes normal forwarding.
The buffering and notification functions are activated by modifying
a FAR to include ‘buffer’ and ‘notify’ flags. An additional set of
Buffering Action Rules (BARs) decide settings like the maximum
number of packets (and the maximum duration) to buffer. The iden-
tifier of the BAR to use is determined by the FAR that triggered
buffering. If no BAR is provided, default settings are assumed.

Traffic accounting: The UPF sends usage reports for each user
device to the control plane. These reports include counts of the
packets sent and received by the UPF for both the uplink and down-
link traffic for each user device and traffic class. Service providers
use these measurements to limit and bill their customers separately
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for upload and download usage. The control plane installs and re-
moves Usage Reporting Rules (URRs) when the device attaches and
detaches, respectively. Each URR includes parameters specifying
whether usage reports should be sent periodically or when a quota
is exceeded. Typically a device has two URRs, one for uplink and
downlink usage, respectively. If a user’s plan includes special treat-
ment for certain types of traffic, an additional URR is created for
each traffic class (e.g., to support plans with free VoIP/video calls).

Quality-of-Service: The UPF guarantees a minimum amount
of available bandwidth and enforces a bandwidth cap for each
user device, for uplink and downlink packets for each traffic class.
These parameters are decided by per-device Quality Enforcement
Rules (QERs). The identifier of the associated QER is determined
by the PDR in the traffic-classification process. The control plane
installs and removes QERs when a device attaches and detaches,
respectively, and are modified according to operator-defined events
such as when the network becomes more or less congested, the user
device exceeds a quota, or the network policy changes (e.g., the
user signs up for a new pricing plan). The UPF can perform traffic
policing to enforce the bandwidth cap, as well as packet scheduling
to ensure a minimum bandwidth in conjunction with admission
control in the control plane.

3 THE MODEL UPF
The PFCP protocol used for communication between the control
plane and the UPF can be difficult to understand, even though the
rules it installs are actually simple match-action rules, as summa-
rized in Table 1. Additionally, documentation on the operations
applied to a packet by the UPF and the order in which they ap-
ply are scattered across the 5G specifications. To address both of
these issues, we proposemodeling the UPF with a P4 program. Such
a model would provide unambiguous, executable documentation
on the UPF and, with the addition of P4Runtime, provides a sim-
ple control-plane interface as well. More specifically, we have two
objectives in the implementation of a model UPF:

(1) The model UPF should serve as an interface that the 5G
control plane can expect a data-plane implementation to
expose. Developers creating their own data plane need only
present the same interface as the model UPF in order to
integrate with the control plane. Implementing the same
interface also means that testing infrastructure can be reused
to verify the behavior of a new UPF.

(2) The model UPF should implement a minimally functional
UPF, to act as a valid and executable data plane suitable for
running correctness tests on the 5G control plane in the
absence of a more sophisticated data-plane implementation.
The implemented functions can also serve as behavioral
references for implementers of new UPFs.

3.1 Synthesizing the Control-Plane Interface
P4 is a language for specifying packet-processing pipelines, but
it does not provide any means for the control plane to configure
those pipelines at runtime. P4Runtime fills this need. P4Runtime is
an RPC (Remote Procedure Call) protocol that allows a P4Runtime
client running in the control plane to read and write table entries,
read counter values, and install new P4 programs from a P4Runtime

Figure 2: The model UPF P4 pipeline

server running on a data plane 1. The format of table and counter
reads and writes is determined by a p4info file, akin to a header
file, that is generated when a P4 program is compiled. For example,
for each table in a P4 program, the p4info contains a description of
the table name, match keys, action names, and action parameters,
but not details of the operations or packet modifications performed
by the table. A P4Runtime client can install an entry into a table by
sending a write request message containing a table entry matching
the format specified in the p4info. If we create P4 representations
of every UPF feature, P4Runtime automatically gives us a control
interface to those representations.

To implement a real UPF that uses the model UPF interface, the
implementer must only implement a P4Runtime server that accepts
messages matching the p4info of the model UPF, as shown in Fig-
ure 3. Since P4Runtime is based on gRPC, client and server stub im-
plementations can be automatically generated from the P4Runtime
protocol specification for a variety of popular languages. The stub
implementations take care of message serialization and connection
management; the implementer need only worry about reading and
writing message objects, accelerating the development and inte-
gration of new UPFs. However, to support these new UPFs, the
5G control plane must speak P4Runtime instead of PFCP. This is
handled by the implementation of a PFCP-to-P4Runtime transla-
tion microservice, which must be done once and can be reused by
different control plane implementations without modification.

An important note here is that the data plane driven by the
P4Runtime server need not exactly adhere to the P4 program pre-
sented to the client. For example, the data plane may consist of two
parallel ASICs, eachwith onematch-action table, but the P4Runtime
server may choose to abstract them as a single device with a sin-
gle table. In such a setting where the data plane does not match
the p4info presented to clients, it is up to the server to translate
reads/writes to the representative P4 program into reads/writes to
the true data plane. Although this translation currently must be
manually implemented, there is research interest in automating
such translations [16].

3.2 Specifying the Model UPF Data Plane
In order to meet objective (1), we need a P4 program that, when
compiled, generates a set of P4Runtime messages that directly map
1The server is not exactly “on” the data plane. Modern switches are typically comprised
of a both a CPU and a packet-processing ASIC. The ASIC is configured via the PCI
bus by control processes (like a P4Runtime server) running on the CPU.
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to each type of rule the 5G control plane may install. To that end, we
start with a simple table for each rule type, with the match keys and
action parameters of each table given in Table 1. The P4 actions in
each table initially only load the described action parameters into a
packet’s metadata. With the exception of the PDR table, each table’s
match key is just a rule identifier. The PDR table performs more
complex matching, being capable of ternary matching on packet
header fields. Although the 5G specifications [4] permit matching
on endpoint DNS names, this is challenging to support in P4 and
we leave it for future work. We use these simple tables as a starting
point for the model UPF that meets objective (1).

The secondary goal of our model UPF is to implement enough
of these tables to create a minimally functional UPF. The PDR table
can be made functional by making every other table match on the
rule identifiers loaded by the PDR table. As a result, each other
table in the model depends upon the PDR table. As seen in Figure 2,
the FAR table is made functional with the addition of tables that
read and act upon the loaded action flags. Each action requires its
own table because the actions are not mutually exclusive. Since
these tables only read a single flag and perform a single action,
they each have only one hardcoded entry. Dropping, forwarding,
and encapsulation are easy to do, and the ‘notify’ action can be
implemented by using the P4 packet digests feature to send a short
message to the control plane.

Per-device usage tracking is implemented with arrays of packet
counters in the model UPF’s ingress and egress pipelines (i.e., before
and after QoS enforcement), indexed by the counter index loaded
in the URR table. However, usage reports containing values from
these counters cannot be periodically produced by a P4 data plane
because P4Runtime only permits the pulling of counter values by
the control plane, not pushing by the data plane. This is resolved by
tasking the PFCP-to-P4RT translator with periodically polling the
model UPF’s counters to generate usage reports. As a consequence
of moving report generation to the controller, the URR table does
not need to contain usage reporting parameters.

There are some features left only as non-functional placeholder
tables in the model UPF. We refer to these tables that only satisfy
objective (1) as scaffolding. The first feature scaffolded is buffering,
because currently available P4 switches cannot indefinitely buffer
packets. If a device is idle, the model UPF simply drops packets des-
tined for that device—simulating a UPF with no available buffering
memory. The second feature scaffolded is QoS enforcement, which
consists of the enforcement of minimum and maximum bitrates. We
settle for simple FIFO packet scheduling because verifying forward-
ing behavior, not QoS properties, is the primary goal of processing
packets with the model UPF. We leave implementing bitrate restric-
tions in P4 to future work.

With the features implemented so far, themodel UPF can forward
packets between the RAN and the mobile core. In our 5G ecosystem
this model UPF only processes packets for the purposes of veri-
fying forwarding behavior, but it could be used for serving real
user devices, albeit with poor performance for several reasons: (1)
The FIFO scheduling of device traffic does not impact correctness,
but devices will not be guaranteed bandwidth. (2) Zero buffering
capacity means that packets sent when a device is idle must be
retransmitted, adding some delay. (3) It is designed for and runs
on a software switch. It could be compiled for a hardware switch,

but the design is intentionally simple and would not make efficient
use of hardware resources, which is an issue we address in the next
section.

Figure 3: How the model UPF is used to develop and deploy
a real UPF. A P4 compiler takes the model program and pro-
duces a p4info file, akin to a header file for the P4 program.
A network operator uses the p4info and a P4Runtime client
framework to implement a translator for the control plane.
A researcher references the model and uses the p4info and
the P4Runtime server framework to implement a full UPF.

4 THE PERFORMANT UPF
Previously, we discussed how UPF features are either (1) imple-
mentable in the model UPF, but are done inefficiently for the sake
of simplicity, or (2) not implementable in P4 and are only expressed
as scaffolding in the model UPF. In this section we discuss how
these two types of features are efficiently implemented using hard-
ware switches and software microservices. Our two primary con-
tributions are an extension to an established hardware switch P4
program for handling features of type (1), and a control-plane appli-
cation for managing table entries in the extension, talking to other
microservices for features of type (2), and hosting a P4Runtime
server that represents the model UPF. The server receives reads
and writes intended for the model UPF, and it is up to the control
application to translate those reads and writes to physical switch
reads and writes for (1) and additional microservice calls for (2).

4.1 Dealing with Limited Data-Plane Memory
Although some parts of the model UPF can be directly implemented
in the physical switch, it would not be wise to do so in all cases. For
example, the PDR table in themodel UPF is written very inefficiently
for the sake of clarity and flexibility; it permits highly complex rules
that require large amounts of costly switch TCAM. To maximize
the number of rules that may fit in a single physical switch, we
note that the majority of PDRs fall into one of two patterns: (1)
simple uplink rules that only match on the tunnel destination and
identifier2, and (2) simple downlink rules that only match on the
device IP address. We use this observation to create three parallel
2The tunneling protocol used in mobile networks for sending packets between the UPF
and base stations, GTP, includes a header field called the Tunnel Endpoint Identifier
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PDR tables in the physical switch: one for common-case uplink rules
that exactly matches (using the relatively plentiful switch SRAM
instead of TCAM) on two tunnel header fields, one for common-
case downlink rules that exactly matches on only the IP destination,
and one small, inefficient table that is as flexible as the model PDR
table and will only be used for rare, complex rules. The control app
is responsible for mapping model PDR table entries to the most
suitable hardware table. If more PDR patterns are observed in the
future, additional tables optimized for each pattern can be created.

4.2 Interfaces to Buffering Microservice
When packets arrive from the internet destined for an idle device,
the UPF should buffer packets on behalf of that device and send an
alert to the 5G control plane to awaken it. Currently available hard-
ware P4 switches are designed for data centers and thus do not have
large buffers or the ability to hold packets indefinitely. To cover this
feature gap, we use a buffering microservice, controllable via gRPC,
that is provided by our chosen 5G ecosystem. The microservice
indefinitely holds any packets that it receives, and releases them
back into the network when a control signal is received via gRPC.

When a device goes idle, the control plane installs a FAR in the
model UPF with the ‘buffer’ flag set. The control app translates
this model FAR entry to flow rules in the physical UPF P4 module
that redirect packets destined for the idle device to the buffering
microservice. Packets are redirected to the microservice without
modifying the IP headers by placing them in a tunnel. The tunneling
protocol used for sending data to the microservice is the same as
that used to send packets to 5G base stations, which allows the
hardware switch and control app to treat the buffering microservice
as just another base station. Additionally, not implementing another
tunnel protocol in the switches reduces resource usage in the packet
parser and deparsers, which is an important concern for industrial
network deployments that have continuously growing feature lists.

When the first packet of a new flow arrives at the buffering
microservice, the microservice sends an alert to any currently con-
nected gRPC clients that a new flow is being buffered. The control
app listens for this event, and translates it to an alert to the 5G con-
trol plane that the device corresponding to that flow should wake
up. The alert is sent as a ‘packet digest’ emanating from the model
UPF. When a device wakes up, the control plane modifies the FAR
installed in the model UPF by unsetting the ‘buffer’ flag and setting
the ‘tunnel’ flag. When this specific transition occurs, the control
app sends a gRPC signal to the buffering microservice, instructing
it to release all packets for that device back to the physical switch.
Packets arriving at the physical switch from the buffering microser-
vice skip the portion of the UPF module they encountered before
buffering, to give the illusion of being buffered in the middle of
the switch. Their processing resumes at the tunneling stage, where
they are encapsulated and routed to the appropriate base station.

4.3 QoS and Usage Reporting
QERs cannot be implemented in the model UPF because P4 does
not support the expression of packet schedulers. However, cur-
rently available hardware P4 switches have simple schedulers with

(TEID), which can be used by PDRs to map packets to devices without parsing inner
headers.

programmable weights and priorities, programmed using runtime
interfaces unrelated to P4. It may be possible to approximately en-
force bitrate guarantees and limits using this scheduler with an
approach like Rotating Strict Priority [25], but we leave that for fu-
ture work and for now simply map the QoS class identifiers loaded
by the QERs to one of the available queues.

Usage counters for generating Usage Reporting Rules are imple-
mented in the hardware switches identically to how they appear
in the model UPF, with counter arrays in the switches’ ingress and
egress. When the PFCP-to-P4 translation microservice requests
counter values from the model UPF, the control application simply
polls the hardware switch counters and relays the response.

5 DEPLOYMENT EXPERIENCE
Our prototype has been included in the Aether [6] 5G mobile core
ecosystem and is currently in limited deployment on three univer-
sity campuses, where it is being used for research on improving
the reliability and performance of mobile networks.

5.1 Prototype Implementation Details
The hardware control application (see Figure 3) responsible for
translation between the model and hardware UPFs is written as
a Java application for a network controller OS [11] and consists
of ~5,200 lines of code. The Model UPF is written in ~760 lines
of P4 code for the Behavioral Model version 2 (BMv2) software
switch. The hardware UPF was written in ~400 lines of P4 code as an
extension for an established leaf-spine fabric P4 switch program [5].
In our campus deployment, the performant UPF is installed in the
leaf of a 2x2 leaf-spine topology of 6.4 Tbps Edgecore Wedge100BF-
32X and 32QS switches that use the Intel TofinoASIC. The leaf-spine
topology connects a RAN of small cells to compute nodes and the
internet.

Currently, the hardware UPF pipeline uses less than 15% of the
Tofino chip’s total available SRAM memory to support 17,500 user
devices. The primary sources for the SRAM usage are the PDR
tables, FAR tables, and URR counters, each of which must have
capacity equal to twice the maximum number of connected devices
(since each device has at least two of each rule—one uplink and one
downlink). The program has not been aggressively optimized and
achieving support for several times more devices is likely, although
memory will still become a limitation long before software switch
scales are reached. Potential directions for supporting more devices
in the face of memory limitations are discussed in Section 6.

5.2 Testing of the UPFs
For unit testing of both the UPF programs, we use the Python-based
Packet Testing Framework (PTF). In a PTF unit test, a P4 program
is installed in a software switch, a fixed set of P4Runtime messages
are sent to the switch to populate the tables, and then packets
are sent through the switch. The test is passed if packets output
by the switch adhere to expectations. In our setting, the packets
injected match the format of data traffic to and from a 5G RAN.
There are unit tests for detached, attached, and idle device states.
For the model program, the software switch used is BMv2. For the
hardware program, it is the Intel Tofino ASIC simulator provided
by the Tofino SDK. Functional equivalence between the model and
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hardware UPF programs is empirically checked by writing unit
tests that inject and verify the same input and output packets in
both programs. There are currently ~550 lines of PTF-based unit
tests for the model UPF, and ~2600 lines of tests for the performant
UPF, although many of these tests cover the non-UPF modules. If
more robust equivalence tests are needed, projects like Avenir [16]
and p4pktgen [21] may be used in the future.

Figure 4: The topology of containers used for integration
testing. Each blue box is a separate container. There are two
possible control plane and two possible data planes, and all
four pairings are valid tests.

For tests more intensive than unit tests, integration tests are im-
plemented using Mininet and Docker containers, shown in Figure 4.
One container runs a Mininet topology with hosts for an internet
endpoint, a base station, and a buffering server, with one leaf switch
operates as the performant UPF. There are also containers for the
control app, the PFCP-to-P4Runtime translator, and a mock 5G
control plane that injects control messages. To reduce the number
of moving parts in a test, the Mininet topology and control app can
be replaced by the model UPF, and the mock 5G control plane can
be replaced by a simple mock P4Runtime controller.

5.3 UPF Extensibility
To show that our P4-based 5G data plane can be extended and used
to support novel research, we extended the performant UPF pipeline
with publicly available P4 code [3, 17] for detecting aggressive
flows during times of congestion using a data-plane sketch. When
congestion builds, the control plane installs temporary block rules
for aggressive flows to prevent benign flows from experiencing
excessive drops. The performant UPF pipeline modified with this
sketch was installed on the leaf of a 2x2 leaf-spine topology in
a campus deployment, and aggressive traffic was sent between
servers connected to the leaf to simulate an attack on the UPF itself.
Benign traffic was sent by mobile devices connected to a small cell
attached to the leaf node and experienced service interruptions
before the sketch was activated. No noticeable drops in service
were observed after alerts were activated.

6 NEXT STEPS
Although current hardware switches easily achieve 5G bandwidths,
they do not have the memory needed for the forwarding state of

millions of devices. There are several possible directions this project
can take in the near future to address hardware memory limitations.

Approximate usage reporting: For exact usage reporting, the
data plane maintains four counters for each device: two for uplink
(before and after QoS enforcement), and two for downlink. However,
usage reporting is primarily intended to detect devices that exceed
usage quotas. If only a small fraction of devices come close to
or exceed their quotas, then it may be possible to replace exact
counters with heavy-hitter sketches like count-min sketch [18], or
heavy-hitter caches like PRECISION or HashPipe [15, 26]. Such data
structures greatly reducing the data-plane memory used at the cost
of some error in the final results. The absence of false positives in
heavy-hitter caches makes them more suitable for usage reporting
than sketches like CMS, as no subscribers would be falsely reported
as exceeding their quotas.

Pseudo-random tunnel identifiers: For downlink traffic, the
UPF match on the device’s IP address and encapsulate the packet
with the correct 32-bit Tunnel Endpoint Identifier (TEID). TEIDs
are chosen at random by the control plane in an effort to defend
against certain spoofing attacks [1], and thus cannot be compressed.
However, if the control plane were modified to instead generate the
TEID from the device IP address using a cryptographically secure
pseudo-random number generator (RNG), the UPF data plane would
only need to store the parameters of this RNG to generate the
correct TEID for every packet. This approach must be paired with
an allowlist to filter packets for invalid devices, and making this
allowlist memory-efficient is one associated challenge. Handling
devices with multiple tunnels for different QoS classes is another.

Parallel hardware and software UPFs: Not all of the millions
of connected devices sending traffic through the UPF may simulta-
neously require high bandwidth. IoT devices and low-power sensors
may send infrequently or at extremely low bitrates, and thus could
be processed by lower speed software switches, which have enough
memory for millions of such connections. A UPF architecture that
capitalizes on this disparity could maintain two parallel data planes:
one running in a hardware switch and one in software. Device
connections would first be placed in the software data-plane and
only be migrated to hardware if they begin sending at a high rate.
Detecting high-bandwidth flows could be done in the network us-
ing heavy-hitter sketches or similar data-plane structures [15, 17],
and the dual data plane could be hidden from the control plane by
the high-level interfaces defined by the model UPF.

Accurate QoS enforcement: The 5G control plane installs one
QoS Enforcement Rule (QER) for every QoS class of every connected
device. Ideally this would be implemented using a Hierarchical
QoS (HQoS) scheduler, with a separate queue for every (device,
QoS class) pair. Unfortunately, currently available P4 switches only
have tens of queues per port, far short of the tens to hundreds
of thousands needed by HQoS. One possible research direction
would be to either approximate a HQoS scheduler or some other
appropriately fair scheduler (like Rotating Strict Priority [25]) in
P4 using a combination of the available queues, registers, meters,
and other P4 features.
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