
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320117395

Distributed Low-Rank Adaptive Estimation Algorithms Based on Alternating

Optimization

Article  in  Signal Processing · September 2017

DOI: 10.1016/j.sigpro.2017.09.023

CITATIONS

13
READS

381

3 authors:

Some of the authors of this publication are also working on these related projects:

wireless sensor networks View project

Backhaul analysis View project

Songcen Xu

Huawei Technologies

37 PUBLICATIONS   1,016 CITATIONS   

SEE PROFILE

Rodrigo De Lamare

Pontifícia Universidade Católica do Rio de Janeiro

699 PUBLICATIONS   11,184 CITATIONS   

SEE PROFILE

H. Vincent Poor

Princeton University

3,053 PUBLICATIONS   133,270 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Rodrigo De Lamare on 08 October 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/320117395_Distributed_Low-Rank_Adaptive_Estimation_Algorithms_Based_on_Alternating_Optimization?enrichId=rgreq-ed7785ab3c62273715e7626a6c503516-XXX&enrichSource=Y292ZXJQYWdlOzMyMDExNzM5NTtBUzo1NDcxOTczMjM3NTU1MjBAMTUwNzQ3MzQxNjUzMw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/320117395_Distributed_Low-Rank_Adaptive_Estimation_Algorithms_Based_on_Alternating_Optimization?enrichId=rgreq-ed7785ab3c62273715e7626a6c503516-XXX&enrichSource=Y292ZXJQYWdlOzMyMDExNzM5NTtBUzo1NDcxOTczMjM3NTU1MjBAMTUwNzQ3MzQxNjUzMw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/wireless-sensor-networks-4?enrichId=rgreq-ed7785ab3c62273715e7626a6c503516-XXX&enrichSource=Y292ZXJQYWdlOzMyMDExNzM5NTtBUzo1NDcxOTczMjM3NTU1MjBAMTUwNzQ3MzQxNjUzMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Backhaul-analysis?enrichId=rgreq-ed7785ab3c62273715e7626a6c503516-XXX&enrichSource=Y292ZXJQYWdlOzMyMDExNzM5NTtBUzo1NDcxOTczMjM3NTU1MjBAMTUwNzQ3MzQxNjUzMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ed7785ab3c62273715e7626a6c503516-XXX&enrichSource=Y292ZXJQYWdlOzMyMDExNzM5NTtBUzo1NDcxOTczMjM3NTU1MjBAMTUwNzQ3MzQxNjUzMw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Songcen-Xu?enrichId=rgreq-ed7785ab3c62273715e7626a6c503516-XXX&enrichSource=Y292ZXJQYWdlOzMyMDExNzM5NTtBUzo1NDcxOTczMjM3NTU1MjBAMTUwNzQ3MzQxNjUzMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Songcen-Xu?enrichId=rgreq-ed7785ab3c62273715e7626a6c503516-XXX&enrichSource=Y292ZXJQYWdlOzMyMDExNzM5NTtBUzo1NDcxOTczMjM3NTU1MjBAMTUwNzQ3MzQxNjUzMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Huawei_Technologies?enrichId=rgreq-ed7785ab3c62273715e7626a6c503516-XXX&enrichSource=Y292ZXJQYWdlOzMyMDExNzM5NTtBUzo1NDcxOTczMjM3NTU1MjBAMTUwNzQ3MzQxNjUzMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Songcen-Xu?enrichId=rgreq-ed7785ab3c62273715e7626a6c503516-XXX&enrichSource=Y292ZXJQYWdlOzMyMDExNzM5NTtBUzo1NDcxOTczMjM3NTU1MjBAMTUwNzQ3MzQxNjUzMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rodrigo-De-Lamare?enrichId=rgreq-ed7785ab3c62273715e7626a6c503516-XXX&enrichSource=Y292ZXJQYWdlOzMyMDExNzM5NTtBUzo1NDcxOTczMjM3NTU1MjBAMTUwNzQ3MzQxNjUzMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rodrigo-De-Lamare?enrichId=rgreq-ed7785ab3c62273715e7626a6c503516-XXX&enrichSource=Y292ZXJQYWdlOzMyMDExNzM5NTtBUzo1NDcxOTczMjM3NTU1MjBAMTUwNzQ3MzQxNjUzMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Pontificia_Universidade_Catolica_do_Rio_de_Janeiro?enrichId=rgreq-ed7785ab3c62273715e7626a6c503516-XXX&enrichSource=Y292ZXJQYWdlOzMyMDExNzM5NTtBUzo1NDcxOTczMjM3NTU1MjBAMTUwNzQ3MzQxNjUzMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rodrigo-De-Lamare?enrichId=rgreq-ed7785ab3c62273715e7626a6c503516-XXX&enrichSource=Y292ZXJQYWdlOzMyMDExNzM5NTtBUzo1NDcxOTczMjM3NTU1MjBAMTUwNzQ3MzQxNjUzMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/H-Vincent-Poor?enrichId=rgreq-ed7785ab3c62273715e7626a6c503516-XXX&enrichSource=Y292ZXJQYWdlOzMyMDExNzM5NTtBUzo1NDcxOTczMjM3NTU1MjBAMTUwNzQ3MzQxNjUzMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/H-Vincent-Poor?enrichId=rgreq-ed7785ab3c62273715e7626a6c503516-XXX&enrichSource=Y292ZXJQYWdlOzMyMDExNzM5NTtBUzo1NDcxOTczMjM3NTU1MjBAMTUwNzQ3MzQxNjUzMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Princeton_University?enrichId=rgreq-ed7785ab3c62273715e7626a6c503516-XXX&enrichSource=Y292ZXJQYWdlOzMyMDExNzM5NTtBUzo1NDcxOTczMjM3NTU1MjBAMTUwNzQ3MzQxNjUzMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/H-Vincent-Poor?enrichId=rgreq-ed7785ab3c62273715e7626a6c503516-XXX&enrichSource=Y292ZXJQYWdlOzMyMDExNzM5NTtBUzo1NDcxOTczMjM3NTU1MjBAMTUwNzQ3MzQxNjUzMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rodrigo-De-Lamare?enrichId=rgreq-ed7785ab3c62273715e7626a6c503516-XXX&enrichSource=Y292ZXJQYWdlOzMyMDExNzM5NTtBUzo1NDcxOTczMjM3NTU1MjBAMTUwNzQ3MzQxNjUzMw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


1

Distributed Low-Rank Adaptive Estimation Algorithms Based
on Alternating Optimization

Songcen Xu*, Rodrigo C. de Lamare, Senior Member, IEEE, and H. Vincent Poor, Fellow, IEEE

Abstract—This paper presents a novel distributed low-rank
scheme and adaptive algorithms for distributed estimation over
wireless networks. The proposed distributed scheme is based
on a transformation that performs dimensionality reduction
at each agent of the network followed by transmission of a
reduced set of parameters to other agents and reduced-dimension
parameter estimation. Distributed low-rank joint iterative esti-
mation algorithms based on alternating optimization strategies
are developed, which can achieve significantly reduced commu-
nication overhead and improved performance when compared
with existing techniques. A computational complexity analysis of
the proposed and existing low-rank algorithms is presented along
with an analysis of the convergence of the proposed techniques.
Simulations illustrate the performance of the proposed strategies
in applications of wireless sensor networks and smart grids.

Index Terms—Dimensionality reduction, distributed estimation
techniques, low-rank algorithms, wireless sensor networks, smart
grids.

I. INTRODUCTION

D ISTRIBUTED strategies have become fundamental for
parameter estimation in wireless networks and applica-

tions such as sensor networks [1], [2], [3] and smart grids
[4], [5]. Distributed techniques deal with the extraction of
information from data collected at nodes that are distributed
over a geographic area [1]. In this context, a specific sensor
node or agent in the network collects processed data from
its neighbors and combines them with its local information
to generate improved estimates. However, when the unknown
parameter vector to be estimated has a large number of param-
eters, the network requires a large communication bandwidth
between neighboring nodes to transmit their local estimates.
This problem limits the usefulness of existing algorithms in
applications with large data sets as the convergence speed is
dependent on the number of parameters [2], [6], [7]. Hence,
distributed dimensionality reduction has become an important
tool for distributed inference problems with large data sets.

In order to perform dimensionality reduction or compres-
sion, several algorithms have been proposed in the literature
in the context of distributed quantized Kalman filtering [8],
[9], quantized consensus algorithms [10], distributed principal
subspace estimation [11], the single bit strategy [12] and
Krylov subspace optimization techniques [13]. However, these
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distributed algorithms [8]-[13] have drawbacks such as high
computational complexity, unsatisfactory performance and
implementation issues. Available distributed approaches for
dimensionality reduction or compression [8]-[13] have trade-
offs between the amount of cooperation, communication and
system performance. This calls for the development of cost-
effective techniques that can approach the performance of the-
oretical bounds for parameter estimation, have flexibility and
high-compression capability, and exhibit low computational
complexity. In this context, low-rank techniques are powerful
tools to perform dimensionality reduction, which have been
applied to spread-spectrum systems [14], [15], [16], [17], [18],
[19], multi-input-multi-output (MIMO) systems [20], [21] and
beamforming [22], [23], [24]. However, limited research has
been carried out on distributed low-rank estimation, in which
the distributed principal subspace estimation [11] and the
Krylov subspace optimization [13] techniques are recent con-
tributions. Related approaches to low–rank techniques include
compressive sensing-based strategies [25],[26], which exploit
sparsity to reduce the number of parameters for estimation,
distributed dictionary learning [27], [28], [29], [30], which em-
ploys a bilinear dimensionality-reduction factorization scheme
similar to some low-rank schemes but assumes no regression
vectors, and attribute-distributed learning [31], which employs
agents and a fusion center to meet communication constraints.
Another important tool in recent related work is the principle
of alternating optimization [32], [33], which consists of fixing
a set of parameters, adjusting the remaining parameters and
then proceeding in cycles [18], [21], [34], [35], [36], [37]. Ling
and Ribeiro have studied dynamic decentralized optimization
using the alternating direction method of multipliers [34].
Bai et al. have examined alternating optimization procedures
to design sensing matrices and dictionaries for compressive
sensing. Yan et al. have developed an alternating optimization
for multigraph matching, whereas Magnusson et al. [37] have
studied convergence of nonconvex optimization problems.

In this paper, we propose a scheme for distributed signal
processing and distributed low–rank algorithms for parameter
estimation. In particular, the proposed algorithms are based
on an alternating optimization strategy [32], [33], [18], [21]
and are called the distributed reduced-rank joint iterative
optimization normalized least mean squares (DRJIO–NLMS)
algorithm and the distributed reduced-rank joint iterative op-
timization recursive least squares (DRJIO–RLS) algorithm. In
contrast to prior work on low-rank techniques [18]-[24] and
distributed methods [8]-[13], distributed adaptive techniques
based on the alternating optimization strategy are investigated.
The proposed low-rank strategies are distributed and perform
dimensionality reduction without costly decompositions at
each agent. The proposed DRJIO–NLMS and DRJIO–RLS al-
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gorithms are flexible with regards to the amount of information
that is exchanged, have low cost and high performance. We
also present a computational complexity analysis of the pro-
posed and existing low-rank algorithms along with an analysis
of the convergence of the proposed techniques. Applications
to parameter estimation in wireless sensor networks and smart
grids are then studied.

The main contributions of this work can be summarized as:
• Distributed low-rank adaptive algorithms based on alter-

nating optimization .
• An analysis of the convergence and the computational

complexity of the proposed distributed algorithms.
• A study of the proposed and existing distributed algo-

rithms in wireless sensor networks and smart grids.
This paper is organized as follows: In Section II, the system

model and the problem statement are described. In Section
III, the proposed distributed dimensionality reduction and
adaptive processing scheme is presented. Section IV details
the proposed distributed low-rank algorithms. In Section V,
an analysis of the convergence of the proposed algorithms
is carried out along with a study of their computational
complexity. Simulation results are presented and discussed in
Section VI, whereas conclusions are drawn in Section VII.

II. SYSTEM MODEL AND PROBLEM STATEMENT

k

Nk

Fig. 1. Network topology with N nodes

A distributed network with N nodes, which have limited
processing capabilities, is considered with a partially con-
nected topology as illustrated in Fig. 1. A diffusion protocol
in which nodes from the same neighborhood communicate
with each other at every iteration is employed [2], although
other strategies such as incremental [1] and consensus-based
[4] could also be used. A partially connected network means
that nodes can exchange information only with their neighbors
determined by the connectivity topology. In contrast, a fully
connected network means that, data broadcast by a node can
be captured by all other nodes in the network [38]. At every
time instant i, each node k takes a scalar measurement dk(i)
according to

dk(i) = ω
H
0 xk(i) + nk(i), i = 1, 2, . . . , I, (1)

where xk(i) is the M × 1 input signal vector with zero
mean and variance σ2

x,k that is also observed by node k,
nk(i) is the noise sample measured at node k which has
zero mean and variance σ2

n,k. Observing (1), we can see that
the measurements for all nodes are related to an unknown

parameter vector ω0 with size M×1, that would be estimated
by the network. The aim of such a network is to compute an
estimate of ω0 in a distributed fashion, which can minimize
the global cost function

J(ωk(i)) =
N∑

k=1

E
∣∣dk(i)− ωk

H(i)xk(i)
∣∣2, (2)

where E denotes expected value and ωk
H(i) is the estimator

at time i. To solve this problem, one suitable technique is the
adapt–then–combine (ATC) diffusion strategy [2] described by
ψk(i) = ωk(i− 1) + µkxk(i)

[
dk(i)− ωH

k (i− 1)xk(i)
]∗
,

ωk(i) =
∑

l∈Nk

cklψl(i),

(3)
where µk is the step size, Nk indicates the set of neighbors
for node k, ψk(i) is the local estimator, |Nk| denotes the
cardinality of Nk and ckl > 0 are the combination coefficients,
which are calculated in this work using the Metropolis rule [2]
given by

ckl =
1

max(|Nk|,|Nl|) , if k ̸= l are linked
ckl = 0, for k and l not linked
ckk = 1−

∑
l∈Nk/k

ckl, for k = l

(4)
and should satisfy ∑

l

ckl = 1, l ∈ Nk∀k. (5)

Note that other combination rules can also be employed.
With this adaptation strategy, when the dimension of the
unknown parameter vector ω0 is large, this could lead to a
high communication overhead between each neighbor node
and the learning speed of the network is reduced. In order to
reduce the communication overhead, accelerate the learning
and optimize the distributed processing, we incorporate at the
kth node of the network distributed low-rank strategies based
on alternating optimization techniques.

III. DISTRIBUTED DIMENSIONALITY REDUCTION AND
ADAPTIVE PROCESSING

The proposed distributed dimensionality reduction scheme,
depicted in Fig.2, employs a transformation matrix SDk

(i)
to process the input signal xk(i) with dimensions M × 1
and projects it onto a lower D × 1 dimensional subspace
x̄k(i), where D ≪ M . Following this procedure, a low-rank
estimator ω̄k(i) is computed, and the ω̄k(i) is transmitted
by each node. In particular, the transformation matrix SDk

(i)
and low-rank estimator ω̄k(i) will be jointly optimized in the
proposed scheme according to the mean squared error (MSE)
criterion.

Specifically, we start the description of the method with an
M × D matrix SDk

(i), which carries out a dimensionality
reduction on the input signal of each agent as given by

x̄k(i) = S
H
Dk

(i)xk(i), (6)
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Dimensionality reduction
matrix SDk

(i)
Reduced-Rank
estimator ω̄k(i)

dk(i)xk(i) x̄k(i)

Design Algorithm

ek(i)
M × 1

D × 1

− +

Fig. 2. Proposed dimensionality reduction scheme at each node or agent

where, in what follows, all D–dimensional quantities are
designated with an overbar. The design of SDk

(i) and ω̄k(i)
corresponds to the optimization problem given by

{
Sopt

Dk
, ω̄opt

k

}
= min

SDk
(i),ω̄k(i)

N∑
k=1

E[|dk(i)− ω̄k
H(i)SH

Dk
(i)xk(i)|2]

+ δE[||d∗k(i)S
H
Dk

(i)xk(i)||2]

+ γE[
D∑

d=1

eHd S
H
Dk

(i)IM,Ded]

(7)

where ∗ denotes complex conjugation, ω̄k(i) is the low-rank
estimator, the M × 1 vectors ed contain one in the dth entry
and zeros elsewhere, the M ×D matrix IM,D contains a D-
dimensional identity matrix on the top and zeros elsewhere,
and the parameters γ and δ are regularization terms that ensure
the solution has rank D. In what follows, we describe the
adaptation step that computes the parameters of ω̄k(i) and
SDk

(i) based on an alternating minimization strategy, which
consists of fixing one set of parameters and then minimizing
the other.

By fixing ω̄k(i) and minimizing (7) with respect to SDk
(i),

we arrive at the following expression:

SDk
(i) = R−1

k (i)PDk
(i)R̄

−1
ω̄k

(i), (8)

where the covariance matrix of the input signal vector at node
k xk(i) is assumed to be full-rank and is given by

Rk(i) = E[xk(i)x
H
k (i)], (9)

the cross-correlation matrix is given by

PDk
(i) = E[d∗k(i)(xk(i)ω̄

H
k (i) + γIM,D)] (10)

and the covariance matrix of the reduced-rank parameter
vector is described by

R̄ω̄k
(i) = ω̄k(i)ω̄

H
k (i) + δID. (11)

We then fix SDk
(i) and minimize (7) with respect to ω̄k(i),

which results in

ω̄k(i) = R̄
−1
k (i)p̄k(i), (12)

where the covariance matrix of the reduced-rank input signal
vector that is also assumed to be full-rank is expressed by

R̄k(i) = E[SH
Dk

(i)xk(i)x
H
k (i)SDk

(i)] = E[x̄k(i)x̄
H
k (i)]

(13)

and the cross-correlation vector is given by

p̄k(i) = E[d∗k(i)S
H
Dk

(i)xk(i)] = E[d∗k(i)x̄k(i)]. (14)

The reduced-dimension parameter vector ω̄k(i) computed at
each agent is then transmitted as a local low-rank estimator
ψ̄k(i) to the other agents according to the network topology.
At the receiver of each agent, there is a combination and re-
construction step in which the received data from neighboring
nodes is combined to obtain a low-rank estimator:

ω̄k(i) =
∑
l∈Nk

cklψ̄l(i), (15)

The full-dimension estimator is then obtained through a rank-
D approximation:

ωk(i) = SDk
(i)ω̄k(i), (16)

which is derived in the Appendix.
The associated low-rank MSE is obtained by substituting

the expressions obtained in (12) and (8) into the cost function
and is described by [18]

MSE = σ2
dk

− p̄Hk (i)R̄
−1
k (i)p̄k(i) (17)

where σ2
dk

= E[|dk(i)|2]. Because there is no closed-form
expression for SDk

(i) and ω̄k(i) as they depend on each other,
a strategy to compute the parameters is needed. The proposed
strategy is based on an alternating optimization of SDk

(i)
and ω̄k(i). The rank D must be set by the designer to ensure
appropriate performance taking into account the bias-variance
tradeoff [15]. Furthermore, for the selection of D the reader is
referred to [39] for rank selection methods. In the next section,
we develop a distributed low-rank algorithm to compute the
parameters of interest.

IV. PROPOSED DISTRIBUTED LOW-RANK ALGORITHMS

In this section, we present the proposed distributed low-rank
adaptive algorithms for distributed estimation, namely DRJIO–
NLMS and DRJIO–RLS. Unlike prior work [11], [12], [13],
the proposed algorithms do not require:

• Additional cost to perform eigen–decompositions [11]
• Extra adaptive processing at the local node [12]
• Multiple matrix-vector multiplications to to build the

Krylov subspace [13]
• Costly convex optimization at the local node, which

introduces extra complexity [13].
The objective of the DRJIO–NLMS and DRJIO–RLS al-
gorithms is to perform compression/decompression and dis-
tributed parameter estimation subject to the constraint of
transmitting only D < M parameters. The algorithms are
flexible, have low cost, very fast convergence speed and
assume that the parameter D is given. Alternatively, a model-
order selection algorithm [16], [22], [40] can be employed to
compute D for each node. In particular, the algorithms rely on
an alternating optimization strategy which consists of fixing a
set of parameters SDk

(i), updating the other set of parameters
ω̄k(i), then fixing ω̄k(i) and updating SDk

(i). This alternating
approach with the recursions for SDk

(i) and ω̄k(i) is carried
out in cycles until convergence is achieved.
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A. Proposed DRJIO–NLMS algorithm

In the DRJIO–NLMS algorithm, the parameters in (7)
are optimized by an alternating procedure that adjusts one
of the parameters while keeping the other parameter fixed
using NLMS recursions. Therefore, the proposed DRJIO-
NLMS algorithm solves the optimization problem in (7) in
an alternating fashion. Using the method of steepest descent,
computing the gradient terms of the cost function in (7)
with respect to SDk

(i), replacing the expected value with
instantaneous estimates and considering the recursions in an
alternating fashion, we arrive at the proposed DRJIO–NLMS
algorithm:

SDk
(i) = SDk

(i− 1) + η(i)e∗k(i)xk(i)ω̄
H
k (i− 1)

+ η(i)
(
γd∗k(i)IM,D − δxk(i)x

H
k (i)SDk

(i− 1)
)
,

(18)

ω̄k(i) = ω̄k(i− 1) + µ(i)e∗k(i)x̄k(i), (19)

where ek(i) = dk(i) − ω̄H
k (i − 1)SH

Dk
(i − 1)xk(i), µ(i) =

µ0

xH
k (i)xk(i)

and η(i) = η0

ω̄H
k (i−1)ω̄k(i−1)xH

k (i)xk(i)
are the time–

varying step sizes. The normalization makes the setting of the
convergence factors easier, improves the convergence speed
and facilitates the comparison with other distributed LMS–
type algorithms. The recursions are computed in an alternating
way with one iteration per time instant at each node.

The proposed DRJIO–NLMS algorithm includes two steps,
namely, adaptation step and combination and reconstruction
step, which are performed using an alternating procedure
which is detailed next.

• Adaptation step
For the adaptation step, at each time instant i=1,2, . . . , I,
each node k=1,2, . . . , N, starts from generating a local low-
rank estimator through

ψ̄k(i) = ω̄k(i− 1) + µ(i)e∗k(i)x̄k(i), (20)

where ek(i) = dk(i)−ω̄H
k (i−1)SH

Dk
(i)xk(i). This local low-

rank estimator ψ̄k(i) will be transmitted to all its neighboring
nodes under the network topology structure.

Then, each node k=1,2, . . . , N, will locally update its dimen-
sionality reduction matrix according to (18) and keep it locally.
Note that SDk

(i) only employs the low-rank estimators from
neighboring nodes and the local reference signal dk(i).

• Combination and reconstruction step
At each time instant i=1,2, . . . , I, the combination and recon-
struction step starts after the adaptation step. Each node will
combine the local low-rank estimators from its neighboring
nodes and itself through

ω̄k(i) =
∑
l∈Nk

cklψ̄l(i), (21)

to compute the low-rank estimator ω̄k(i).
After the last iteration I , each node will reconstruct a full–

dimensional estimator ωk(I) through the rank-D approxima-
tion given by

ωk(I) = SDk
(I)ω̄k(I). (22)

In conclusion, during the distributed processing steps, only the
local low-rank estimator ψ̄k(i) will be transmitted through the

network. The proposed DRJIO–NLMS algorithm is detailed in
Table I.

TABLE I
THE DRJIO–NLMS ALGORITHM

Initialize: ω̄k(0) = 0, SDk
(0) = IM,D

For each time instant i=1,2, . . . , I
For each node k=1,2, . . . , N

ψ̄k(i) = ω̄k(i− 1) + µ(i)e∗k(i)x̄k(i)
where ek(i) = dk(i)− ω̄H

k (i− 1)SH
Dk

(i)xk(i)

% ψ̄k(i) is the local low-rank estimator and will be
% sent to all neighboring nodes of node k under the network
% topology structure.
SDk

(i) = SDk
(i− 1) + η(i)e∗k(i)xk(i)ω̄k(i− 1)

+η(i)
(
γd∗k(i)IM,D − δxk(i)x

H
k (i)SDk

(i− 1)
)

% The dimensionality reduction matrix SDk
(i)

% will be updated and kept locally.
end
For each node k=1,2, . . . , N

ω̄k(i) =
∑

l∈Nk

cklψ̄l(i)

% The low-rank estimator ω̄k(i)
% will be updated and kept locally.

end
end
After the last iteration I
For each node k=1,2, . . . , N

% Reconstruction.
ωk(I) = SDk

(I)ω̄k(I)
where ωk(I) is the final full–rank estimator.

end

B. Proposed DRJIO–RLS algorithm
In this subsection, we develop the DRJIO–RLS algorithm

for computing SDk
(i) and ω̄k(i), which is inspired by the

derivation of the standard recursive least squares (RLS) al-
gorithm. The main differences are that we have two sets of
recursions that update the parameters: one for SDk

(i), which
performs compression/decompression, and another for ω̄k(i),
which performs parameter estimation; and the recursions are
distributed and computed in an alternating fashion. Therefore,
we first fix ω̄k(i) in the derivation and then derive a set of
RLS recursions to compute the parameters for SDk

(i). Subse-
quently, we fix SDk

(i) and derive a set of RLS recursions to
compute the parameters for ω̄k(i). The DRJIO–RLS algorithm
consists of an adaptation step, which computes SDk

(i) and
ω̄k(i), and a combination and reconstruction step, which is
identical to that of the DRJIO-NLMS algorithm.

• Adaptation step
In order to derive the proposed algorithm, we first define

P k(i) , R−1
k (i), (23)

PDk
(i) , λPDk

(i− 1) + d∗k(i)xk(i)ω̄
H
k (i), (24)

Qω̄k
(i) , R̄−1

ω̄k
(i− 1), (25)

and rewrite the expression in (8) as follows

SDk
(i) = R−1

k (i)PDk
(i)R̄

−1
ω̄k

(i− 1)

= P k(i)PDk
(i)Qω̄k

(i)

= λP k(i)PDk
(i− 1)Qω̄k

(i) + d∗k(i)P k(i)xk(i)ω̄
H
k (i)Qω̄k

(i)

= SDk
(i− 1) + kk(i)

[
d∗k(i)t

H
k (i)− xH

k (i)SDk
(i− 1)

]
,

(26)
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where the D× 1 vector tk(i) = Qω̄k
(i)ω̄k(i) and the M × 1

Kalman gain vector is

kk(i) =
λ−1P k(i− 1)xk(i)

1 + λ−1xH
k (i)P k(i− 1)xk(i)

. (27)

In addition, the update for the M ×M matrix P k(i) employs
the matrix inversion lemma [6] as follows:

P k(i) = λ−1P k(i− 1)− λ−1kk(i)x
H
k (i)P k(i− 1) (28)

and the D × 1 vector tk(i) is updated as

tk(i) =
λ−1Qω̄k

(i− 1)ω̄k(i− 1)

1 + λ−1ω̄H
k (i− 1)Qω̄k

(i− 1)ω̄k(i− 1)
. (29)

The matrix inversion lemma [6] is then used to update the
D ×D matrix Qω̄k

(i) as described by

Qω̄k
(i) = λ−1Qω̄k

(i− 1)− λ−1tk(i)ω̄
H
k (i− 1)Qω̄k

(i− 1).
(30)

Equations (23)–(30) constitute the key steps of the proposed
DRJIO-RLS algorithm for computing SDk

(i).
To derive the expression for updating ω̄k(i), the following

associated quantities are defined

Φ̄k(i) , R̄−1
k (i) (31)

p̄k(i) = λp̄k(i− 1) + d∗k(i)xk(i). (32)

Then, equation (12) will be rewritten as

ω̄k(i) = R̄
−1
k (i)p̄k(i)

= Φ̄k(i)p̄k(i)

= λΦ̄k(i)p̄k(i− 1) + d∗k(i)Φ̄k(i)xk(i)

= ω̄k(i− 1) + k̄k(i)

[
d∗k(i)− x̄H

k (i)ω̄k(i− 1)

]
,

(33)

where the D × 1 Kalman gain vector is given by

k̄k(i) =
λ−1Φ̄k(i− 1)x̄k(i)

1 + λ−1x̄H
k (i)Φ̄k(i− 1)x̄k(i)

. (34)

and the update for the matrix inverse Φ̄k(i) employs the matrix
inversion lemma [6]

Φ̄k(i) = λ−1Φ̄k(i− 1)− λ−1k̄k(i)x̄
H
k (i)Φ̄k(i− 1). (35)

Equations (31)–(35) are the key steps of the proposed DRJIO-
RLS algorithm for computing ω̄k(i). Since the combination
and reconstruction step is identical to that of DRJIO-NLMS we
omit it here. The proposed DRJIO–RLS algorithm is detailed
in Table II.

V. ANALYSIS OF THE PROPOSED ALGORITHMS

In this section, the computational complexity of the pro-
posed algorithms is detailed and an analysis of sufficient con-
ditions for convergence and a convergence proof to the optimal
low-rank estimator are developed. Regarding our convergence
proof, it is worth noting that the proof described in [32] was
performed for a non-adaptive scenario, whereas the work in
[33] was carried out for an adaptive setting. Our proof has
been developed for the distributed adaptive case.

TABLE II
THE DRJIO-RLS ALGORITHM

Initialize: ω̄k(0)=0
P k(0) = δ−1IM×M , Qω̄k

(0) = δ−1ID×D ,
Φ̄k(0) = δ−1ID×D and δ = small positive constant

For each time instant i=1,2, . . . , I
For each node k=1,2, . . . , N

kk(i) =
λ−1Pk(i−1)xk(i)

1+λ−1xH
k

(i)Pk(i−1)xk(i)

tk(i) =
λ−1Qω̄k

(i−1)ω̄k(i−1)

1+λ−1ω̄H
k

(i−1)Qω̄k
(i−1)ω̄k(i−1)

SDk
(i) = SDk

(i− 1) + kk(i)

[
d∗k(i)t

H
k (i)− xH

k (i)SDk
(i− 1)

]
P k(i) = λ−1P k(i− 1)− λ−1kk(i)x

H
k (i)P k(i− 1)

Qω̄k
(i) = λ−1Qω̄k

(i− 1)− λ−1tk(i)ω̄
H
k (i− 1)Qω̄k

(i− 1)

k̄k(i) =
λ−1Φ̄k(i−1)x̄k(i)

1+λ−1x̄H
k

(i)Φ̄k(i−1)x̄k(i)

ψ̄k(i) = ω̄k(i− 1) + k̄k(i)

[
d∗k(i)− x̄

H
k (i)ω̄k(i− 1)

]
Φ̄k(i) = λ−1Φ̄k(i− 1)− λ−1k̄k(i)x̄

H
k (i)Φ̄k(i− 1)

end
For each node k=1,2, . . . , N

ω̄k(i) =
∑

l∈Nk

cklψ̄l(i)

end
end
For each node k=1,2, . . . , N

% Reconstruction.
ωk(I) = SDk

(I)ω̄k(I)
where ωk(I) is the final full–rank estimator.

end

A. Computational Complexity Analysis

Here, we evaluate the computational complexity of the pro-
posed DRJIO–NLMS and DRJIO–RLS algorithms. The com-
putational complexity of the proposed DRJIO–NLMS algo-
rithm is O(DM), while the proposed DRJIO–RLS algorithm
has a complexity O(M2+D2), where O(·) is used to classify
algorithms according to how their requirements in arithmetic
operations grow as the input size grows. The distributed NLMS
algorithm [2] requires O(M), while the complexity of the
distributed RLS algorithm [41] is O(M2). For the Krylov
Subspace NLMS [13] the complexity reaches O(DM2), while
for the distributed principal subspace estimation algorithms
[11], the complexity is O(M3). Thus, the proposed DRJIO–
NLMS algorithm has a much lower computational complexity,
and because we consider D ≪ M , it has a comparable cost
to the distributed NLMS algorithm [2]. The computational
complexity of the model-order selection algorithm of [40] with
extended filters requires 3(Dmax −Dmin) + 1 additions and a
sorting algorithm to find the best model order. An additional
and very important aspect of distributed low-rank algorithms
is that the dimensionality reduction results in a decrease in
the number of transmitted parameters from M to D, which
corresponds to a less stringent bandwidth requirement.

The details of the computational complexity of the the
proposed and the existing algorithms, are shown in Table III,
where M is the length of the unknown parameter that needs
to be estimated, D is the reduced dimension and |Nk| is
the cardinality of Nk. To further illustrate the computational
complexity for different algorithms, we present the main trends
in terms of the number of multiplications for the proposed and
existing algorithms in Fig. 3. For the parameters, we consider
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Fig. 3. Complexity in terms of multiplications

a network with N = 20 nodes, take node 14 as an example,
and set D = 5 and |Nk| = 5.

B. Sufficient Conditions for Convergence

To start the analysis, we assume that the transforma-
tion matrix SDk

(i) that performs compression and decom-
pression/reconstruction and the low-rank parameter estimator
ωk(i) aim to estimate the optimum pair SDk,opt

and ω̄k,opt(i)
containing a common set of parameters of interest in the
network. Then, to develop the analysis and proofs, we need
to define a metric space and the Hausdorff distance that will
extensively be used. A metric space is an ordered pair (M, r),
where M is a nonempty set, and r is a metric on M, i.e., a
function r : M×M → R such that, for any x, y, z, and M,
the following conditions hold.

1) r(x, y) ≥ 0.
2) r(x, y) = 0 if x = y.
3) r(x, y) = r(y, x).
4) r(x, y) ≤ r(x, y) + r(y, z) (triangle inequality).
The Hausdorff distance measures how far two subsets of a

metric space are from each other and is defined by

rH(X,Y ) = max

{
sup
x∈X

inf
y∈Y

r(x, y), sup
y∈Y

inf
x∈X

r(x, y)

}
.

(36)
The proposed algorithms can be stated as alternating min-

imization strategies performed in a distributed fashion and
expressed as

SDk
(i) ∈ arg min

Sopt
Dk

∈SDk
(i)

Dk

(
Sopt

Dk
, ω̄k(i)

)
for k = 1, 2, . . . , N,

(37)
where Dk(·) is a distance metric and

ω̄k(i) ∈ arg min
ω̄opt

k ∈ω̄k(i)
Dk

(
SDk

(i), ω̄opt
k

)
for k = 1, 2, . . . , N

(38)

where Sopt
Dk

and ω̄opt
k correspond to the optimal values of

SDk
(i) and ω̄k(i), respectively, and the sequences of com-

pact sets {SDk
(i)}i≥0 and {ω̄k(i)}i≥0 converge to the sets

SDk,opt
and ω̄k,opt, respectively.

The sets SDk,opt
and ω̄k,opt are not directly given, but

we observe the sequence of compact sets {SDk
(i)}i≥0 and

{ω̄k(i)}i≥0. The goal of the proposed algorithms is to find a
sequence of SDk

(i) and ω̄k(i) in a distributed way such that

lim
i→∞

Dk

(
SDk

(i), ω̄k(i)

)
= Dk

(
Sopt

Dk
, ω̄opt

k

)
. (39)

To present a set of sufficient conditions under which the
proposed algorithms converge, we employ the so–called three–
and four–point properties [32], [33], [42], which are used in
the study of the theory of convex sets. Let us assume that
there is a function f : M×M → R such that the following
conditions are satisfied.

1) Three–point property (Sopt
Dk

, S̃Dk
, ω̄opt

k ). For all i ≥
1, Sopt

Dk
∈ SDk

(i), ω̄opt
k ∈ ω̄k(i) and S̃Dk

∈

argminω̄opt
k ∈ω̄k(i)

Dk

(
Sopt

Dk
, ω̄opt

k

)
, we have

f

(
Sopt

Dk
, S̃Dk

)
+Dk

(
S̃Dk

, ω̄opt
k

)
≤ Dk

(
Sopt

Dk
, ω̄opt

k

)
.

(40)
2) Four–point property (Sopt

Dk
, ω̄opt

k , S̃Dk
, ˜̄ωk). For all

i ≥ 1, Sopt
Dk

, S̃Dk
∈ SDk

(i), ω̄opt
k ∈ ω̄k(i) and

˜̄ωk ∈ argminω̄opt
k ∈ω̄k(i)

Dk

(
S̃Dk

, ω̄opt
k

)
, we have

Dk

(
Sopt

Dk
, ˜̄ωk

)
≤ Dk

(
Sopt

Dk
, ω̄opt

k

)
+ f

(
Sopt

Dk
, S̃Dk

)
.

(41)

Theorem: Let {SDk
(i)}i≥0, {ω̄k(i)}i≥0, Sopt

Dk
, ω̄opt

k be
compact subsets of the compact metric space (M, r) such
that

SDk
(i)

rh→ Sopt
Dk

ω̄k(i)
rh→ ω̄opt

k (42)

and let Dk : M×M → R be a continuous function.
Now, let conditions 1) and 2) hold. Then, for the proposed

algorithms, we have

lim
i→∞

Dk

(
SDk

(i), ω̄k(i)

)
= Dk

(
Sopt

Dk
, ω̄opt

k

)
. (43)

A general proof of this theorem is detailed in [32], [33].

C. Convergence to the Optimal Low-Rank Estimator

In this section, we show that the proposed low–rank al-
gorithm globally and exponentially converges to the optimal
low-rank estimator [15], [43]. This result is applicable to least-
squares type algorithms with forgetting factor λ = 1. We
remark that for stochastic gradient (or LMS) algorithms and
least-squares algorithms with forgetting factor λ ̸= 1, there
will be a misadjustment or loss in MSE due to the adaptation
with the step size when an LMS algorithms is adopted, or due
to the forgetting factor when an RLS algorithm is chosen. To
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TABLE III
COMPUTATIONAL COMPLEXITY OF DIFFERENT ALGORITHMS

Algorithm Multiplications Additions
DRJIO–NLMS 2(D + 1)M + (3 + |Nk|)D + 5 (2D + 1)M + (2 + |Nk|)D − 2
DRJIO–RLS 2M2 + (3 + 2D)M + 4D2 2M2 + 2DM + 4D2

+(9 + |Nk|)D +(2 + |Nk|)D
Distributed NLMS [2] (4 + |Nk|)M + 1 (5 + |Nk|)M − 1
Distributed RLS [41] 4M2 + (12 + |Nk|)M − 1 4M2 + (16 + |Nk|)M + 1

Krylov Subspace 6DM2 + 4M + (5 + |Nk|)D 6DM2 + 2M + (2 + |Nk|)D
NLMS [13]

Distributed principal M3 + 2(D + 2)M M3 + (D + 1)M
subspace estimation [11] +(3 + |Nk|)D + 4 +(2 + |Nk|)D − 1

proceed with our proof, let us rewrite the expressions in (8)
and (10 for time instant zero as follows:

Rk(0)SDk
(0)R̄ω̄k

(0) = PDk
(0) = pk(0)ω̄

H
k (0) + δΥ,

(44)

where Υ =
[ ID
0M−D×D

]
, Υ is an M×D matrix containing

an identity matrix ID with size D and an M −D×D matrix
with zeros 0M−D×D, δ is a small positive scalar used to
regularize the recursion at initialization and ensure that a rank-
D matrix PDk

(0) is obtained, and the D-dimensional set of
normal equations that must be solved to compute ω̄k(1) is
given by

R̄k(0)ω̄k(1) = S
H
Dk

(0)Rk(0)SDk
(0)ω̄k(1)

= SDk
(0)pk(0) = p̄k(0),

(45)

where pk(i) = E[dk(i)
∗xk(i) is the cross-correlation vector.

Using (44), we can obtain the following relation

R̄ω̄k
(0) =

(
SH

Dk
(0)R2

k(0)SDk
(0)

)−1

× SDk
(0)Rk(0)PDk

(0). (46)

Substituting the aforementioned result for R̄ω̄k
(0) into the

expression in (44), we get a recursive expression for SDk
(0)

as

SDk
(0) = R−1

k (0)PDk
(0)

(
SH

Dk
(0)Rk(0)PDk

(0)

)−1

×
(
SH

Dk
(0)R2

k(0)SDk
(0)

)−1

. (47)

Using (44), we can express ω̄k(1) as

ω̄k(1) =

(
SH

Dk
(0)Rk(0)SDk

(0)

)−1

SH
Dk

(0)pk(0). (48)

For the proposed DRJIO–NLMS and DRJIO–RLS, the relation
is given by

ωk(1) = SDk
(1)

∑
l∈Nk

cklω̄l(1). (49)

Substituting SDk
(1) and ω̄l(1) into (49), we obtain

ωk(1) = R
−1
k (1)PDk

(1)

(
SH

Dk
(1)Rk(1)PDk

(1)

)−1

×
(
SH

Dk
(1)R2

k(1)SDk
(1)

)−1

×
∑
l∈Nk

ckl

(
SH

Dl
(0)Rl(0)SDl

(0)

)−1

SH
Dl
(0)pl(0).

(50)

More generally, we can express the proposed distributed
algorithms by the following recursion:

ωk(i) = SDk
(i)

∑
l∈Nk

cklω̄l(i)

= R−1
k (i)PDk

(i)

(
SH

Dk
(i)Rk(i)PDk

(i)

)−1

×
(
SH

Dk
(i)R2

k(i)SDk
(i)

)−1

×
∑
l∈Nk

ckl

(
SH

Dl
(i− 1)Rl(i− 1)SDl

(i− 1)

)−1

× SH
Dl
(i− 1)pl(i− 1). (51)

At this point, we resort to the assumption that the matrices
SDk

(i) for each node k must converge to the same values,
which correspond to the optimal transformation matrix. Be-
cause the optimal low-rank filter can be described by the
eigenvalue decomposition of R−1/2

k (i)pk(i) [20], [21], where
R

−1/2
k (i) is the square root of the matrix Rk(i), and pk(i) is

the cross-correlation vector, we have

R
−1/2
k (i)pk(i) = ΦkΛkΦ

H
k pk(i), (52)

where Λk is an M×M diagonal matrix with the eigenvalues of
Rk, and Φk is a M ×M unitary matrix with the eigenvectors
of Rk.

Let us also assume that there exists some ωk(0) such that
the randomly selected SDk

(0) can be written as [21]

SDk
(0) = R

−1/2
k (i)Φkωk(0), (53)

Using (52) and (53) in (51) together with the assumption
and some manipulation of the algebraic expressions, we can
express (51) in a more compact way that is suitable for
analysis, as given by

ωk(i) =
∑
l∈Nk

cklΛ
2
lωl(i− 1)

(
ωH

l (i− 1)Λ2
lωl(i− 1)

)−1

× ωH
l (i− 1)ωl(i− 1). (54)

The aforementioned expression can be decomposed as follows:

ωk(i) =
∑
l∈Nk

cklQl(i)Ql(i− 1) . . .Ql(1)ωl(0), (55)
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where

Ql(i) = Λ2i
l ωl(0)

(
ωH

l (0)Λ4i−2
l ωl(0)

)−1
ωH

l (0)Λ2i−2
l .

(56)
At this point, we need to establish that the norm of SDk

(i), for
all i, is both lower and upper bounded, i.e., 0 <∥ SDk

(i) ∥<
∞, for all i, and that ωk(i) = SDk

(i)
∑

l∈Nk
cklω̄l(i)

exponentially approaches ωk,opt(i) as i increases. Due to the
linear mapping, the boundedness of SDk

(i) is equivalent to the
boundedness of ωk(i). Therefore, we have upon convergence
when i → ∞ that

ωH
k (i)ωk(i− 1) = ωH

k (i− 1)ωk(i− 1). (57)

Because ∥ ωH
k (i)ωk(i − 1) ∥≤∥ ωH

k (i − 1) ∥∥ ωk(i) ∥
and ∥ ωH

k (i − 1)ωk(i − 1) ∥=∥ ωk(i − 1) ∥2, the rela-
tion ωH

k (i)ωk(i − 1) = ωH
k (i − 1)ωk(i − 1) implies that

∥ ωk(i) ∥≥∥ ωk(i− 1) ∥, and hence we have

∥ ωk(∞) ∥≥∥ ωk(i) ∥≥∥ ωk(0) ∥ . (58)

To show that the upper bound ∥ ωk(∞) ∥ is finite, let
us express the M × M matrix Qk(i) as a function of the

M × 1 vector ωl(i) =

[
ωl,1(i)
ωl,2(i)

]
and the M × M matrix

Λ =

[
Λl,1

Λl,2

]
. Substituting the previous expressions

of ωl(i) and Λkl into Ql(i) as given in (56), we obtain

Ql(i) =

[
Λ2i

l,1ωl,1(0)

Λ2i
l,2ωl,2(0)

] (
ωH

l,1(0)Λ
4i−2
l,1 ωl,1(0)

+ ωH
l,2(0)Λ

4i−2
l,2 ωl,2(0)

)−1
[
ωH

l,1(0)Λ
2i−2
l,1

ωH
l,2(0)Λ

2i−2
l,2

]
(59)

Using the matrix identity (A +B)−1 = A−1 −A−1B(I +
A−1B)−1A−1 in the decomposed Ql(i) in (59) and making
i large, we get

Ql(i) = diag(1 . . . 1︸ ︷︷ ︸
D

0 . . . 0︸ ︷︷ ︸
M−D

) +Ol

(
ϵl(i)

)
, (60)

where ϵl(i) = (σr+1/σr)
2i, in which σr+1 and σr are the

(r+1)th and the rth largest singular values of R−1/2
l (i)pl(i),

respectively, and O(·) denotes the order of the argument.
Based on (60), it follows that, for some positive constant g,
we have ∥ ωl(i) ∥≤ 1 + gϵl(i). Based on (55), we obtain

∥ ωk(∞) ∥ ≤
∑
l∈Nk

ckl(∥ Ql(∞) ∥ . . . ∥ Ql(1) ∥∥ Ql(0) ∥)

≤
∑
l∈Nk

ckl

(
∥ ωl(0) ∥

∞∏
i=0

(
1 + gϵl(i)

))

=
∑
l∈Nk

ckl

(
∥ ωl(0) ∥ exp

( ∞∑
i=1

log
(
1 + gϵl(i)

)))

≤
∑
l∈Nk

ckl

(
∥ ωl(0) ∥ exp

( ∞∑
i=1

gϵl(i)

))
=∥

∑
l∈Nk

ckl

(
∥ ωl(0) ∥ exp

(
g

1− (σr+1/σr)2

))
.

(61)
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Fig. 4. Network topology with N = 20 nodes

With the previous development, the norm of ωk(i) is proven
to be both lower and upper bounded. Once this case has been
established, the expression in (51) converges for a sufficiently
large i to the low-rank Wiener filter. This condition is verified
by equating the terms of (54), which yields

ωk(i) =
∑
l∈Nk

ckl

(
R

−1/2
l (i)Φl,1Λl,1Φ

H
l,1pl(i) +Ol

(
ϵl(i)

))
(62)

where Φl,1 is a M×D matrix with the D largest eigenvectors
of Rl(i), and Λl,1 is a D × D matrix with the largest
eigenvalues of Rl(i).

VI. SIMULATION RESULTS

In this section, we investigate the performance of the
proposed DRJIO–NLMS and DRJIO–RLS algorithms for dis-
tributed estimation in two scenarios: wireless sensor networks
and smart grids.

A. Wireless Sensor Networks

In this subsection, we compare the proposed DRJIO–NLMS
and DRJIO–RLS algorithms with the distributed NLMS algo-
rithm (normalized version of [2]), distributed RLS algorithm
[41], Krylov subspace NLMS [13] and distributed principal
subspace estimation [11], based on their MSE performance.

With the network topology structure outlined in Fig. 4 with
N = 20 nodes, we consider numerical simulations under three
scenarios for the parameter vector ωo:

• Full–rank system with M=20
• Sparse system with M=20 (D non-zero coefficients and

M −D zeros coefficients)
• Full–rank system with M=60

The input signal is generated as xk(i) = [xk(i) xk(i −
1) ... xk(i −M + 1)] and xk(i) = uk(i) + αkxk(i − 1),
where αk is a correlation coefficient and uk(i) is a white noise
process with variance σ2

u,k = 1−|αk|2, to ensure the variance
of xk(i) is σ2

x,k = 1. In particular, this application requires
the estimation of a set of parameters that could be modeled
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Fig. 5. Full–rank system with M=20

as a finite-impulse response (FIR) filter (related to a moving
average (MA) model). Furthermore, the algorithms would also
work with an input generated by an auto-regressive (AR)
model but their performance would depend on the condition
number and the rank of the correlation matrix of the input
data. The noise samples are modeled as complex Gaussian
noise with variance σ2

n,k = 0.001. We have adopted the
regularization parameters γ = 0.02 and δ = 0.01 in all
examples. We have also evaluated the impact of different
values of regularization parameters and the results indicate
that the performance of the algorithms degrades when the
parameters are not well chosen. Moreover, the optimized
values work very well for a wide range of scenarios and values
of noise variance. We assume that the network has error–free
transmission between linked nodes.

The step size µ0 for the distributed NLMS algorithm,
Krylov subspace NLMS, distributed principal subspace esti-
mation and DRJIO–NLMS is set to 0.15 and η0 is set to 0.5.
For the distributed RLS algorithm and DRJIO–RLS algorithm,
the forgetting factor λ is equal to 0.99 and δ is set to 0.11. In
Fig. 5, we compare the proposed DRJIO–NLMS and DRJIO–
RLS algorithms with the existing strategies using the full–rank
system with M=20 and D=5. The dimensionality reduction
matrix SDk

(0) is initialized as [ID 0D,M−D]T .
We observe that the proposed DRJIO–RLS algorithm has

the best performance when compared with other algorithms,
while the proposed DRJIO–NLMS algorithm also has a better
performance, which is very close to the distributed RLS
algorithm. The superior performance of DRJIO-RLS can be
explained by the fact that the convergence rate or learning
speed of adaptive algorithms depends on the number of
parameters that need to be estimated. This is well known in
adaptive signal processing [6]. For instance, when we compare
the DRJIO-RLS and the full-rank RLS, the difference is that
the proposed DRJIO-RLS estimates the unknown parameters
using a reduced dimension and retaining the most relevant fea-
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Fig. 6. Full–rank system with M=60

tures of the data. As a result, the DRJIO-RLS converges faster
than the standard RLS algorithm. However, its complexity is
an order of magnitude lower than those of the distributed RLS
algorithm and the DRJIO–RLS algorithm.

When the full–rank system M increases to 60, Fig. 6
illustrates that, the proposed DRJIO–RLS algorithm still has
the best performance, while DRJIO–NLMS algorithm also
shows a fast convergence rate, which is comparable to the
distributed RLS algorithm. For the distributed NLMS, Krylov
subspace NLMS and distributed principal subspace estimation
algorithms, their convergence speed is much lower.
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−15
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E
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)

 

 

DJIO−NLMS
DJIO−RLS

Fig. 7. MSE performance versus rank D for a sparse system with M=100

In a sparse system scenario with M = 100, we first
evaluate the MSE performance versus the rank D and then we
assess the MSE performance versus the number of iterations,
as shown in Figs. 7 and 8, respectively. In particular, the
curves illustrating the MSE performance versus the rank D
are obtained after 500 iterations for a range of D between
1 and 10. The results depicted in Fig. 7 indicate that the
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best rank for both DJRIO–NLMS and DJRIO–RLS algorithms
corresponds to D = 5 and that the MSE performance gradually
degrades for other values. The rank D should be carefully
selected as it affects the performance of these algorithms
and determines the number of parameters that should be
exchanged between nodes. Moreover, we have considered
D = 5 for assessing the MSE performance versus the number
of iterations for the proposed and other existing algorithms, as
shown in Fig. 8. The results indicate that the proposed DRJIO–
RLS and DRJIO–NLMS algorithms have a more pronounced
performance advantage over the distributed NLMS, the Krylov
subspace NLMS and the distributed principal subspace esti-
mation algorithms. Specifically, the proposed DRJIO–NLMS
algorithm performs very close to the distributed RLS algorithm
and outperforms the other analyzed algorithms.

In the last example on wireless sensor networks, we com-
pare the performance between the proposed DRJIO–NLMS
and the DCE scheme in [26], under different sparsity level
scenarios. The step size for both algorithms is set to 0.3 and the
η0 for DRJIO–NLMS is set to 0.5. The length of the unknown
parameter ω0 is 20 and D = 10. For the first scenario, the
number of non–zero coefficients in the unknown parameter
is 3 and for the second scenario, the number of non–zero
coefficients is set to 10. The comparison results are shown
in Fig. 9 and 10. It is clear that in a very sparse system,
the proposed DCE scheme outperforms the DRJIO–NLMS
algorithm. With the decrease of the system sparsity level,
the proposed DRJIO–NLMS algorithm outperforms the DCE
scheme. The results of 9 and 10 indicate that the proposed
DRJIO–NLMS algorithm is superior to the DCE scheme when
the level of sparsity is not very high. The computational
complexity of DRJIO-NLMS is much lower than the DCE
scheme because the latter requires a basis pursuit algorithm
to reconstruct the full-dimension estimator and DRJIO-NLMS
employs a rank-D approximation based on a simple matrix-
vector multiplication.

B. Smart Grids

In order to test the proposed algorithms in a possible
smart grid scenario, we consider the Hierarchical IEEE 14–
bus system which has been proposed in [44], where 14 is
the number of substations. At every time instant i, each
bus k, k = 1, 2, . . . , 14, takes a scalar measurement dk(i)
according to

dk(i) = Xk

(
ω0(i)

)
+ nk(i), k = 1, 2, . . . , 14, (63)

where ω0(i) is the state vector of the entire interconnected
system, Xk(ω0(i)) is a nonlinear measurement function of
bus k. The quantity nk(i) is the measurement error with mean
equal to zero and which corresponds to bus k.

We focus on the linearized DC state estimation problem.
We assume that each bus connects and measures the state of
three users. As a result, for the IEEE–14 bus system, there will
be 42 users in the system. The system is built with 1.0 per
unit (p.u) voltage magnitudes at all users and j1.0 p.u. branch
impedance. Then, the state vector ω0(i) is taken as the voltage
phase angle vector ω0 for all users. Initially, each bus only
knows the voltage phase angle of the three users connected to
it. With the help of distributed estimation algorithms, each bus
is supposed to estimate the state of the voltage phase angles for
all users in the system. Therefore, the nonlinear measurement
model for state estimation (63) is approximated by

dk(i) = x
H
k (i)ω0 + nk(i), k = 1, 2, . . . , 14, (64)

where xk(i) is the measurement Jacobian vector for bus k.
Then, the aim of the distributed estimation algorithm is to
compute an estimate of ω0, which can minimize the cost
function given by

Jωk(i)(ωk(i)) = E|dk(i)− xH
k (i)ωk(i)|2. (65)

and the global network cost function is described by

Jω(ω) =
N∑

k=1

E|dk(i)− xH
k (i)ω|2. (66)

We compare the proposed algorithms with the M–CSE algo-
rithm [4], the distributed RLS algorithm [41], the distributed
NLMS algorithm (normalized version of [2]) and distributed
principal subspace estimation [11] in terms of MSE per-
formance. The MSE comparison is used to determine the
accuracy of the algorithms and the rate of convergence. We
define the Hierarchical IEEE–14 bus system as in Fig. 11.

All buses are corrupted by additive white Gaussian noise
with variance σ2

n,k = 0.001. The step size for the distributed
NLMS [2] and the proposed DRJIO–NLMS algorithms is µ =
0.15 and η0 is set to 0.5. The parameter vector ω0 is set to
an all–one vector with size 42 × 1. For the distributed RLS,
DRJIO–RLS algorithms the forgetting factor λ is set to 0.99
and δ is equal to 0.11. The reduced dimension D is set to
10 for both DRJIO–RLS and DRJIO–NLMS algorithm. The
results are averaged over 100 independent runs. We simulate
the proposed algorithms for smart grids under a static scenario.

From Fig. 12, it can be seen that the proposed DRJIO–
RLS algorithm has the best performance, and significantly



11

0  50 100 150 200 250 300 350 400
−30

−25

−20

−15

−10

−5

0

5

10

Time instant, i

M
S

E
(d

B
)

Sparsity Level S=3

 

 
DRJIO−NLMS
DCE Scheme

Fig. 9. DRJIO–NLMS vs DCE scheme with sparsity level S=3
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Fig. 10. DRJIO–NLMS vs DCE scheme with sparsity level S=10
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outperforms the distributed NLMS [2] and the M–CSE [4] al-
gorithms. The DRJIO–NLMS is slightly worse than distributed
RLS algorithm [41], but better than the distributed NLMS and
M–CSE algorithms. In addition, the proposed DRJIO–NLMS
and DRJIO–RLS algorithms can compress the data to be
transmitted from each node from M to D, resulting in reduced
bandwidth requirements. These algorithms are also important
tools for dealing with large sets of data which exhibit some
form of redundancy, sparsity and are compressible.

VII. CONCLUSIONS

In this paper, we have proposed a novel distributed low-
rank scheme along with efficient algorithms for distributed
estimation in wireless sensor networks and smart grids. Sim-
ulation results have shown that the proposed DRJIO–RLS has
the best performance, while DRJIO–NLMS algorithm has a
better performance and lower cost than existing algorithms
in all the three scenarios considered. We have also compared
the proposed algorithms with the DCE scheme, which was
presented in [26], for systems with different levels of sparsity.
Furthermore, the proposed scheme requires the transmission
of only D parameters instead of M , resulting in higher band-
width efficiency than standard schemes. In addition, with the
popularity of neural network based deep learning techniques,
the proposed novel distributed low-rank schemes also have
the potential to reduce computational complexity of such
techniques.

APPENDIX
RECONSTRUCTION USING A RANK-D APPROXIMATION

In this appendix, we show how the reconstruction of the full-
dimension estimator ωk(i) can be carried out using a rank-D
approximation with the low-rank estimator ω̄k(i), i. e.,

ωk
(D)(i) = SDk

(i)ω̄k(i), (67)
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In order to show the above relation, we consider the expression
of the low-rank estimator given by

ω̄k(i) = R̄
−1
k (i)p̄k(i)

=
(
SH

Dk
(i)Rk(i)SDk

(i)
)−1

SH
Dk

(i)pk(i).
(68)

and the Wiener filter given by

ωk(i) = R
−1
k (i)pk(i). (69)

Using the fact that the low-rank estimator converges to the
low-rank Wiener filter, SDk

(i) converges to a M ×D matrix
with the eigenvectors ΦD and an eigenvalue decomposition of
Rk(i) = ΦNΛNΦH

N =
∑N

n=1 λn(i)ϕn(i)ϕ
H
n (i), where ΛN

and ΦN are the N ×N diagonal matrix with the eigenvalues
and the N×N unitary matrix with the eigenvectors of Rk(i),
respectively, λn(i) is the nth eigenvalue and ϕn(i) is the nth
eigenvector of Rk(i), we have

ω̄k(i) =
(
SH

Dk
(i)

N∑
n=1

λn(i)ϕn(i)ϕ
H
n (i)SDk

(i)
)−1

SH
D(i)pk(i)

= (ΦH
DΦNΛNΦH

NΦD)−1ΦH
Dpk(i)

= Λ−1
D ΦH

Dpk(i),
(70)

then, multiplying SDk
(i) = ΦD on both sides, we obtain

SDk
(i)ω̄k(i) = SDk

(i)Λ−1
D ΦH

Dpk(i)

= ΦDΛ−1
D ΦH

Dpk(i)

= ωk
(D)(i),

(71)

where R(D)
k (i) = ΦDΛDΦH

D is a rank-D approximation
of Rk(i) and ωk

(D)(i) = ΦDΛ−1
D ΦH

Dpk(i) is the rank-D
approximation of ωk(i), which gives us the relation in (67).
Note that when D = M , the D-rank approximation yields the
full-rank Wiener filter.
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