
ar
X

iv
:1

41
2.

02
60

v1
  [

cs
.IT

]  
30

 N
ov

 2
01

4
1

Outage Performance of Uplink Two-tier Networks
Under Backhaul Constraints
Shirin Jalali, Zolfa Zeinalpour-Yazdi and H. Vincent Poor

Abstract—Multi-tier cellular communication networks consti-
tute a promising approach to expand the coverage of cellular
networks and enable them to offer higher data rates. In this
paper, an uplink two-tier communication network is studied,
in which macro users, femto users and femto access points are
geometrically located inside the coverage area of a macro base
station according to Poisson point processes. Each femtocell is
assumed to have a fixed backhaul constraint that puts a limit
on the maximum number of femto and macro users it can
service. Under this backhaul constraint, the network adopts a
special open access policy, in which each macro user is either
assigned to its closest femto access point or to the macro base
station, depending on the ratio between its distances from those
two. Under this model, upper and lower bounds on the outage
probabilities experienced by users serviced by femto access points
are derived as functions of the distance between the macro base
station and the femto access point serving them. Similarly,upper
and lower bounds on the outage probabilities of the users serviced
by the macro base station are obtained. The bounds in both cases
are confirmed via simulation results.

Index Terms—Heterogeneous networks, Backhaul constraint,
Uplink communication, Outage, Open access policy

I. I NTRODUCTION

Fourth generation (4G) mobile communication standards
such as LTE-advanced promise very high data rates. Enabling
multi-tier networks is one of the methods that enables such
standards to address the ever-increasing demand for higher
data rates in cellular communication networks. In a multi-
tier network, unlike the traditional design, multiple layers of
cells, each serviced by a different type of base station, are
employed simultaneously. In two-tier femtocell networks,for
example, in addition to the traditional base stations, there are
femto access points (FAPs) installed by users in their homes
or offices. These additional base stations are connected to
the cellular network through the users’ broadband Internet
connections. These FAPs expand the coverage of the main
network to indoors and also reduce its load. However, the
limited capacities of users broadband connections impose a
backhaul constraint that limits the number of simultaneous
users each femto cell can cover.

In this paper we study the outage performance of a two-tier
uplink femtocell network. Macro users (MUs), femto users
(FUs) and FAPs are assumed to be spatially distributed ac-
cording to Poisson point processes (PPPs) [1]. Each femtocell
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is assumed to have a limited backhaul capacity. Up to its
capacity, each FAP employs a specialopen access policy,
studied in [2] and [3] for downlinks. Based on this policy,
each MU is serviced by its closest FAP if i) the ratio between
its distance to its closet FAP and its distance to the MBS
exceeds some threshold, and ii) the number of users already
being serviced by that FAP is less than its capacity.

A. Related work

PPPs were originally suggested in [4]–[6] as a more
tractable and realistic model for the locations of cells and
users in a wireless network. The outage performance of two-
tier networks under PPP distribution of users or access points
is studied in [7]–[10] and in [10]–[16] for downlink and uplink
communications, respectively. In none of these papers are the
FAPs’ backhaul constraints taken into account. In fact, to our
knowledge, while there have been studies of the effects of
femtocell backhaul constraints on other aspects of networks,
there has been no prior analytical work on their effects on
the users’ outage performance in a two-tier network. (Referto
[17]–[20] as a sample of some recent results.) In this paper,we
extend the analysis of uplink tow-tier networks presented in
[15] to the case in which each FAP has a backhaul constraint
that limits the number of users it can service. We derive
analytical upper and lower bounds on the outage probabilities
experienced by the users serviced by the FAPs.

B. Notation

Sets are denoted by calligraphic letters such asA andB. The
size of a setA is denoted by|A|. The Laplace transform of
random variableX is denoted byΦX(s) , E[e−sX ]. Given
x ∈ R, (x)+ , max(x, 0). Throughout the paper,P(s, x)
denotes the cumulative distribution function of a gamma
random variable with shape parameters and scale parameter
1. Given a Poisson random variableX with parameterλ,
P(X ≤ k) = e−λ

∑k
i=0

λk

k! = 1− P(k + 1, λ).

C. Paper organization

The paper is organized as follows. Section II reviews
the system model including the employed modulation, users
and FAPs spatial distributions, and the access policy. The
distributions of number of users falling into different service
groups are studied in Section III. Section IV studies the outage
probability experienced by the MUs serviced by FAPs. Simi-
larly, Section V analyzes the outage probability experienced by
the MUs serviced by the MBS. Section VI presents numerical
results and, finally, Section VII concludes the paper.
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II. SYSTEM MODEL

A. MCFH technique

Both macro and femto users are assumed to employ mul-
ticarrier frequency-hopping (MCFH) modulation introduced
in [21]. In MCFH the available bandwidth is divided into
ns non-overlapping subbands and each subband is divided
into nh equispaced frequencies, respectively. Hence, there are
overall nsnh available orthogonalsubchannels. During each
time slot, each user selectsns subchannels by independently
and uniformly at random choosing one subchannel from each
subband. While MCFH modulation is very similar to orthog-
onal frequency devision modulation (OFDM), unlike OFDM
it does not require centralized frequency assignment. Hence,
while, with some minor adjustments, the results derived under
this modulation are also applicable to networks employing
OFDM, MCFH modulation is much better suited for analytical
performance studies.

B. Spatial distribution

Consider MBSbm located at the center of a circle of
radius R denoted bySm. Af , Um and Uf denote the set
of FAPs, MUs and FUs, respectively. Conditioned on the
locations of the FAPsAf , FUs and MUs are distributed
according to independent PPPs. FAPs and MUs are drawn
according to PPPs of densitiesλf andµm, respectively. Let
Um, Nm = |Um|, and n̄mu = E[Nm] = πR2µm denote the
set of MUs in Sm, the number of MUs and the expected
number of MUs, respectively. Similarly, letAf , Naf

= |Af |,
and n̄fap = E[Naf

] = πR2λf denote the set of FAPs in
Sm, the number of FAPs and the expected number of FAPs,
respectively. The FUs corresponding to each FAPaf ∈ Af

are distributed according to a PPP with densityµf in a disk
of width δ and inner radius ofrf centered ataf . By this
construction, the expected number of FUs served by a femto
cell is equal ton̄fu = π((rf + δ)2 − r2f )µf .

Given FAPaf ∈ Af , Uf (af ) and Um(af ) denote the set
of FUs and MUs, respectively, that are serviced byaf . Also
N

af

f , |Uf (af )| and N
af
m , |Um(af )|. Finally, Um(bm)

denotes the set of MUs serviced by the MBSbm. Clearly,
Um = ∪a∈Af∪{bm}Um(a). The number of MUs covered by
the MBSbm is denoted byN bm

m , i.e.,N bm
m , |Um(bm)|. Note

that, by definition,Nm = N bm
m +

∑

af∈Af
N

af
m .

C. Access policy and backhaul constraint

We consider the open access scenario with access parameter
κ ∈ [0, 1], studied in [2] for downlink communications
and in [15] for uplink transmission, when the FAPs have
no backhaul constraints. Letd(um, a) denote the Euclidean
distance between the (femto or macro) access pointa andum.
Then, in this access model an MU is served by its nearest FAP
af if d(um,af )

d(um,bm) is less thanκ and the backhaul constraint is
not violated; otherwise it is served by the MBS.

To model the backhaul constraints, we assume that each
FAP has access to a fixed broadband capacity, which translates
into covering at mostnc users. The priority is always given to
FUs. Once all FUs are serviced, if there is some remaining

unused capacity, it can be allocated to MUs. MUum is
potentially assigned to FAPaf , if d(um, af ) ≤ κd(um, bm).
If there are more than one FAPs satisfying this condition,um

considers only the closest one. From all potential MUs of an
FAP af with N

af

f FUs,af randomly chooses up tonc−N
af

f

of them to serve. It is reasonable to assume thatnc ≥ n̄fu, or
in other words, the capacity of each FAP is at least as large
as the expected number of FUs in that cell.

In this model, due to the backhaul constraint, an MU can
get arbitrarily close to an FAPaf , and yet be serviced by
the MBS. To avoid the arbitrarily large interference caused
by such cases, we assume that, for any MUum, the ratio
between its distances from any FAPaf and the MBS, i.e.,
d(um, af )/d(um, bm), cannot be smaller than some threshold
κo, whereκo ≪ κ. As argued in [15], this means that for an
FAP af located at distanced from bm, there exists a circle of
radius κo

1−κ2
o
d that includesaf , where no MUs are allowed. In

general, we can assume thatko depends ond, and as a special
case tune it such that the excluded circle of all FAPs have
the same radius. While our analysis can be generalized to this
case in a straightforward manner, to simplify the statementof
the results, we assume thatko is fixed for all FAPs.

D. Channel Model

To model the channel between useru and access point
a, a ∈ {bm, af}, both small scale fading and path loss
are considered. So it is assumed that the fading coefficients
corresponding to the channel in subbandi ∈ [1 : ns] from user
u to a, Hi

u,a, follows the Rayleigh distribution with parameter
σ2. Furthermore, we assume that the coefficients correspond-
ing to different subbands and also different channels are all
independent. The path loss is modeled asPLu,a = L0d

α
u,a,

whereL0 is the path loss at unit distance, andα > 2 denotes
the attenuation factor [3].

In this paper, we assume that every user employs power
control to compensate for the effect of path loss. By power
control, MUs serviced by the MBS intend to achieve a received
power level ofpm, and FUs and MUs serviced by FAPs adjust
their transmitted powers to achieve a received power ofpf .

III. U SERS DENSITY DISTRIBUTION

In this section, we study the distributions of the random
variablesNaf

f , Naf
m , N bm

m andNm. As argued in [15], given
FAP af at distancer from bm, the set of points satisfying
d(um, af ) ≤ κd(um, bm) is the set of points inside a circle of
radiusrc = ( κ

1−κ2 )r. (Refer to Fig. 1.) The distance between
the center of this circle andbm is equal to r

1−κ2 . For κ ∈
(0, 1), κ

1−κ2 is an increasing function ofκ, which implies that
increasingκ translates into increasing the coverage area of an

PSfrag replacements

bm af

r
rc

Fig. 1. MUs served byaf located at distancer from bm.
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FAP. As a special case, whenκ = 0, the FAP only covers
FUs, and hence has a closed access policy.

For MUs serviced by FAPs, the potential coverage area of
FAP af located at distanced from bm is a circle of radius
( κ
1−κ2 )d. LetUm(af ) denote the MUs that fall in the coverage

area of FAPaf . Due to the backhaul constraint, not all the
MUs falling in Um(af ) can be serviced byaf . Therefore,
they can be partitioned into two groups,U s

m(af ) andUns
m (af ),

representing the MUs that are serviced byaf and the MUs
that fall in the coverage area ofaf , but are serviced bybm,
respectively. LetNaf

m,s , |U s
m(af )| andN

af
m,ns , |Uns

m (af )|.
Stochastically,

N
af
m,s = min(N1, (nc −N2)

+),

and

N
af
m,ns = N1 −N

af
m,s = (N1 − (nc −N2)

+)+,

where N1 and N2 are independent and distributed as
Poiss(n̄d

mu) with

n̄d
mu , πµm((

κ

1− κ2
)2 − (

κo

1− κ2
o

)2)d2 (1)

andPoiss(n̄fu), respectively.

Lemma 1. The Laplace transform ofN
af
m,ns, the number of

MUs that fall in the coverage area of FAPaf located at
distanced from the MBSbm but serviced bybm, satisfies

Φ
N

af
m,ns

(s|df ) ≤ 1− P(nc, n̄fu) + en̄
d
mu(e

−s−1)P(nc, n̄fu).

Proof: By definition, the number of MUs inUns
m (af ) can

be written as|Uns
m (af )| = N1 − |U s

m(af )| = (N1 − (nc −
N2)

+)+, whereN1 andN2 are independent and distributed
asPoiss(n̄d

mu) andPoiss(n̄fu), respectively. Therefore,

Φ|Uns
m (af )|(s|df ) =E

[

e−s|Uns
m (af )||N2 < nc

]

P(N2 < nc)

+ E
[

e−s|Uns
m (af )||N2 ≥ nc

]

P(N2 ≥ nc)

=E
[

e−s|Uns
m (af )||N2 < nc

]

P(N2 < nc)

+ E
[

e−sN1
]

P(N2 ≥ nc), (2)

where the last line follows from the independence ofN1 and
N2. SinceE[e−s|Unc

m (af )||N2 < nc] ≤ 1, from (2),

Φ|Unc
m (af )|(s|df ) ≤ P(N2 < nc) + E

[

e−sN1
]

P(N2 ≥ nc)

= 1− P(nc, n̄fu) + en̄
d
mu(e

−s−1)P(nc, n̄fu).

Lemma 2. Letγ = ( κ
1−κ2 )

2−( κo

1−κ2
o
)2, andβ , P(nc, n̄fu)+

(1 − P(nc, n̄fu))(
e(e

s−1)γn̄mu−1
(es−1)γn̄bm

). The Laplace transform of

N bm
m , ΦNbm

m
(s), satisfies the following lower and upper

bounds:
ΦNbm

m
(s) ≥ e(e

−s−1)n̄mu,

and
ΦNbm

m
(s) ≤ e(e

−s−1)n̄mu+(β−1)n̄fap .

Proof: To derive the lower bound, note thatN bm
m ≤

Nm, and therefore, fors ≥ 0, e−sNbm
m ≥ e−sNm . Hence,

E[e−sNbm
m ] ≥ E[e−sNm ] = en̄mu(e

−s−1).
Let Nfap , |Af |. Each FAP af ∈ Af , at most,

covers min(N
af

1 , (nc − N
af

2 )+) MUs, where N
af

1 ∼
Poiss(n̄

d(af ,bm)
mu ) andNaf

2 ∼ Poiss(n̄fu), wheren̄d
mu is defined

in (1). Let Naf , min(N
af

1 , (nc − N
af

2 )+). Conditioned on
Af , {Naf }af∈Af

are independent and identically distributed
(i.i.d.) random variables. Then,N bm

m ≥ Nm −∑

af∈Af
Naf .

Therefore,

ΦNbm
m

(s) = E[e−sNbm
m ]

≤ E[e−sNm ] E[e
s
∑

af∈Af
Naf

]

= E[e−sNm ] E
[

E[
∏

af∈Af

esN
af |Af ]

]

(a)
= E[e−sNm ] E[(E[esN

af

])Nfap ]

= e(e
−s−1)n̄muen̄fap(E[esN

af
]−1), (3)

where (a) follows because conditioned onNfap = i,
{Naf }af∈Af

arei i.i.d. random variables. On the other hand,

E[esN
af

] = E[E[esN
af |1

N
af
2 ≥nc

]]

= P(nc, n̄fu) + E[esN
af |Naf

2 < nc](1− P(nc, n̄fu))

(a)

≤ P(nc, n̄fu) + E[esN
af
1 |Naf

2 < nc](1− P(nc, n̄fu))

(b)
= P(nc, n̄fu) + E[esN

af
1 ](1− P(nc, n̄fu)),

where (a) holds becauseNaf ≤ N
af

1 and s ≥ 0, and (b)
follows from the independence ofNaf

1 andNaf

2 . Also,

E[esN
af
1 ] = E[E[esN

af
1 |d(af , bm)]] = E[e(e

s−1)n̄
d(af ,bm)

mu ],

wheren̄d
mu is defined in (1). But,

E[ecd
2(af ,bm)] =

∫ R

0

2r

R2
ecr

2

dr =
ecR

2 − 1

cR2
. (4)

Therefore,

E[esN
af

] ≤ P(nc, n̄fu) + (1 − P(nc, n̄fu))(
e(e

s−1)γn̄mu − 1

(es − 1)γn̄bm

).

(5)

Combining (3) and (5) yields the desired upper bound.

IV. MU SERVED BY AN FAP

In this section, we analyze the outage performance of an
MU serviced by an FAP, in the described uplink network with
backhaul constraints. We assume that the performance of the
users is primarily limited by the interference caused by the
other users of both tiers, and therefore ignore the effect of
additive Gaussian noise (AWGN) in our analysis.

Consider FAPaf ∈ Af at distanced from MBS bm,
i.e., d(af , bm) = d. Given the power control assumption, the
upload SIR experienced by userum ∈ Um(af ) in subband
i ∈ {1, 2, . . . , ns} is equal to

SIRm,f =

pf |H
i
um,af

|2

ns

Im,f
, (6)

where
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Im,f =
∑

uf∈Uf (af )

pf |Hi
uf ,af

|2

g
+

∑

ûm∈Um(af )\um

pf |Hi
ûm,af

|2

g

+
∑

âf∈Af\af

∑

u∈Um(âf )∪Uf (âf )

(d(u, âf )

d(u, af )

)α pf |Hi
u,âf

|2

g

+
∑

ûm∈Um(bm)

(
d(ûm, bm)

d(ûm, af )
)α

pm|Hi
ûm,af

|2

g
. (7)

In (7), from left to right, the interference terms correspond to
the interference caused by the FUs of FAPaf , the other MUs
of FAP af , users of the other FAPs and the MUs serviced by
the MBS, respectively. Given FAP̂af ∈ Af\af , and (femto
or macro) useru ∈ Um(âf )∪Uf (âf ) covered bŷaf , typically
d(u, âf ) ≪ d(u, af ), or d(u,âf )

d(u,af )
≪ 1. Therefore, unless the

density of FAPs is very high, the effect of the interference
caused by the users of other FAPs is negligible. Under this
approximation, we have

Im,f =
∑

u∈Uf (af ) ∪ Um(af )\um

pf |Hi
u,af

|2

g
+

∑

ûm∈Um(bm)

(δûm
)α

pm|Hi
ûm,af

|2

g
,

(8)

where

δûm
,

d(ûm, bm)

d(ûm, af)
. (9)

Define the eventE = {d(af , bm) = d,N
af
m ≥ 1}. Then MU

um ∈ Um(af ) is said to experience outage in subbandi if
SIRm,f is less than some pre-determined thresholdθ. There-
fore, the corresponding outage probabilityPm,f

out of MU um

serviced by FAPaf is defined asPm,f
out (θ, df ) = P(SIRm,f <

θ|E), whereSIRm,f is defined in (6). Since|Hi
um,af

|2 has an
exponential distribution and is independent of other relevant
random variables, it follows that

Pm,f
out (θ, df ) = 1− E[e

−( θns
σ2pf

)Im,f |E ]. (10)

In the following two sections, we derive analytical upper and
lower bounds onPm,f

out .
Before stating the bounds, given FAPaf at distancedf from

bm, consider partitioning the coverage areaSm of the MBS
bm, as described in Appendix A, into2(t + 1) regions. To
perform this partitioning parameters(κ0, . . . , κt) are selected
such thatκ0 = κ < κ1 < κ2 < . . . < κt = 1. For useru
with δu defined in (9),δ̂ubu and δ̂lbu are defined as follows:
δ̂ubu = κ−1

i and δ̂lb = κ−1
i+1, if κ−1

i+1 < δu ≤ κ−1
i , for i =

0, . . . , t − 1; δ̂ubu = κi+1 and δ̂lbu = κi, if κi < δu ≤ κi+1,
for i = 0, . . . , t − 1; and δ̂ubu = κ and δ̂lbu = 0, if δu ≤ κ.
Note that by construction, unlikeδu, δ̂lbu and δ̂ubu are discrete
random variables. For allu andaf ,δ̂lbu ≤ δu ≤ δ̂ubu .

A. Upper Bound on the Outage ProbabilityPm,f
out

For i = 1, . . . , t, and ûm ∈ Um\Um(af ), let

pi = P(δ̂ubûm
=

1

κi−1
) = P(δ̂lbûm

=
1

κi
),

p−i = P(δ̂ubûm
= κi) = P(δ̂lbûm

= κi−1),

and
p0 = P(δ̂ubûm

= κ0) = P(δ̂lbûm
= 0).

Also, let η ,
pf

pm
, n̄m,d , π(R2 − ( κ

1−κ2 )
2d2)µm and

q1(θ, d) ,

t
∑

i=1

( pi

1 + θ
nhηκα

i−1

+
p−i

1 +
θκα

i

nhη

)

+
p0

1 +
θκα

0

nhη

.

Theorem 1. The outage probability of an MU serviced by an
FAP located at distanced from MBS,Pm,f

out (θ, d), is upper
bounded by

1−
( 1

1 + θ
nh

)nc−1

en̄m,d(q1(θ,d)−1)Φ|Uns
m (af )|(log(1+

θ

ηnhκα
o

)),

whereΦ|Uns
m (af )|, the Laplace transform of|Uns

m (af )|, is de-
rived in Appendix III.

Proof: For MUs serviced by FAPs, as discussed in [15],
the potential coverage area of FAPaf located at distanced
from bm is a circle of radius( κ

1−κ2 )d. Due to the backhaul
constraint, all the MUs falling in this circle,Um(af ), are not
serviced byaf . Users inUm(af ) can be partitioned into two
groups,U s

m(af ) andUns
m (af ), representing the MUs that are

serviced byaf and the MUs that fall in the coverage area of
af , but are serviced bybm, respectively.

Given the backhaul constraint ofnc users, there are at most
nc − 1 users (macro and femto) serviced byaf that interfere
with an FU covered byaf . That is,|Uf (af ) ∪ U s

m(af )\um| ≤
nc − 1. Also, we always haveUm(bm) ⊆ Um\U s

m(af ).
Therefore, from (7),

Im,f ≤
nc−1
∑

ℓ=1

pf
g
|Hℓ|2 +

∑

ûm∈Um\Us
m(af )

(pmδûm
)α

g
|Hi

ûm,af
|2

=

nc−1
∑

ℓ=1

pf
g
|Hℓ|2 +

∑

ûm∈Um\Um(af )

pm(δûm
)α

g
|Hi

ûm,af
|2

+
∑

ûm∈Uns
m (af )

pm(δûm
)α

g
|Hi

ûm,af
|2

(a)

≤
nc−1
∑

ℓ=1

pf
g
|Hℓ|2 +

∑

ûm∈Um\Um(af )

(δûm
)α

pm
g

|Hi
ûm,af

|2

+
∑

ûm∈Uns
m (af )

pm
κα
o g

|Hi
ûm,af

|2

(b)

≤
nc−1
∑

ℓ=1

pf
g
|Hℓ|2 +

∑

ûm∈Um\Um(af )

pm(δ̂ubûm
)α

g
|Hi

ûm,af
|2

+
∑

ûm∈Uns
m (af )

pm
κα
o g

|Hi
ûm,af

|2, (11)

where{|Hℓ|2 : ℓ = 1, . . . , nc−1} are i.i.d. exponential random
variables independent of other random variables in (11). Also,
(a) holds because by assumption,d(ûm, bm)/d(ûm, âf ) ≤
κ−1
o , for all ûm ∈ Um, and all âf ∈ Af , and (b) follows

becauseδu ≤ δ̂ubu .
Since the MUs inUm are generated according to a PPP and

the users inUm\Um(af ) andUns
m (af ) have non-overlapping

supports, they are independent. Therefore, combining (10)and
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(11), it follows that

Pm,f
out =1− E[e

−( θns

σ2pf
)Im,f |E ]

≤1−
( 1

1 + θ
nh

)nc−1

× E

[

(

E
[

e
− θ

nhησ2 (δ̂ubûm
)α|Hi

ûm,af
|2
])|Um|−|Um(af )|

]

× E
[( 1

1 + θ
ηnhκα

o

)|Uns
m (af )|]

. (12)

Since δ̂ubûm
and |Hi

ûm,af
| are independent,

E
[

e
− θ

nhησ2 (δ̂ubûm
)α|Hi

ûm,af
|2
]

= q1(θ, d). (13)

Finally, |Um|−|Um(af )| is a Poisson random variable of mean
n̄m,d. Therefore, combining (12) and (13) yields the desired
result.

B. Lower Bound on the Outage ProbabilityPm,f
out

Consider partitioning the MUs inUm(bm)\Uns
m (af ) into two

groups:
i) U in

m(bm): the subset of MUs that fall into the coverage
area of at least one FAP inAf\af , but are serviced by
the MBS due to the backhaul constraints, i.e.,

U in
m(bm) , ∪âf∈Af\af

Uns
m (âf ),

ii) Uout
m (bm): the subset of MUs that are serviced by the

MBS because they do not fall into the coverage area of
any FAP, i.e.,

Uout
m (bm) , Um(bm)\(U in

m(bm) ∪ Uns
m (af )).

For i = 1, . . . , t, and ûm ∈ Uout
m (bm), let

p′i = P(δ̂ubûm
=

1

κi−1
) = P(δ̂lbûm

=
1

κi
),

p′−i = P(δ̂ubûm
= κi) = P(δ̂lbûm

= κi−1),

andp′0 = P(δ̂ubûm
= κ0) = P(δ̂lbûm

= 0). Now define

q2(θ, d) , p′0 +

t
∑

i=1

( p′i
1 + θ

nhηκα
i

+
p′−i

1 +
θκα

i−1

nhη

)

, (14)

γ1 , π(1 − q2(θ, d))(
κ

1−κ2 )
2µm, γ2 , θ

ηnh(1+κ)α , and

γ3 , πµm(( κ
1−κ2 )

2 − ( κo

1−κ2
o
)2). Consider FAPaf at distance

d from MBS bm and FAP âf ∈ Af\af . Let (D1, D2) =
(d(âf , bm), d(âf , af )), and define

γ4 , E
[

e
D2

1(γ1−
γ2γ3Dα

1
Dα

2 +γ2Dα
1
)
]

. (15)

Note thatγ4 can easily be computed through Monte Carlo
simulations.

Theorem 2. Let

χ ,

(1− e−γ1R
2

γ1R2

)

(1− P(nc, n̄fu)) + γ4P(nc, n̄fu).

Then,Pm,f
out (θ, d), the outage probability of an MU serviced by

an FAP located at distanced from the MBS, is lower bounded

by

1− e−n̄mu(1−q2)
en̄fap(χ−1) − e−n̄fap

(1− e−n̄fap)χ

× Φ|Uns
m (af )|

(

log
(

1 +
θ

ηnhκα

))

(1 +O(κα)), (16)

whereΦ|Uns
m (af )| is computed in Section III.

Proof: Considering the described partitioning of users in
Um(bm)\Uns

m (af ), and ignoring the interference caused by the
other FUs and MUs that are serviced byaf , Im,f can be lower
bounded as

Im,f ≥
∑

ûm∈U in
m(bm)

pm
g

(δûm
)α|Hi

ûm,af
|2

+
∑

ûm∈Uout
m (bm)

pm
g

(δûm
)α|Hi

ûm,af
|2

+
∑

ûm∈Uns
m (af )

pm
g

(δûm
)α|Hi

ûm,af
|2. (17)

For users inU in
m(bm), consider FAPâf ∈ Af\af , and

user ûm ∈ Uns
m (âf ). (Refer to Fig. 2.) Letdo = d(âf , bm).

If FAP af does not fall into the coverage area ofâf , as
shown in Fig. 2,d(ûm, bm) ≥ 1

1−κ2 do − κ
1−κ2 do = do

1+κ and
d(ûm, af ) ≤ d(ĉf , af )+

κ
1−κ2 do, whereĉf denotes the center

of the coverage area of̂af . Hence,

d(ûm, bm)

d(ûm, af )
≥

1
1+κd(âf , bm)

d(ĉf , af ) +
κ

1−κ2 d(âf , bm)
. (18)

On the other hand, since botĥaf and ûm are located in
a circle of radius κ

1−κ2 do, d(âf , ûm) ≤ 2κ
1−κ2 do. Therefore

d(âf , ûm) = O(κ), and

1
1+κd(âf , bm)

d(ĉf , af) +
κ

1−κ2 d(âf , bm)
=

d(âf , bm)

(1 + κ)d(âf , af )
+O(κ).

For users inUns
m (af ), 1

κ ≤ d(ûm,bm)
d(ûm,af )

≤ 1
κo

. Let δâf
,

d(âf ,bm)
d(âf ,af )

. Then, noting that̂δlbûm
≤ δûm

, from (17), conditioned
on the event that none of the other FAPs falls into the coverage
area ofaf , it follows that

Im,f ≥
∑

ûm∈Uns
m (af )

pm
καg

|Hi
ûm,af

|2

+
∑

âf∈Af\af

pm
g(1 + κ)α

(δâf
)α

∑

ûm∈Uns
m (âf )

|Hi
ûm,af

|2

+
∑

ûm∈Uout
m (bm)

(δ̂lbûm
)αpm

g
|Hi

ûm,af
|2 +O(κα). (19)

All the interference terms in (19) have non-overlapping
supports, and hence, conditioned on the locations of FPAs, are
independent. Therefore, combining (10) and (19), it follows
that
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Fig. 2. Userûm ∈ Uns
m (âf ).

Pm,f
out = 1− E[e

−( θns

σ2pf
)Im,f |Af , E ]

≥ 1− E
[

e
− θ

ηnhσ2κα

∑

ûm∈Uns
m (af )

|Hi
ûm,af

|2 ∣
∣

∣
E
]

×E
[

E
[

e
− θ

ηnhσ2

∑

ûm∈Uout
m (bm)

(δ̂lbûm
)α|Hi

ûm,af
|2∣
∣

∣
E ,Af

]

×E
[

e
− θ

ηnhσ2(1+κ)α

∑

âf∈Af \af

(δâf
)α

∑

ûm∈Uns
m (âf )

|Hi
ûm,af

|2∣
∣

∣
E ,Af

]]

×(1 +O(κα)). (20)

Let Sout denote the area of the region that is not covered by
any of the FAPs. Then, conditioned on(E ,Af ), |Uout

m (bm)| is
distributed asPoiss(Soutµm). Therefore, as

E
[

e
− θ

ηnhσ2 (δ̂lbûm
)α|Hi

ûm,af
|2
∣

∣

∣
ûm ∈ Uout

m (bm)
]

= q2(θ, d),

it follows that

E
[

e
− θ

ηnhσ2

∑

ûm∈Uout
m (bm)

(δ̂lbûm
)α|Hi

ûm,af
|2∣
∣

∣
E ,Af

]

= E
[(

E[e
− θ

ηnhσ2 (δ̂lbûm
)α|Hi

ûm,af
|2

]
)|Uout

m (bm)|∣
∣

∣
E ,Af

]

= e(q2(θ,d)−1)Soutµm . (21)

On the other hand,

E
[

e
− θ

ηnhσ2(1+κ)α

∑

âf∈Af \af

(δâf
)α

∑

ûm∈Uns
m (âf )

|Hi
ûm,af

|2∣
∣

∣
E ,Af

]

=
∏

âf∈Af\af

( 1

1 + γ2(δâf
)α

)N
âf
m,nc

. (22)

Combining (20), (21) and (22), and noting thatSout ≥ πR2−
π( κ

1−κ2 )
2
∑

âf∈Af\af
d2(af , bm), we have

Pm,f
out ≥1−e−πR2µm(1−q2)E

[

e
− θ

ηnhσ2κα

∑

ûm∈Uns
m (af )

|Hi
ûm,af

|2∣
∣

∣
E
]

×E
[

∏

âf∈Af\af

e
π(1−q2)(

κ

1−κ2 )2d2(âf ,bm)µm

( 1

1 + γ2(δâf
)α

)N
âf
m,nc

∣

∣

∣
E
]

= 1− e−n̄mu(1−q2) E
[( 1

1 + θ
ηnhκα

)|Uns
m (af )|∣

∣

∣
E
]

× E
[(

E[eγ1d
2(âf ,bm)

( 1

1 + γ2(δâf
)α

)N
âf
m,nc

]
)|Af |−1∣

∣

∣
E
]

.

(23)

Let (D1, D2) = (d(âf , bm), d(âf , af )). Employing the
upper bound derived in Lemma 1, we have

E
[

eγ1D
2
1

( 1

1 + γ2(δâf
)α

)N
âf
m,nc

]

= E
[

E
[

eγ1D
2
1

( 1

1 + γ2(δâf
)α

)N
âf
m,nc

∣

∣

∣
D1, D2

]]

≤(1−P(nc, n̄fu)) E[e
γ1D

2
1 ]+P(nc, n̄fu) E[e

D2
1(γ1−

γ2γ3Dα
1

Dα
2 +γ2Dα

1
)
]

= χ. (24)

Finally, combining (23) and (24) yields the desired result.

V. MU SERVED BY THEMBS

In this section, we analyze the outage performance of an
MU serviced by the MBS. The upload SIR experienced by
userum ∈ Um(bm) in subbandi ∈ {1, 2, . . . , ns} is equal to

SIRm,m =

pm|Hi
um,bm

|2

ns

Im,m
, (25)

where

Im,m =
∑

af∈Af

∑

u∈Um(af )∪ Uf (af )

( d(u, af )

d(u, bm)

)α pf |Hi
u,af

|2

g

+
∑

ûm∈Um(bm)\um

pm|Hi
ûm,bm

|2
g

.

According to the assumed access policy, for useru ∈ Um(af ),
we haved(u, af ) ≤ κd(u, bm), and therefore( d(u,af )

d(u,bm) )
α ≤

κα ≪ 1. Also, for useru ∈ Uf (af ), it is reasonable to assume
that d(u, af ) ≪ d(u, bm). Hence, the first interference term
in (26) is negligible compared to the second one. Under this
approximation,

Im,m =
∑

ûm∈Um(bm)\um

pm|Hi
ûm,bm

|2
g

. (26)

Theorem 3. Let n̄o , n̄bm(
κ

1−κ2 )
2 and ǫ ,

e−n̄bm+n̄fap(
en̄o−1

n̄o
−1). The outage probability experienced by

an MU serviced by the MBS,Pm,m
out (θ) = P(SIRm,m ≤ θ),

satisfies

Pm,m
out (θ) ≥ 1−

1 + θ
nh

1− ǫ
ΦNbm

m
(ln(1 +

θ

nh
)),

Pm,m
out (θ) ≤ 1− (1 +

θ

nh
)(ΦNbm

m
(ln(1 +

θ

nh
)) − ǫ).

Proof: Combining (25) and (26), since|Hi
um,bm

|2 satis-
fies an exponential distribution, we have

Pm,m
out (θ) = 1− E[e

−( θns
σ2pm

)Im,m ]

= 1− E
[

(
1

1 + θ
nh

)N
bm
m −1

∣

∣

∣
N bm

m ≥ 1
]

. (27)

Let a , 1
1+ θ

nh

. Then,
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E
[

(
1

1 + θ
nh

)N
bm
m −1

∣

∣

∣
N bm

m ≥ 1
]

= E[aN
bm
m −1|N bm

m ≥ 1]

=

∞
∑

i=1

ai−1 P(N bm
m = i|N bm

m ≥ 1)

=

∞
∑

i=1

ai−1 P(N
bm
m = i)

P(N bm
m ≥ 1)

=
a−1(E[aN

bm
m ]− P(N bm

m = 0))

1− P(N bm
m = 0)

=
a−1(ΦNbm

m
(− ln a)− P(N bm

m = 0))

1− P(N bm
m = 0)

.

We first derive an upper bound inP(N bm
m = 0). As defined in

Section IV-B, letUout
m (bm) denote the set of users inUm(bm)

that fall into the coverage area of no FAP. Also, letU in
m(bm) =

Um(bm)\Uout
m (bm). Then,

P(N bm
m =0)=P(|Uout

m (bm)|=|U in
m(bm)|=0)≤P(|Uout

m (bm)|=0).

Conditioned on Af , |Uout
m (bm)| is distributed as

Poiss(Soutµm). Therefore,

P(|Uout
m (bm)| = 0) = E[e−Soutµm ].

But Sout ≥ πR2 − π( κ
1−κ2 )

2
∑

af∈Af
d2(af , bm). Hence,

P(|Uout
m (bm)|=0) ≤ E[e

−n̄bm+π( κ

1−κ2 )2µm

∑
af∈Af

d2(af ,bm)
]

= e−n̄bm E
[

(E[e
π( κ

1−κ2 )2d2(af ,bm)
])|Af |

]

= e−n̄bm E
[(en̄o − 1

n̄o

)|Af |]

= e−n̄bm+n̄fap(
en̄o−1

n̄o
−1)

= ǫ.

Remark 1. Combining the upper and lower bounds on
ΦNbm

m
(.) derived in Lemma 2 with the lower and upper bounds

of Theorem 3 yields lower and upper bounds onPm,m
out (θ, df ),

respectively, which are in terms of the system parameters.

VI. N UMERICAL RESULTS

In this section, we present some simulation results and
compare the results with the obtained upper and lower bounds.
Throughout this section, the simulation results are generated
by 105 − 106 realizations. We also compare our results with
the bounds derived in [15] for the case in which there is no
backhaul constraint. The considered setup is a two-tier network
in a circle of radiusR = 1Km with the MBS located at the
center. In the ensuing plots, unless otherwise stated, the default
values in Table I are used.

To evaluate the upper and lower bounds stated in Theorems
1 and 2, we need to compute the values of{pi}i=t

i=−t and
{p′i}i=t

i=−t, respectively. The values of{pi} are given in Lemma
1 of [15]. As discussed in Appendix A, for small values of
κ, the MUs in Uout

m (bm) have a near-uniform distribution.

TABLE I
SIMULATION PARAMETERS

Sym. Description Default Values

λf density of FAPs 5× 10−6 m−2

µf density of femto users 5× 10−3 m−2

µm density of macrocell users 40× 10−6 m−2

δ ring width of FUs placement 5m
rf ring internal radius of FUs placement 10m
α path loss exponent 4
T SIR threshold level 2
ns number of subbands 32
nh number of subchannels in each subbands 1024
η power ratio between FAPs and MBS 40
κ handover parameter 0.08
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Fig. 3. Outage probability of an MU served by an FAP (at distance of800m
from the MBS) as a function backhaul parameternc.

Therefore, the same Lemma 1 from [15] also provides a
reasonable approximation for the values of{p′i}.

Fig. 3 shows the effect of the backhaul capacitync on the
outage probability experienced by the MUs serviced by a FAP
located atdf = 800m from bm. Increasing the backhaul
capacitync results in statistically more MUs being serviced
by FAPs, which in turn reduces the cross-tier interference
experienced by users served by the FAPs. At the same time,
this will increase the co-tier interference. However, from
the figure, the cross-tier interference is the dominant term
compared to the co-tier one. Also, it can be observed that
as nc increases, the backhaul-constraint bounds converge to
those of without restriction, computed in [15]. It should be
mentioned that for all values ofnc, the bounds are consistent
with the simulation results, which confirm the accuracy of the
derived analytical bounds.

Fig. 4 shows the outage probability experienced by the
MUs serviced by an FAP located atdf = 800m from bm
as a function of the backhaul parameternc, for different
values ofµf , the FUs’ density. Obviously, asµf increases, the
interference caused by FUs also increases. This will increase
the outage probability of the MUs serviced by the FAPs. For
large values ofnc, the effect of backhaul constraint fades away,
and since the dominant cross-tier interference does not depend
on µf , the curves converge together.

Fig. 5 shows the average outage probability experienced by
MUs as a function ofnc, for two different values ofµm, the
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Fig. 5. Outage probability of MUs as a function of the backhaul parameter
nc for different MUs densities a) MUs served by FAPs b) MUs served by
the MBS.

MUs’ density. Increasingµ increases both cross- and co-tiers
interferences, and hence results in higher outage probabilities.1

Fig. 6 shows the average outage performance of MUs as
a function of handover parameterκ and compares the results
to the case of no backhaul constraints. For the case in which
backhaul constraint is present, it is assumed thatnc = 3. As
it can be observed, in contrast to the downlink scenario [2],in

1For plotting the average outage probability experienced byMUs served
by the FAPs, we take the expected values of the upper and lowerbounds
obtained in Theorems 1 and 2 by considering the randomness indf .
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Fig. 6. Outage probability of MUs as a function of the handover parameter
κ for the cases of with and without backhaul constraints a) MUsserved by
FAPs b) MUs served by the MBS.

both cases the outage probability is a monotonic function of
κ. As explained in [15], the difference between the uplink and
downlink arises from the fact that in the downlink scenario,as
the MUs get farther away from the MBS, their received powers
decrease and hence SIRs decrease as well. On the other hand,
in the uplink comunication, as they get farther away from the
MBS, due to the power control, their transmit powers increase
as well to compensate for the path loss. Naturally, increasing
the handover parameter increases the number of MUs covered
by FAPs and hence lowers the co-tier interference. Note that
while the gap between the upper and lower bounds widens as
κ increases, the lower bound follows the simulation results for
all values ofκ.

Fig. 7 shows the outage probability of MUs served by
FAPs as a function of the FAP’s normalized distance from
the MBS, and compares the results with the case of no
backhaul restriction. Herenc = 3. As expected, the outage
probability in the presence of backhaul is higher that the
ideal case where the FAPs have infinite backhaul capacity.
The reason is that because of the backhaul constraints fewer
MUs are served by the FAPs and this leads to higher cross-
tier interference. However, in both cases, at first, the outage
probability increases as the MU gets farther from the MBS.
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Fig. 8. Outage probability of a MU served by a FAP as a functionof the
normalized distance of the FAP from the MBS for different MUsdensities.

Due to the constant received power assumption at the MBS, as
the MU gets farther from the MBS, it will transmit at a higher
power, which leads to the degradation in the performance of
FUs and also MUs served by the nearby FAPs. However,
as the femtocells get close to the fringes of the cell, the
outage probabilities start to improve as well. The reason is
that femtocells that are far away from the MBS have larger
coverage areas and therefore, in those regions most MUs are
serviced by nearby FAPs.

Fig. 8 shows the outage probability of MUs served by FAPs
as function of the distance between the FAP and the MBS, for
different values of MUs’ density (µm). Obviously, for a fixed
backhaul parameter, which is set to 3 in these curves, more
MUs being served by the MBS results in higher cross-tier
interference and hence higher outage probabilities for MUs
served by the FAPs.

VII. C ONCLUSIONS

In this paper, we have studied two-tier cellular networks,
in which each FAP has a finite backhaul capacity limiting the
number of users it can serve. The MUs, FUs and FAPs have
all been assumed to have stochastic deployments according
to PPPs. We have considered fixed backhaul constraints for
FAPs, which limit the number of users each FAP can service.
Under these assumptions, we have derived analytical upper and
lower bounds on the outage probabilities of MUs serviced by

FAPs and MUs serviced by the MBS. All bounds have been
confirmed by our simulation results.

While in our analysis we have assumed that there is only a
single MBS, the results can also be applied to real networks
with multiple MBSs. To do this extension, we only need to
assume that each MU is assigned to its closest MBS and the
macro cells employ one of the well-known frequency reuse
methods that orthogonalize neighboring cells.

APPENDIX A
PARTITIONING Sm

In this section, we briefly review the partitioning of the
coverage area presented in [15]. Consider the MBSbm and
FAPaf located at distanced from each other. (Refer to Fig. 9.)
Sm denotes the circle of radiusR aroundbm. The set of points
u such thatd(u, af )/d(u, bm) = κ′ or d(u, af )/d(u, bm) =

1/κ′, whereκ′ ∈ (0, 1) are two circles of radius κ′

1−κ′2 . In
Fig. 9, the colored pairs of circles correspond to three different
values ofκ′.

Considerκ0, . . . , κt such thatκ0 = κ < κ1 < κ2 <
. . . < κt = 1, and the2t pairs of circles corresponding to
κ0, . . . , κt−1. These circles do not intersect and in addition to
the line corresponding toκt = 1, which corresponds to the set
of pointsu satisfyingd(u, af ) = d(u, bm), partitionSm into
2(t+ 1) regions.

APPENDIX B
DISTRIBUTION OF USERS INUns

m (bm)

As a reminderUout
m (bm) denotes the set of users that are

covered by the MBSbm because they do not fall into the
coverage area of any of the FAPs. In this appendix, we prove
that for κ small the distance of the users inUout

m (bm) to the
MBS has an almost uniform distribution. In this section, we
assume thatκ ≤ 0.5.

Given FAPaf ∈ Af , let C(af ) denote the coverage area of
af . As explained earlier, for FAPaf at distanced from bm,
C(af ) is circle of radius κd

(1−κ2) , whose center is located at

distance d
1−κ2 from bm on the line connectingbm to af .

Consider useru that is located uniformly at random onSm.
DefineE as the event thatu does not fall in the coverage area

−1000 −500 0 500 1000 1500
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−800
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−400

−200

0

200

400

600

800

1000

R
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Fig. 9. Partitioning the coverage area
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of any of the FAPs, i.e.,

E , {u /∈ C(af ), ∀af ∈ Af}.

Let
Du , d(u, bm).

In this section, we derive the conditional pdf ofDu condi-
tioned onE , fDu

(·|E). By the Bayes formula,

fDu
(d|E) = fDu

(d) P(E|Du = d)

P(E) . (B.1)

Sinceu is drawn uniformly at random,fDu
(d) = 2d

R2 . On the
other hand, since the FAPs are drawn according to a PPP of
densityλf , we have

P(E|Du = d) =

∞
∑

n=0

P(E , Nfap = n|Du = d)

=

∞
∑

n=0

pNfap
(n) (P(u /∈ C(af )|Du = d))

n

=
∞
∑

n=0

e−n̄fap
(n̄fap)

n

n!
(P(u /∈ C(af )|Du = d))n

= e−n̄fap(1−P(u/∈C(af )|Du=d))

= e−n̄fap P(u∈C(af )|Du=d). (B.2)

To computeP(u ∈ C(af)|Du = d) consider useru at
distanced from bm and FAP located at distancer from bm.
(Refer to Fig. 10.) In order foru to be covered byaf , d should
satisfy

r

1− κ2
− rκ

1− κ2
≤ d ≤ r

1− κ2
+

rκ

1− κ2
,

or
(1 − κ)d ≤ r ≤ (1 + κ)d.

Given r ∈ ((1 − κ)d, (1 + κ)d), the angle between the lines
(bm, af ) and (bm, u) should be within(−θ, θ), where

cos(θ) =
d2 + ( r

1−κ2 )
2 − ( κr

1−κ2 )
2

2dr
1−κ2

=
d2(1− κ2) + r2

2dr
.

(B.3)

Let r = d(1 + ρ), whereρ ∈ (−κ, κ). Employing this change
of variable, it follows from (B.3) that

cos(θ) = 1− κ2 − ρ2

2(1 + ρ)
,

and

sin2(θ) =
κ2 − ρ2

2(1 + ρ)
(2− κ2 − ρ2

2(1 + ρ)
)

= κ2 − ρ2(1− ρ

2(1 + ρ)
− κ2 − ρ2

4(1 + ρ)2
).

Therefore, since for0 ≤ x ≤ 1, 1 − x ≤
√
1− x ≤ 1, we

have
√

κ2 − ρ2(1− ρ

2(1 + ρ)
− κ2 − ρ2

4(1 + ρ)2
) ≤ sin(θ) ≤

√

κ2 − ρ2.

(B.4)

0 1 2 3 4 5

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

r κr
1−κ2

κ
2r

1−κ2

θ d

Fig. 10. Useru located at distanced from bm falling in the coverage area
of af at distancer from bm.

But,

ρ

2(1 + ρ)
+

κ2 − ρ2

4(1 + ρ)2
≤ κ

2(1− κ)
+

κ2

4(1− κ)2
≤ 2κ,

(B.5)

where the last line follows from our assumption thatκ ≤ 0.5.
And,

∫ κ

−κ

2(1 + ρ)
√

κ2 − ρ2dρ = πκ2. (B.6)

Therefore, sinceP(u ∈ C(af)|Du = d) = d2

πR2

∫ κ

−κ 2(1 +
ρ) sin(θ)dρ, combining (B.4), (B.5) and (B.6), it follows that

(1− 2κ)
d2κ2

R2
≤ P(u ∈ C(af )|Du = d) ≤ d2κ2

R2
. (B.7)

Combining (B.2) and (B.7) yields

e−n̄fapd
2κ2/R2 ≤ P(E|Du = r) ≤ e−n̄fapd

2κ2(1−2κ)/R2

,
(B.8)

andP(E) =
∫ R

0
2r
R2 P(E|Du = d)dr satisfies

1− e−κ2n̄fap

κ2n̄fap
≤ P(E) ≤ 1− e−(1−2κ)κ2n̄fap

(1 − 2κ)κ2n̄fap
. (B.9)

Finally, from (B.1), (B.8) and (B.9),

fDu
(d|E) ≥ (1 − 2κ)κ2n̄fape

−n̄fapd
2κ2/R2

1− e−(1−2κ)κ2n̄fap
(
2d

R2
), (B.10)

fDu
(d|E) ≤ κ2n̄fape

−n̄fapd
2(1−2κ)κ2/R2

1− e−κ2n̄fap
(
2d

R2
). (B.11)

Note that forκ ≪ 1, the lower bound and the bound bound
in (B.10) and (B.11), respectively, converge to2d/R2, which
corresponds to the uniform distribution over a circle of radius
R.
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