
Bloch Model Wavefunctions and Pseudopotentials for All Fractional Chern Insulators
- Supplemental Material -

Yang-Le Wu,1 N. Regnault,1, 2 and B. Andrei Bernevig1

1Department of Physics, Princeton University, Princeton, NJ 08544
2Laboratoire Pierre Aigrain, ENS and CNRS, 24 rue Lhomond, 75005 Paris, France

GAUGE FIXING

The connections over the lowest Landau level (LLL)
Brillouin zone (BZ) are AL

x(k) = e−i2πky/Nφ , and
AL
y (k) = 1 (superscript ‘L’ represents LLL). They satisfy

the discrete analog of the Coulomb gauge condition [6],
i.e. they can be expressed in terms of a “stream function”
φLk = (ky + 1/2)2/(2Nφ) as

AL
α(k) = exp

(
− i2π

∑
β

εαβ [dβφ
L]k

)
. (1)

Here, dβ is the backward finite difference operator, de-
fined by [dβφ]k = φk−φk−gβ , and φLk satisfies the discrete
Poisson equation with curvature as source,

[∆̃φL]k = 1/Nφ, (2)

with discrete Laplacian ∆̃ given by

[∆̃φ]k =

±gx,±gy∑
p

(φk+p − φk) . (3)

We impose the same Coulomb gauge condition on the
lattice connections, and handle separately the average
and the fluctuations of the lattice BZ curvature:

Atarget
α (k) = AL

α(k + γ) exp (−i2πεαβ [dβφ]k) . (4)

The non-zero curvature average necessitates the first fac-
tor above. The shift γ =

∑
α γαgα is determined by

W lat
x = WL

x (γy) and W lat
y = WL

y (γx) (‘lat’ represents
lattice), and it accounts for the mismatch in the large
Wilson loops between the two systems. The curva-
ture fluctuations are attended by the exponential factor,
where the stream function φk satisfies the discrete Pois-
son equation [∆̃φ]k = fk − 1/Nφ, with boundary con-
ditions [dαφ]k = [dαφ]k−Nβgβ (no summation implied)

and
∑Nx
κ [dyφ]κgx =

∑Ny
κ [dxφ]κgy = 0. In plain words,

we require that the connection corrections accounting for
the curvature fluctuations should be periodic over the lat-
tice BZ [7], and they should not contribute to the large
Wilson loops W lat

α which have already been fixed by the
AL
α(k + γ) factor.
Up to an inconsequential k-independent constant,

these conditions allow a unique solution

φk = ϕk + vykx − vxky, (5)

with vα = 1
Nα

∑Nα−1
κ=0

∑
β εαβ [dβϕ]κgα , and

ϕk =
1

NxNy

∑
n6=0

ei2π(kxnx/Nx+kyny/Ny)

2 cos(2πnx/Nx) + 2 cos(2πny/Ny)− 4

BZ∑
p

e−i2π(pxnx/Nx+pyny/Ny)
(
fp −

1

Nφ

)
, (6)

where n ≡ (nx, ny) runs over {[0 .. Nx)×[0 .. Ny)}\(0, 0).
The connections Atarget

α (k) in Eq. (4) are consistent
with the actual (fluctuating) curvature over the lattice
BZ. Starting from a set of single-particle Bloch states |k〉
with an arbitrarily chosen gauge and connections Aα(k),
our gauge fixing scheme amounts to the gauge transform
|k〉 → eiζk |k〉 that reproduces Atarget

α (k),

eiζk =

ky−1∏
κ=0

Ry(0, κ)

[kx−1∏
κ=0

Rx(κ, ky)

]
, (7)

with Rα(k) = Atarget
α (k)/Aα(k) [8].

EMERGENT PARTICLE-HOLE SYMMETRY AT
FILLING ν = 2/3

As noted in the main text, the fractional quantum Hall
system has particle-hole symmetry, which is absent in the
fractional Chern insulators (FCI) [1, 2]. The anti-unitary
particle-hole transformation P exchanges the band cre-
ation and annihilation operators ψk ↔ ψ†k. The most
generic normal-ordered two-body FCI Hamiltonian in the
single-band approximation can be written as

H =

BZ∑
{k1−4}

′ Vk1k2k3k4ψ
†
k1
ψk2

ψ†k3
ψk4
−
∑
p

Vkppkψ
†
kψk, (8)

where the primed sum is constrained by k1 + k3 =
k2 + k4 mod gα, and the interaction coefficients satisfy
V ∗k1k2k3k4

= Vk2k1k4k3
. The particle-hole transformation

changes the Hamiltonian by a one-body term plus a con-
stant,

PHP−1 −H =
∑
k

εkψ
†
kψk +

BZ∑
pk

Vkppk, (9)

where the effective dispersion εk is given by

εk =
∑
p

(
Vpkkp + Vkppk − Vkkpp − Vppkk

)
. (10)
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FIG. 1: Panel a) shows the low energy spectrum of the
ruby lattice model at filling ν = 2/3 for various system sizes,
with energies shifted by E0, the lowest energy for each sys-
tem size. Panel b) shows the overlaps O between our FCI
ν = 2/3 Laughlin states and the lowest energy states in the
corresponding momentum sectors of the ruby lattice model for
various system sizes. The system size (Nx, Ny) represented by
each group of markers is annotated in panel b).

We emphasize that εk comes from the interaction and is
unrelated to the single-particle dispersion of the Bloch
band. In general, εk has a non-trivial k dependence,
and this breaks the particle-hole symmetry of the lattice
model. We can apply our construction of FCI model
wave functions to test the possible presence of emergent
particle-hole symmetry in the lattice models that support
a Laughlin-like state. We examine the ruby [3] and the
kagome [4] lattice models with Chern number C = 1. We
focus on the ν = 2/3 filling factor, where the particle-hole
conjugate of the ν = 1/3 Laughlin state should appear.

For the ruby lattice model, we observe gapped three-
fold ground state in the energy spectrum, as shown in
Fig. 1a). A clear energy gap above the three-fold ground
state is visible when the number of particles is higher

than 12. Using the formalism detailed in the main text,
we construct the FCI Laughlin state at filling ν = 2/3.
We find reasonable overlaps between these model states
and the ground states of the ruby lattice model, as shown
in Fig. 1b). Compared with the conjugate states at fill-
ing ν = 1/3, the overlap values here are considerably
smaller. For the kagome lattice model, we do not ob-
serve gapped ground states in the energy spectrum. This
model does not exhibit any trace of the particle-hole con-
jugate Laughlin state. We note that the presence of a
robust ν = 1/3 Laughlin state in a Chern insulator does
not guarantee the existence of its particle-hole conjugate
at ν = 2/3.
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