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We compute the thermal conductivity of water within linear response theory from equilibrium
molecular dynamics simulations, by adopting two different approaches. In one, the potential energy
surface (PES) is derived on the fly from the electronic ground state of density functional theory
(DFT) and the corresponding analytical expression is used for the energy flux. In the other, the
PES is represented by a deep neural network (DNN) trained on DFT data, whereby the PES has an
explicit local decomposition and the energy flux takes a particularly simple expression. By virtue
of a gauge invariance principle, established by Marcolongo, Umari, and Baroni, the two approaches
should be equivalent if the PES were reproduced accurately by the DNN model. We test this hy-
pothesis by calculating the thermal conductivity, at the GGA (PBE) level of theory, using the direct
formulation and its DNN proxy, finding that both approaches yield the same conductivity, in excess
of the experimental value by approximately 60%. Besides being numerically much more efficient
than its direct DFT counterpart, the DNN scheme has the advantage of being easily applicable to
more sophisticated DFT approximations, such as meta-GGA and hybrid functionals, for which it
would be hard to derive analytically the expression of the energy flux. We find in this way, that
a DNN model, trained on meta-GGA (SCAN) data, reduce the deviation from experiment of the
predicted thermal conductivity by about 50%, leaving the question open as to whether the residual
error is due to deficiencies of the functional, to a neglect of nuclear quantum effects in the atomic
dynamics, or, likely, to a combination of the two.

I. INTRODUCTION

Heat transport plays an important role in many areas
of science, such as, e.g., materials and planetary sciences,
with major impact on technological issues, such as energy
saving and conversion, heat dissipation and shielding,
etc. Numerical studies of heat transport at the molec-
ular scale often rely on Boltzmann’s kinetic approach [1–
4]. This is adequate when the relaxation processes are
dominated by binary collisions, as in the case of dilute
gases of particles, such as atoms or molecules, or of quasi-
particles, such as phonons in crystalline solids. A more
general approach to calculate the transport coefficients is
provided by simulations of the molecular dynamics (MD),
either directly via non-equilibrium MD [5–8], or in combi-
nation with Green-Kubo (GK) theory of linear response
[5, 6, 9, 10] via equilibrium MD.

Much progress has been made in recent years to
develop ab initio approaches to heat transport based
on electronic density functional theory (DFT). Some
schemes used ad hoc ingredients, such as a (rather arbi-
trary) quantum-mechanical definition of the atomic en-
ergies [11]. Other schemes used a definition of the en-
ergy flux based on the normal-mode decomposition of
the atomic coordinates and forces, which is only possible
in crystalline solids [12]. In this work we follow the for-

mulation of Marcolongo, Umari, and Baroni (MUB) [13],
who derived a general DFT expression for the adiabatic
energy flux, based on a gauge invariance principle for the
transport coefficients [13, 14]. The MUB approach made
ab initio simulations of heat transport possible, not only
for crystalline materials, but also for disordered systems,
like liquids and glasses, albeit at the price of lengthy and
costly simulations. Progress in statistical techniques for
the analysis of the flux time series [15, 16] made possi-
ble to achieve 10% accuracy in the calculated thermal
conductivity with simulations of a few dozen to a few
hundred picoseconds. Still the computational burden of
ab initio MD, where the potential energy surface (PES)
is generated on the fly from DFT, is heavy and requires
access to high performance computer platforms for sub-
stantial wall-clock times (see, e.g., Appendix F of Ref.
[17] for details on the computational cost of a MUB cal-
culation).

In the last decade, a combination of standard
electronic-structure methods, based on DFT, and new
machine-learning techniques have allowed the construc-
tion of inter-atomic potentials possessing quantum me-
chanical accuracy at a cost that is only marginally higher
than that of classical force fields. All the machine learned
potentials, which are represented either by a deep-neural
network (DNN) [18–21] or by a Gaussian-process [22],
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use a local decomposition of the total potential energy
of the system in terms of atomic contributions, which
makes straightforward to define the energy flux, or cur-
rent, from which to compute the heat conductivity via
GK theory.

Here we adopt the recently developed deep poten-
tial (DP) framework [21, 23]. DP molecular dynam-
ics (DPMD) simulations have been used successfully to
study bulk thermodynamic properties beyond the reach
of direct DFT calculations [24–30], as well as dynamic
properties like mass diffusion in solid state electrolytes
[31, 32], thermal transport properties in silicon [33], in-
frared spectra of water and ice [34] and Raman spectra
of water [35]. In the present work, we report calculations
of the thermal conductivity (κ) of water, a molecular liq-
uid, from both direct DFT and DPMD simulations. The
close correspondence of the conductivities predicted with
the two approaches validates DPMD against the results
obtained from the MUB current. We adopt two popu-
lar DFT approximations: the PBE generalized gradient
approximation (GGA) [36] and the strongly constrained
and appropriately normed (SCAN) meta-GGA [37]. The
SCAN functional describes water more accurately than
PBE, relative to which it reduces the covalent character
of the hydrogen bond and correctly predicts that the liq-
uid is denser than the solid [38]. However, expressions
for the energy density and fluxes are not currently avail-
able for the SCAN functional, and its inherent complex-
ity makes hard to derive usable analytical expressions for
these quantities. Because of that, we used PBE to vali-
date our methodology. Our results show that direct DFT
simulations based on the PBE functional, and simula-
tions based on the corresponding DP model are in good
agreement with each other, but distinctly overestimate
the thermal conductivity relative to experiment. This
outcome likely reflects the well known tendency of PBE
to overestimate the strength of the hydrogen bonds, en-
hancing short-range order and making liquid water more
“solid-like” and prone to freezing [39]. DPMD simula-
tions trained on SCAN-DFT reduce substantially the er-
ror of the heat conductivity predicted by PBE, but do
not eliminate it, thus leaving open the question as to its
origin, which is possibly due to residual deficiencies of
the functional, to nuclear quantum effects ignored in the
MD equations of motion, or, likely, to a combination of
the two.

The paper is organized as follows. In Section II, we
recall the main aspects of the GK theory, along with
two basic invariance principles of thermal transport that
allow us, among other things, to define the MUB-DFT
energy flux. In Section III, we describe the DP model,
derive the corresponding expression for the energy flux,
and discuss the impact of the invariance principles within
a DNN simulation framework. In Section IV, we bench-
mark our DNN methodology against ab initio MD sim-
ulations of liquid water at the PBE level of theory [36].
Having proved that DPMD trustfully reproduces ab ini-
tio results, in Section V, we take advantage of the simple

DNN expression for the heat current to compute the ther-
mal transport coefficients of liquid water at the SCAN
meta-GGA level of theory. Section VI contains our con-
clusions.

II. THEORY

GK theory of linear response [9, 10] provides a rigorous
and elegant framework to compute the atomic contribu-
tion to the thermal conductivity, κ, of extended systems,
in terms of the stationary time series of the energy flux
[40], Je, evaluated at thermal equilibrium with MD. For
an isotropic system of N interacting particles, the GK
expression for the heat conductivity reads:

κ =
V

3kBT 2

∫ ∞
0

〈Je(Γt) · Je(Γ0)〉dt, (1)

where Γt indicates the time evolution of a point in phase
space from the initial condition Γ0. The definition of the
energy current in Eq. (1) is the key ingredient for the
computation of κ. This definition relies in general on ex-
tensivity, which allows the total, conserved, energy of an
isolated system to be broken up into local contributions.
In a classical setting, this is conveniently achieved by ex-
pressing the total energy as a sum of atomic energies,
εn = 1

2Mnv
2
n +wn, where Mn and vn are atomic masses

and velocities, and wn are suitably defined atomic poten-
tial energies, vide infra. When this is done, the energy
flux can be written as

Je(t) =
1

V

∑
n

[
vnεn −

∑
m

(rn − rm)
∂wm
∂rn

· vn

]
, (2)

where rn are atomic positions and n and m run over all
the atoms in the system [14, 41, 42]. In the case of pair-
wise interactions, for instance, it can be assumed that
wn = 1

2

∑
m 6=n w(|rm−rn|). For a general many-body in-

teraction, a similar partition of the total energy into local
contributions is also possible. In a quantum-mechanical
setting, it is not possible to uniquely define the atomic
energies appearing in Eq. (2), and the total energy of a
system can at most be expressed in terms of an energy
density, which is also ill-defined. For instance, the elec-
trostatic energy of a continuous charge-density distribu-
tion can be expressed as either one half the integral of the
density times the potential, or of 1

8π the squared modulus
of the field; by the same token, the kinetic energy of a
quantum particle can be expressed as the integral of the
squared modulus of the gradient of its wave-function, or
of the negative of the product of the wave-function and its
Laplacian. For this reason, it has long been feared that
no quantum-mechanical expressions for the heat conduc-
tivity could be obtained from first principles [43]. Actu-
ally, although not generally fully appreciated, this same
problem arises with classical force fields as well, because
classical atomic energies themselves are ill-defined. In the
example of pair-wise interactions any different partition
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of the interaction energy of the nm pair into individual
atomic contributions would be equally acceptable and,
yet, would lead to a different expression for the energy
flux [14].

This long-standing problem was solved for good only
recently with the introduction of a gauge invariance prin-
ciple for the transport coefficients [13, 14, 44], as ex-
plained in the following subsections.

A. Gauge invariance

In order to introduce, and understand, the recently
discovered gauge and convective invariance principles for
the transport coefficients, it is useful to define the concept
of diffusive flux. A flux is said to be diffusive if its GK
integral, as defined in Eq. (1), is different from zero; the
flux is said to be non-diffusive otherwise. Gauge invari-
ance states that the addition of any linear combination
of non-diffusive fluxes to a diffusive one does not affect
the value of the conductivity calculated with the GK for-
mula, Eq. (1). This principle got this name because it
results from a kind of gauge invariance of conserved den-
sities, according to which any such density is only defined
up to the divergence of a bounded vector field. This is
so because the volume integral of such a divergence is ir-
relevant in the thermodynamic limit, and, thus, does not
contribute to the value of the conserved quantity. This
divergence would, in turn, result in the addition of a non-
diffusive term to the flux of the conserved quantity, thus
not affecting the value of the transport coefficient.

B. Convective invariance

In general, a system made of M atomic species (an M -
component system) has M + 4 conserved quantities (the
number of atoms of each species, the energy, and the
three components of the momentum). The energy and
atomic-number currents are vector quantities, whereas
the momentum currents are 3× 3 (stress) tensors, which
do not couple with the former in a rotationally invariant
system. The total momentum is not only a conserved
quantity by itself, but is also a linear combination of the
volume integral of the atomic-number currents (atomic-
number fluxes). This reduces the number of indepen-
dent mass fluxes from M to M − 1. We conclude that,
when dealing with an M -component system, the con-
served quantities relevant to heat transport are the total
energy and the total numbers (or masses) of each one
of the M − 1 independent atomic components, which, in
the linear regime, are related to each other by Onsager’s
phenomenological relations:

J i =

M−1∑
j=0

ΛijF j , (3)

where F j is the thermodynamic force associated to the
j − th conserved quantity being transported. In Eq. (3)
the energy flux is identified as the zero-th term, the re-
mainingM−1 fluxes being any linearly independent com-
binations of the mass fluxes, and the Λ coefficients are
expressed by the GK integrals:

Λij =
V

3kB

∫ ∞
0

〈J i(Γt) · J j(Γ0)〉dt. (4)

In the multi-component case, the heat conductivity is
defined as the ratio between the energy current and the
negative of the temperature gradient, when all the mass
currents vanish. With some simple algebra, we arrive at
the expression [16]:

κ =
1

T 2

Λ00 −
M−1∑
i,j=1

Λ0i(Λ−1M−1)ijΛj0

 , (5)

where Λ−1M−1 is the inverse of the (M −1)× (M −1) mass
block of the Onsager matrix. The expression in square
brackets in Eq. (5) is called the Schur complement of the
mass block in the Onsager matrix, and is nothing but the
inverse of the 00 element of the inverse Onsager matrix.

By combining the definition of Λ with Eq. (5), one can
demonstrate by a straightforward substitution that the
heat conductivity is invariant with respect to the addition
of any linear combination of mass fluxes to the energy

flux: J0 → J0 +
∑M−1
i=1 ciJ i. This is the transformation

the energy flux undergoes when the energies of all the
atoms of the same chemical species are shifted by the
same amount, such as it occurs, e.g., when passing from
an all-electron to a pseudo-potential representation of the
electronic structure, or when changing pseudo-potentials.
This property has been called convective invariance [16]

Molecular fluids, such as undissociated water, deserve
a special comment. In this case, one demonstrates that,
as the atoms in each molecule do not diffuse relative to
the center of mass of the molecule, all the independent
atomic mass/number fluxes are non-diffusive. Therefore,
energy can be assumed to be the only conserved flux
relevant to heat transport, as it is the case for strictly
one-component fluids [13].

Notwithstanding gauge and convective invariance, the
statistical noise affecting the estimate of the heat conduc-
tivity does depend on the energy flux of the non-diffusing
components that are added to the diffusive energy flux.
Gauge invariance can then be leveraged to tune the op-
timal linear combination of non-diffusive fluxes to min-
imize the statistical error on the heat conductivity. In
order to achieve this goal, it is expedient to consider the
transport coefficient as the zero-frequency value of S(ω),
the flux power spectrum, which is given, in the multi-
component case, by:

S(ω) =
V

2kBT 2

1

[S̄−1(ω)]00
, (6)
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where [S̄−1(ω)]00 is the 00 element of the inverse of the
matrix defined by:

S̄ij(ω) =
1

3

∫ ∞
−∞
〈J i(Γt) · J j(Γ0)〉e−iωtdt. (7)

In molecular fluids, all mass fluxes are non diffusive
[13] and energy is the only conserved quantity relevant
to heat transport. Therefore, we actually have S(0) =
V

2kBT 2 S̄
00(0) and, strictly speaking, no multi-component

analysis would be needed. However, data analysis is
greatly facilitated when the power spectrum is as smooth
as possible (to be precise, when the number of inverse
Fourier coefficients of the logarithm of the spectrum are
as few as possible [15]). For this reason, it may be con-
venient to complement the diffusive energy flux with a
number of non-diffusive ones, which, while not altering
the value of the spectrum in Eq. (6) at ω = 0, decrease
the total power, thus easing data analysis [16, 42, 44, 45].

C. The MUB DFT adiabatic energy flux

Gauge invariance solves the problem of the alleged in-
determinacy of the quantum-mechanical adiabatic energy
flux, thus providing a rigorous derivation of its expression
within DFT, without introducing any ad-hoc ingredients
[13]. Within the local density (LDA) and generalized
gradient (GGA) approximations of DFT, the MUB ex-
pression for the DFT energy flux [13, 17] is:

JMUB = JKS + JH + J0 + Jn + JXC , (8)

where

JKS =
∑
v

(
〈ϕv|r̂ĤKS |ϕ̇v〉+ εv〈ϕ̇v|r̂|ϕv〉

)
,

J0 =
∑
nL

∑
v

〈
ϕv
∣∣(r̂ − rn −L)

(
vn · ∇nLv̂0

)∣∣ϕv〉 ,
Jn =

∑
n

vne0n −∑
L6=0

L
(
vn · ∇nLwZn

)
(9)

+
∑
m 6=n

∑
L

(rn − rm −L)
(
vm · ∇mLw

Z
n

)
JH =

1

4πe2

∫
v̇H(r)∇vH(r)dr,

JXC =

{
0 (LDA)

−
∫
n(r)ṅ(r)∂εGGA(r)dr (GGA),

where rn, vn, and wZn = 1/2
∑′

m 6=n(ZmZn/|rn − rm|)
are ionic positions, velocities, and electrostatic energies,

respectively, Zn are ionic charges, and
∑′

includes all

the atoms in the cell and their periodic images; ĤKS

is the instantaneous Kohn–Sham (KS) Hamiltonian, ϕν

and εν are the occupied eigenfunctions and correspond-
ing eigenvalues, and ρ(r) =

∑
ν |ϕν(r)|2 is the ground-

state electron-density distribution; vH , vXC are Hartree
and exchange-correlation (XC) potentials; L is a lattice
vector, ∇ = ∂/∂r and ∇mL = ∂/∂rmL represent, re-
spectively, the gradients with respect to the space posi-
tion r and with respect to the atom position at rm + L
(that is an image if L 6= 0); ν̂0 represents the (possibly
non-local) ionic (pseudo-) potential acting on the elec-
trons; LDA and GGA indicate the local-density [46] and
generalized-gradient [36] approximations for the XC en-
ergy functional and ∂εGGA is the derivative of the GGA
XC local energy per particle with respect to density gra-
dients. All the terms in Eq. (8) are well defined under pe-
riodic boundary conditions (PBC) [13]. Only the expres-
sion of JKS depends on the choice of the arbitrary zero of
the one-electron energy levels. A shift of this zero by ∆ε
results in a KS energy flux shifted by ∆εJρ, Jρ being the
adiabatic electronic flux [47], Jρ = 2

∑
v〈ϕ̇v|r̂|ϕv〉 (the

factor 2 accounts for spin degeneracy in a singlet state),
which is also well defined within PBC. The adiabatic elec-
tronic flux is non-diffusive, being the difference between
the total-charge flux, which is by definition non-diffusive
in insulators [48], and its ionic component, non-diffusive
in mono-atomic and molecular systems, because of mo-
mentum conservation and the condition that molecular
bonds do not break [13, 16]. Therefore, Jρ does not con-
tribute to the heat conductivity, thus lifting this further
apparent indeterminacy of the transport coefficient de-
rived from the MUB energy flux.

III. DEEP POTENTIAL MODEL

To speed up equilibrium MD simulations, we trained
a DNN model according to the DP framework [23].
Consider a system of N atoms, whose configurations
are represented by the set of atomic positions, r =
{r1, r2, . . . , rN} ∈ R3N . For each atom, n, we consider
only the neighbours, {q}, such that rqn < rc, where rqn is
the modulus of the vector rqn = [xqn, yqn, zqn]

.
= rq−rn,

and rc is a pre-defined cut-off radius. Denoting with Nn
the number of neighbours of n within the cutoff radius,
we define the local environment matrices R̃n ∈ RNn×4 to
encode the local environment:

R̃n =


σ(r1n)
r1n

σ(r1n)x1n

r21n

σ(r1n)y1n
r21n

σ(r1n)z1n
r21n

σ(r2n)
r2n

σ(r2n)x2n

r22n

σ(r2n)y2n
r22n

σ(r2n)z2n
r22n

...
...

...
...

 , (10)

where σ(rqn) is a smoothing function (see Appendix A).
Then, symmetry-preserving descriptors (extensive details
in [23]) are constructed and fed to the DNN, which re-
turns the local energy contribution wn in output. We
denote by W the full set of parameters that define the
total potential energy, E. Thus, as illustrated in Ref. 23,
the extensive property of E is ensured by its decomposi-
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tion into “atomic contributions”:

EW ({R̃}) =
∑
n

wWαn (R̃n) ≡
∑
n

wn (11)

where αn denotes the chemical species of atom n. We
use the notation (. . . )Wαn to indicate that the param-
eters used to represent the “atomic energy”, wn, only
depend on the chemical species αn of the n-th atom. Be-
ing wn a well defined and easy to compute function of
the atomic positions, the atomic forces and their breakup
into individual atomic contributions, ∂wm∂rn

(needed in the

definition of the energy flux in Eq. (1)), can be easily
computed as the gradients of E and wn, respectively. In
particular, the computation of the latter can be divided
into two contributions by applying the chain rule:

∇rnwm =
∂wm
∂rn

=
∑
i,j

∂wm

∂R̃ijm

∂R̃ijm
∂rn

(12)

where i, j identifies an element of the matrix R̃m. The
first terms can be easily computed with TensorFlow [49],
while the second must be handled separately and coded
explicitly [21, 23]. A more detailed description of the cal-
culation can be found in Appendix A. The local energy
and its derivatives are the key elements in the computa-
tion of the energy flux, Eq. (2). The parameters of the
model are determined by minimizing the loss function:

L = pE∆E2 +
pf
3N

∑
n

∆F 2
n (13)

where ∆E2 and ∆F 2
n are the squared deviations of the

potential energy and atomic forces, respectively, between
the reference DFT model and the DNN predictions. The
two prefactors, pE and pf , are needed to optimize the
training efficiency and to account for the difference in
the physical dimensions of energies and forces.

We remark that gauge invariance is instrumental in en-
suring the uniqueness of the heat conductivity in a DNN
framework. In fact, the roughness of the loss-function
landscape implies that equally good representations of
the potential-energy surface and atomic forces may be
reached with very different representations of the atomic
contributions to the total energy. Gauge invariance im-
plies that, if the total energies resulting from two dif-
ferent local representations were identical, the resulting
transport coefficients would also be identical, thus mak-
ing them in practice dependent on the overall accuracy
of the DNN model, but not on the details of its local
representation.

IV. RESULTS

A. Ab initio Molecular Dynamics

We performed four ab initio MD simulations of wa-
ter, corresponding to different temperatures and phases,

using the PBE functional approximation of DFT, the
plane-wave pseudopotential method, and periodic bound-
ary conditions. Hamann-Schlüter-Chiang-Vanderbilt
(HSCV) norm-conserving pseudopotentials [50] were
used with a kinetic-energy cutoff of 85 Ry. All the simula-
tions were performed with the Car-Parrinello extended-
Langrangian method [51] using the cp.x component of
Quantum ESPRESSO™ [52–54] and setting the fic-
titious electronic mass to 25 physical masses and the
timestep to dt = 0.073 fs. Liquid water simulations were
done with 125 water molecules inside a cubic computa-
tional box of side l = 15.52 Å, hexagonal ice-Ih simu-
lations used 128 water molecules inside an orthogonal
cell, with sides: l1 = 18.084 Å, l2 = 15.664 Å and
l3 = 14.724 Å. It is known that within the PBE XC
functional approximation, liquid water exhibits enhanced
short-range order [55, 56] and a melting temperature that
is more than 100 K higher than in experiment [39, 57],
while solid ice has higher density than liquid water at co-
existence. In order to compensate for this shortfall, it is
customary to offset the simulation conditions by increas-
ing the temperature by ≈ 100 K. We performed simula-
tions of the liquid at three temperatures (521 K, 431 K
and 409 K), and of ice in the hexagonal Ih structure at
260 K. Each simulation was 100 ps long. Then, using
the QEHeat [17] code, we computed the MUB flux ev-
ery 3.1 fs. The statistical noise affecting the estimates
of the GK integrals is larger when the spectral power of
the flux time series is larger. Because of gauge invari-
ance, different representations of the energy current may
carry a very different spectral power, and still yield the
same conductivity, which is the zero-frequency limit of
the flux power spectrum. The MUB energy flux turns
out to carry an impractically large spectral power, which
can be tamed to some extent by leveraging gauge and
convective invariance. Gauge invariance is first exploited
by the velocity renormalization technique of Ref. 45.
In a nutshell, it can be demonstrated that subtracting
to each atomic velocity the average velocity of all the
atoms of the same chemical species, results in a current
with a much reduced spectral weight but the same con-
ductivity. Further spectral weight can be subtracted by
adding to the resulting effective flux any linear combina-
tion of non-diffusive fluxes. This can be effectively done
by treating the (possibly renormalized) energy current
as one component of an M -component system, where all
the other currents are non-diffusive ones [16]. Here, we
choose M = 2 and take the electronic adiabatic current
as the auxiliary non-diffusive one. In all cases, the trans-
port coefficients are obtained from the cepstral analysis
[15, 16] of the power spectrum of the relevant currents,
using the SporTran [58] code.

Fig. 1 displays the (window-filtered) power spectrum of
the MUB flux from one of our Car-Parrinello MD simula-
tions of liquid water at an average temperature of 431 K,
using renormalized velocities (orange line), and further
removing the contribution of the adiabatic electron cur-
rent from the energy flux (blue line). In the inset we see



6

0 20 40 60 80 100 120
/(2 ) (THz)

0

200

400

600

800

S 
(W

/(m
K)

)

0 2 40

10

20

30

40

renMUB
renMUB + EL

FIG. 1. Comparison of the (window-filtered) spectrum of the
velocity renormalized MUB flux (orange) and of the velocity
renormalized MUB flux decorrelated with the adiabatic elec-
tronic flux (blue). Both spectrum are filtered with a moving
average of 0.1 THz. The renormalized MUB flux has a higher
power but close to zero the two spectra converge to the same
value. The two dashed lines in the inset represent the cepstral
filters of the power spectra.

that the two spectra converge to the same value when
ω = 0. The decorrelation decreases the power of the
spectrum and flattens the spectrum near ω = 0 facilitat-
ing data analysis by reducing the number of the required
cepstral coefficients.

B. DPMD benchmark against GGA results

In order to appraise the ability of DP models to accu-
rately describe heat transport phenomena, we have gen-
erated one such model, by training it on a set of DFT-
PBE data extracted from Car-Parrinello trajectories at
different temperatures in the [400K – 1000K] tempera-
ture range. The loss function in Eq. (13) was optimized
with the Adam stochastic gradient descent method [59].
The details of the training protocol are given in Ap-
pendix B. The generated DNN potential was then used
to run equilibrium MD simulations of water at the same
conditions explored in the previous subsection by ab ini-
tio techniques. One of the resulting energy-flux power
spectra is displayed in Fig. 2 (orange), together with the
corresponding ab initio spectrum (blue). The thermal
conductivities corresponding to the two spectra are ob-
tained as before through cepstral analysis. Notice that,
in spite of the much larger weight of the ab initio spec-
trum relative to that of the DNN model, the two spec-
tra have the same low-frequency limit, indicating that
the two simulations predict the same conductivity within
statistical errors. The difference between the two spectra
stems much more from the different local representations

of the potential energy than from a different dynamics.
The latter is, in fact, very well mimicked by the DNN po-
tential, which gives forces in close agreement with those
of the ab initio model (see Appendix B 3).

0 20 40 60 80 100 120
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300
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5

10

15

20

ab initio
DeepMD

FIG. 2. Power spectrum of a water simulation. The orange
line is obtained from 360 ps of DPMD simulation of a peri-
odic cubic cell containing 125 water molecules at 407 K. The
blue line is obtained from an ab initio MD simulation of 125
water molecules with the same cubic box and an average tem-
perature of 409 K. Both spectrum are filtered with a moving
average of 0.1 THz. The dashed lines in the inset represent
the cepstral-filtered spectra. Even though the two spectra
have very different intensities the values at zero frequency are
the same.

In Table I we display the thermal conductivities com-
puted from ab initio MD and DPMD for all the simula-
tions that we performed, together with the atomic diffu-
sivities, DH and DO. The latter are computed from the
ω = 0 value of the power spectrum of the velocity:

D̄α(ω) =
1

6Nα

Nα∑
n

∫ ∞
−∞
〈vn(0) · vn(t)〉 eiωtdt (14)

where α represents the atomic species (oxygen and hy-
drogen here) and n runs over all the atoms of species α.
The diffusivities are obtained from a block analysis of a
100 ps long trajectory. The DP model was capable of re-
producing accurately the three transport coefficients. In
particular, it allowed us to perform longer simulations in
order to reduce the statistical uncertainty on κ. While
≈ 100 ps long trajectories suffice for errors of about 10%
in liquid water and of about 20% in ice Ih, we found that
≈ 360 ps long trajectories with the DP model reduced
these errors to 5% and 8%, respectively. These errors
could be reduced even further because trajectories last-
ing tens of ns or more would be possible with DPMD.

The calculated heat conductivities with DPMD and
ab initio MD, based on PBE-DFT, agree closely among
them, but differ substantially from experiment (κexpt ≈
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phase T DH DO κ
K Å2/ps Å2/ps W/(mK)

DPMD

liquid 516 1.07 ± 0.05 1.08 ± 0.05 0.99 ± 0.05
liquid 423 0.41 ± 0.02 0.42 ± 0.02 1.03 ± 0.05
liquid 408 0.29 ± 0.02 0.32 ± 0.02 1.11 ± 0.05
ice Ih 270 - - 1.9 ± 0.2

ab initio

liquid 521 1.13 ± 0.05 1.11 ± 0.05 0.98 ± 0.19
liquid 431 0.45 ± 0.03 0.45 ± 0.03 1.06 ± 0.11
liquid 409 0.325 ± 0.018 0.29 ± 0.02 1.12 ± 0.17
ice Ih 260 - - 1.8 ± 0.4

TABLE I. Comparison of some properties of water from ab initio MD and DPMD simulations based on PBE-DFT. All liquid
simulations used 125 H2O molecules inside a cubic box of side l = 15.52 Å. The ice Ih simulations used 128 H2O molecules
inside an orthogonal cell with sides: l1 = 18.084 Å, l2 = 15.664 Å and l3 = 14.724 Å. T is the mean temperature of the
simulations; DH and DO are the diffusivities of hydrogen and oxygen, respectively; while κ is the thermal transport coefficient.
The diffusivities of ice Ih are compatible with zero and are not reported.

0.6 W/(mK) vs. κPBE ≈ 1 W/(mK) for water at near
ambient conditions [60]), indicating that the distribution
of the energy density resulting from the PBE functional
adopted here is likely inadequate to accurately describe
adiabatic energy transport in water. This prompted us
to try more advanced functional approximations, like the
meta-GGA SCAN framework, to cope with this short-
coming.

V. EXTENDED SIMULATIONS WITH A SCAN
BASED DEEP POTENTIAL MODEL

Meta-GGA functionals like SCAN depend on the elec-
tronic kinetic energy density, in addition to the density
and its gradient, making significantly more complicated
than in the PBE case the derivation of an analytic ex-
pression for the energy flux to use in ab initio MD studies
of heat transport. However, this is not necessary, as the
DPMD methodology not only gives us a framework for
molecular simulations having quantum-mechanical accu-
racy at a cost close to that of empirical force fields, but
also offers us the capability of easily deriving a practi-
cal expression for the energy flux, in situations where it
would be difficult to obtain it directly from first princi-
ples. To follow this route, we trained a DP model using
the SCAN-DFT dataset of Ref. 61. The thermal con-
ductivity predicted by this model, at T ≈ 430 K and at
the same density used in our previous PBE simulations,
is κ = 0.88 ± 0.05W/(mK), which is closer to experi-
ment, but still not in perfect agreement with it. Recent
studies [24, 62] found that the melting temperature of
SCAN-DP ice Ih models is around 310 K, a value very
close to the corresponding DFT temperature, according
to perturbative estimates [62]. While still not perfect,
this result is far superior to PBE, whose estimated ice Ih
melting temperature should be around 400 K or higher
[39, 57]. Thus, one might argue that the 100 K tem-
perature offset used in our PBE-DFT simulations would
be inappropriate here, but the rather broad temperature
range displayed in Fig. 3 shows that the thermal con-
ductivity of water is rather insensitive to temperature at

near ambient pressure.
The simulations reported in Fig. 3 have been per-

formed by fixing the size of the simulation-box in or-
der to match the experimental density [63] at each re-
ported temperature. At each temperature, we first per-
formed an NVT simulation lasting for a few dozen ps, in
which the system was coupled to a Nosé-Hoover thermo-
stat, followed by a 880 ps long NVE simulation, in order
to compute the thermal transport coefficient. The solid
line in Fig. 3 connects PBE data at temperatures below
400 K, i.e., below the estimated freezing temperature of
this model [39, 57]. At these temperatures PBE water is
sluggish and difficult to equilibrate.

SCAN overestimates κ less than PBE, consistent with
the better representation of the covalent bond length of
the water molecule in the liquid provided by this func-
tional [38]. The experimental data show a broad maxi-
mum around 400 K, while PBE exhibits a sharp max-
imum around 360 K, i.e., below the estimated freez-
ing point of this model. The SCAN results are closer
to experiment and are consistent with a broad maxi-
mum of the thermal conductivity in the explored region.
Whether the residual discrepancy between DFT-SCAN
simulations and experiment is due to a residual inaccu-
racy of the XC functional or to neglect of quantum effects
on the nuclear motion is an issue that would require fur-
ther work to be clarified.

VI. CONCLUSIONS

In this work we have shown that DNN potentials gener-
ated according to the DP framework and properly trained
on DFT data are a powerful tool to study the transport
properties of water, and likely of other material systems,
with quantum-mechanical accuracy at a nearly empirical
force field cost. An important byproduct of this technol-
ogy is that it allows one to derive numerically practical
expressions for the energy current, even in cases where
analytical derivations from the DFT functional would be
hard, as we have shown in the case of the SCAN func-
tional. Our results show that PBE-DFT overestimates
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FIG. 3. Temperature dependence of the thermal conductivity
κ of water between 300 K and 500 K. The blue line repre-
sents the experimental data from the NIST website [63]. The
orange and green lines result from (classical) DPMD simu-
lations trained on PBE and SCAN data, respectively. The
simulations use a periodically repeated cubic box with 128
water molecules. In the simulations the box size is fixed to
the experimental density [63] at each given temperature. Rel-
ative to PBE, SCAN overestimates less the experimental val-
ues, and varies less with temperature, consistent with exper-
iment. PBE exhibits a relatively sharp conductivity maxi-
mum at around 360 K, whereas experiment shows a broad
maximum at ≈ 400 K. The sharp PBE maximum may be an
artifact of imperfect equilibration in a metastable liquid. The
continuous line connects data points below the freezing tem-
perature at ≈ 400 K, where the PBE liquid is metastable. In
the Supplementary Material [64] the reader can find the files
containing the data points for the DPMD-PBE and DPMD-
SCAN simulations shown in the figure

.

the thermal conductivity by ≈ 60%. The SCAN meta-
GGA functional reduces this error by approximately a
factor of two, which is not quite negligible. Whether this
residual discrepancy should be ascribed mostly to resid-
ual inaccuracies of the XC energy functional or to neglect
of nuclear quantum effects in the particle dynamics, is
an issue that deserves further study. As a final remark,
we would like to stress that the method presented here
should be useful in fields, such as, e.g., the geosciences
and the planetary sciences, where the transport proper-
ties of different phases of matter at extreme pressure and
temperature conditions, that are difficult to reproduce in
the laboratory, are a key ingredient in quantitative evo-
lutionary models of the earth and/or other planets. The
reliability of such models stands in fact on the accuracy
of the relevant conductivities under the thermodynamic
conditions of interest [65, 66].

DATA AND CODE AVAILABILITY

In the Supplementary Material [64] the reader
can find two files, kappa T DPMD-PBE.dat and
kappa T DPMD-SCAN.dat, containing the data points
shown in Fig. 3 for the DPMD-PBE and DPMD-SCAN
simulations, respectively.

In the latest versions of DeePMD-kit the authors re-
leased a code to compute the heat current with the
method presented in this paper. This code extends
the LAMMPS [67–69] interface of DeePMD-kit allowing
the computation of the heat current via the command
compute heat/flux. For more info see the documenta-
tion on DeePMD-kit [70].
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Appendix A: Derivatives

The derivative of the local energy, ∂wm
∂rn

, is a key com-

ponent in the computation of the energy flux, Eq. (2).
As already mentioned in Section III, it is composed of

two terms, i.e., ∂wm
∂R̃m

and ∂R̃m
∂rn

. Since wn is a well defined

and easy to compute function of the local environment
matrices R̃m [23], the first term can be easily obtained
from TensorFlow [49] using the same back-propagation
approach that is commonly used during the training of a
DNN [71, 72]. The second term must, instead, be com-
puted explicitly [21, 23]. Given the definition in Eq. (10)
and the following smoothing function:

σ(rmn) =


1 rmn < rc1
−6Ω5 + 15Ω4 − 10Ω3 + 1 rc1 < rmn < rc
0 rc < rmn

(A1)

where rc1 is the smoothing cut-off radius and Ω =
rmn−rc1
rc−rc1 , we get by applying the chain rule:

∂R̃m
∂rτn

=
∂R̃m
∂rγql

∂rγql
∂rτn

(A2)

where sums on repeated indices are implied, and τ, γ =
1, 2, 3 ≡ x, y, z denote Cartesian coordinates. We find:
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∂rγql
∂rτn

= δγ,τ (δn,q − δn,l) (A3)

∂R̃m
∂rγql

=
∂R̃m
∂rγqm

δl,m +
∂R̃m
∂rγml

δq,m (A4)

where δnm is the Kronecker delta.
Using i, j to represent line and column indices of the

element of R̃m to be differentiated, a general element of[
∂R̃m
∂rγqm

]
ij

is non-zero only if atom q is the i−th neighbour

of m in the matrix R̃m:

[
∂R̃m
∂rγqm

]
i,j

=



rγqm
r2qm

(
∂σqm
∂rqm

− σqm
rqm

)
if j = 1

∂σqm
∂rqm

rγqmr
j−1
qm

r3qm
− 2σ

rγqmr
j−1
qm

r4qm

+ δγ,j−1
σqm
r2qm

if j 6= 1

(A5)

where σnm = σ(rnm). With the same approach a similar

expression for
[
∂R̃m
∂rγml

]
i,j

can be obtained.

Appendix B: Neural network training

1. Training parameters

The NN PBE model in Section IV B is constructed with
the DeePMD-kit [73] and the present appendix contains
the main parameters of the model. In the definition of
the local environment matrices, the two radii inside the
smoothing function in Eq. (A1) are rc1 = 3.50 Åand rc =
7.00 Å. The embedding network has three layers with
25, 50 and 100 neurons respectively, whereas the fitting
network has three layers with 240 neurons each. The loss
function is optimized using the Adam stochastic gradient
descent method [59], with a learning rate starting at 0.005
and exponentially decaying, with a decay rate of 0.98,
every 105 training step for a total of 1.5 · 106 training
steps. In order to optimize training the coefficients pE
and pf in Eq. (13) were adjusted, respectively, from 0.05
to 1, and from 1000 to 1, during training.

2. Training test

The PBE neural network was tested against a set of
Nv = 800 independent snapshots of 125 molecules of wa-
ter at temperatures in the range [400 K – 1000K], obtain-
ing a root-mean-square error of the forces of 0.05 eV/Å.
Fig. 4 shows a direct comparison between the α compo-
nent of the ab initio force for the s-th atoms in the b-th
snapshot and the corresponding NN prediction. The red
dashed line correspond to FNN

b,s,α = FDFT
b,s,α , that fits the

data with a coefficient of determination R2 = 0.998. R2

is computed with the usual formula for linear regression:

R2 = 1−
∑
i(F

DFT
i − FNNi )2∑

i(F
DFT
i − F̄DFT )2

, (B1)

where F̄DFT is the average of all the force components
in the dataset.

FIG. 4. Direct comparison between the ab initio force com-
ponents and the corresponding NN prediction. The indexes
b, s, α (see main text) label, respectively, the snapshot, the
atom, and the Cartesian coordinate of the force. The red
dashed line represent FDFT

b,s,α = FNN
b,s,α, that fits the data with

R2 = 0.998.

3. Benchmark of water properties

To estimate the quality of the trained DP model we
compared some simple static and dynamical properties
of the model with their ab initio counterparts. We ran
DPMD simulations of water at the same thermodynamic
conditions of the ab initio simulations reported in Sec-
tion IV A. Figs. 5 and 6 compares the oxygen radial dis-
tribution functions, g(r), from DP and ab initio simula-
tions of liquid water (third and seventh line of Table I),
and of ice-Ih (fourth and last line of Table I). Both struc-
tures are well described by the DP model. This is true
also for the ice-structure even though no ice-snapshots
were included in the training data set.

For liquid water, we computed also the power spec-
tra of the oxygen and hydrogen velocities Eq. (14), re-
spectively, and their zero frequency values, the diffusion
coefficients. Fig. 7 shows the power spectra of liquid wa-
ter systems mentioned above. It can be seen that DP
and ab initio models give consistent diffusivities (see Ta-
ble I for a complete comparison of the results): DAIMD

H =
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0.325±0.018 Å2/ps, DNN
H = 0.29±0.02 Å2/ps, DAIMD

O =
0.29± 0.02 Å2/ps and DNN

O = 0.32± 0.02 Å2/ps.
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FIG. 5. Comparison of the radial distribution functions of
liquid water from ab initio (continuous blue line) and DP
(dashed orange line) simulations, respectively. More details
on the simulations can be found in the main text.
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FIG. 6. Comparison of the radial distribution functions of
ice Ih from ab initio (continuous blue line) and DP (dashed
orange line) simulations, respectively. More details on the
simulations can be found in the main text.

Appendix C: Cepstral analysis of the flux time series

In the present work the thermal conductivity is com-
puted via the cepstral analysis of the energy flux, as im-
plemented in the SporTran code [58]. This technique pro-
vides a very accurate and reliable estimate of the trans-
port coefficients and their statistical accuracy, depending
only on two parameters: the effective Nyquist frequency,
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FIG. 7. Comparison of the oxygen and hydrogen velocity
power spectra of liquid water from ab initio (blue line) and
DP (orange line) simulations, respectively. The simulations
used the same periodic cubic cell with density ρ = 1.00 g/cm3

containing 125 water molecules, at ≈ 410K. The inset shows
the region near ω = 0 used to estimate the diffusivity.

f∗, used to limit the analysis to a properly defined low-
frequency window, and the number P ∗ of cepstral coef-
ficients. For a detailed explanation of the method and
the meaning of the parameters the reader may consult
[15, 42, 44]. Table II contains the parameters used to
obtain the values of κ in Table I.

phase T f∗ P ∗

K THz

DPMD

liquid 516 9.9 11
liquid 423 17.8 12
liquid 408 36.7 17
ice Ih 270 25 93

ab initio

liquid 521 20.7 55
liquid 431 20.1 17
liquid 409 45.9 33
ice Ih 260 30.3 53

TABLE II. Table with the value of f∗ and P ∗ used to obtained
the values in Table I.

Appendix D: Size scaling for SCAN neural network
potential

Size effects may affect the transport properties calcu-
lated in numerical simulations [74, 75]. In order to quan-
tify these effects, we run 2 ns long NVE simulations at
≈ 407 K of SCAN-DP water at fixed density and in-
creasingly larger cells (with up to 1000 molecules). The
results, reported in Fig. 8, suggest that κ shows no size
dependence within the error bars of the simulation.
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FIG. 8. The size dependence of the thermal transport coeffi-
cient κ for simulation with the SCAN neural network poten-
tial. The test shows that no relevant size scale dependence is
observed. All the quantities are evaluated from ≈ 2ns long
trajectories.
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