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We introduce a Bloch-like basis in a C-component lowest Landau level fractional quantum Hall (FQH)

effect, which entangles the real and internal degrees of freedom and preserves an Nx � Ny full lattice

translational symmetry. We implement the Haldane pseudopotential Hamiltonians in this new basis. Their

ground states are the model FQH wave functions, and our Bloch basis allows for a mutatis mutandis

transcription of these model wave functions to the fractional Chern insulator of arbitrary Chern number C,

obtaining wave functions different from all previous proposals. For C> 1, our wave functions are related

to color-dependent magnetic-flux inserted versions of Halperin and non-Abelian color-singlet states. We

then provide large-size numerical results for both the C ¼ 1 and C ¼ 3 cases. This new approach leads to

improved overlaps compared to previous proposals. We also discuss the adiabatic continuation from the

fractional Chern insulator to the FQH in our Bloch basis, both from the energy and the entanglement

spectrum perspectives.
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Recently, several groups showed that gapped topological
phases resembling the fractional quantum Hall (FQH)
effects can be stabilized in a flat band with Chern number
C � 0 by strong electronic interactions in the absence of a
magnetic field [1–3]. These are named fractional Chern
insulators (FCI). Most of the research efforts have been
focused on the case of C ¼ 1: In various lattice models
[4–7], several groups have provided compelling evidence
[1–3,8–22] for the presence of the Read-Rezayi series
[9–11,23,24] as well as the composite-fermion [25–27]
FQH states. The correlated phases in Chern bands with
C> 1 [28–32], however, are more intricate. Numerical
studies found both bosonic [32–34] and fermionic [33,35]
topological phases resembling the color SUðCÞ version of
the Halperin [36] and the non-Abelian spin-singlet (NASS)
[37] states [34], but with clear deviations [34].

To understand these novel topological phases, a series of
approaches was put forward. For C ¼ 1, one can identify
the nature of these states (1) through a folding principle
[3,9] that links the FCI and FQH quantum numbers,
(2) through the entanglement spectrum [38,39] of the
ground states [3,10], and (3) through overlaps with model
states obtained from replacing the lowest Landau level
(LLL) orbitals with hybrid Wannier states but leaving the
occupation-number weights unchanged [29,40]. After
proper gauge fixing [41], high overlaps were obtained
[41–43] from the last approach and FCI-FQH adiabatic
continuity was demonstrated [42,43].

For C> 1, the finite-size numerical results are harder to
understand. The FCI equivalent of the Halperin states was
proposed to occur at Abelian filling factors [29]. The
particle entanglement spectrum [34], however, shows a
clear discrepancy from such states. We are also unable to
consistently implement the exclusion principle for colorful

FQH model states [44,45] in the Wannier basis. Naively, a
C-component quantum Hall system contains C decoupled
copies of the LLL, each having a unity Chern number
over a Brillouin zone (BZ) consisting of N� ¼ NxNy=C

momenta [9]. This appears to be very different from the
single Chern number C manifold of the lattice BZ of NxNy

momenta, especially when NxNy=C =2 Z.
In this Letter, we break away from previous approaches

and construct in a C-component LLL a momentum-space
basis that mimics the Nx � Ny Bloch states in the Chern

band. These new one-body basis states entangle the color
and the real spaces and form a single Nx � Ny Brillouin

zone with flat Berry curvature and Chern number C,
regardless of lattice size commensuration with C. This
leads to a new mapping between FCI with arbitrary C on
a lattice of arbitrary size and a C-component FQH system.
Our mapping operates directly in Bloch momentum space
and utilizes the full lattice translational symmetry, which
removes the huge computational cost of Refs. [41,42]. For
C ¼ 1, our construction is equivalent to the Wannier con-
struction [40], except for a new gauge fixing that improves
the overlaps (than Refs. [41,43]). For C> 1, our model
FCI states are equivalent to a new, color-dependent
magnetic-flux inserted version of the Halperin or the
NASS states, different from the existing proposal [29].
The FCI wave functions produced by our approach have
the correct entanglement spectrum [10,34]. We demon-
strate large overlaps for previously unattained sizes
between our model FCI wave functions and numerics for
both C ¼ 1 and the uncharted case of C> 1.
Consider a translationally invariant two-dimensional

(2D) band insulator on an Nx � Ny lattice with No orbitals

per unit cell indexed by b. The Bravais lattice is mxbx þ
myby, with ðmx;myÞ 2 Z2 and the primitive translation
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vectors bx and by. We focus on a single Chern band of

Bloch states jki, labeled by momentum k ¼ P
�k�g�,

with k� 2 Z and g� � b� ¼ 2����=N� (�, � 2 fx; yg).
We use jki and jkx; kyi interchangeably. The orbital b is

embedded at �b relative to its unit cell coordinate in
real space [41]. The projected density in the Chern band
is [8,9,12]

�q ¼ XBZ
k

�X
b

e�iq��bu�bðkÞubðkþ qÞ
�
jkihkþ qj; (1)

where ubðkÞ is the periodic part of the Bloch wave function.
At q ¼ g�, the bracketed factor in Eq. (1) gives the band
geometry through the nonunitary exponentiated Abelian
Berry connection A� ¼ P

be
�ig���bu�bðkÞubðk þ g�Þ.

jA�ðkÞj contains the quantum distance between jki and
jkþ g�i, while A�ðkÞ ¼ A�ðkÞ=jA�ðkÞj is the unitary
Berry connection between them. We define �� ¼ �g�

.

The gauge-invariant Wilson loops (geometric phases)
can be obtained by parallel transporting around a close
loop over the BZ torus. All the contractible loops consist of
a product of loops around a single plaquette, namely,
�x�y½�y�x��1 ¼ P

BZ
k DðkÞWjðkÞjkihkj. Here, DðkÞ ¼

jAxðkÞAyðkþ gxÞA�1
x ðkþ gyÞA�1

y ðkÞj 2 R is re-

lated to the nonuniformity of the quantum distance, and
WjðkÞ ¼ AxðkÞAyðkþ gxÞ½AyðkÞAxðkþ gyÞ�y 2 Uð1Þ is
the unitary Wilson loop around the plaquette with its
lower-left corner at k. For large enough Nx and Ny,

we can unambiguously extract the Berry curvature
fk ¼ 1

2�= logWjðkÞ, with finite-size normalization

convention
P

BZ
k fk ¼ C. = takes the imaginary part in

the principal branch = logðzÞ 2 ð��;��. This gives a
sharp finite-size formula for the Chern number C ¼
1
2� Tr= log½�x�yð�y�xÞ�1�. In addition to WjðkÞ, there

are also two independent noncontractible Wilson
loops on the torus, related to charge polarizations: the

Wilson loop around ky ¼ 0, Wx ¼ Phase½h0j�Nx
x j0i� ¼

hNxgxj0iQNx�1
�¼0 Axð�gxÞ, with j0i � jk ¼ 0i, and the

Wilson loop Wy around kx ¼ 0, defined similarly.

The structure of geometric phases in the Chern band is
fully specified by the collection of the Wilson loopsWjðkÞ
and W�, � ¼ x, y. We now build a LLL basis in Bloch k
space, from which all properties of a Chern band with
arbitrary Chern number can be translatedmutatis mutandis.
Diagonalizing the Haldane pseudopotentials in this basis
gives us the FCI model wave functions.

We consider electrons on a (continuum) torus
ðLx;LyÞ � ðNxbx; NybyÞ with twist angle � in a magnetic

field B ¼ Bêz. The magnetic translations are TðdÞ ¼
e�id�K, where K ¼ �i@r� eAþ eB� r. We adopt the
Landau gauge AðrÞ ¼ Bxêy. The guiding-center periodic

boundary conditions TðL�Þ ¼ 1 quantize the number of
flux quanta N� ¼ LxLy sin�=ð2�l2BÞ to an integer [46],

where lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ðeBÞp

is the magnetic length. We set

N� ¼ NxNy in accordance with the Chern insulator

[9,40] for C ¼ 1. The usual basis fjjig in the LLL is

hx; yjji ¼ 1

ð ffiffiffiffi
�

p
LylBÞ1=2

XZ
n

exp

�
2�ðjþ nN�Þ xþ iy

Ly

� i
�Lxe

�i�

N�Ly

ðjþ nN�Þ2
�
e�x2=ð2l2BÞ: (2)

To make contact with the Bloch states, we introduce a new
LLL basis that diagonalizes translations in both directions,

TðL�=N�Þjki ¼ e�i2�k�=N� jki,

jki ¼ 1ffiffiffiffiffiffi
Nx

p XNx�1

m¼0

ei2�mkx=Nx jj ¼ mNy þ kyi; (3)

where k ¼ P
�k�g� lives on the lattice reciprocal to

(Lx, Ly). These states are periodic in kx, jkx þ Nx; kyi ¼
jkx; kyi, but quasiperiodic [47] in ky, jkx; ky þ Nyi ¼
e�i2�kx=Nx jkx; kyi. Each jki satisfies TðL�Þ ¼ 1. We find

the LLL-projected density in the jki basis,

�q ¼ e�q2l2B=4
XBZ
k

e�i2�qxðkyþqy=2Þ=N� jkihkþ qj; (4)

with q ¼ P
�q�g�, q� 2 Z. The Wilson loops are

WjðkÞ ¼ ei2�=N� , Wx ¼ e�i2�ky=Ny , and Wy ¼ ei2�kx=Nx .

Using Eq. (4), one can diagonalize any FQH
Hamiltonian

P
qVq�q��q (including pseudopotential and

even higher-body Hamiltonians) directly in the jki basis
and then translate the resulting wave function to the FCI by
replacing jki with the lattice Bloch states. The advantage
of the new LLL basis [Eq. (3)] is many-fold. The condi-
tions for the relevance of the FQH state to FCI are explicit
in this basis [Eq. (4)]: The Berry curvature must not
fluctuate wildly [8] and the quantum distance [48] over
the Chern band must fall off with q rapidly, similar to

e�q2l2B=4. Equation (4) also allows a much simpler and more
effective treatment of the curvature fluctuations in gauge
fixing (see below). The most practical advantage of work-
ing directly in the Bloch basis is the avoidance of the
many-body Fourier transform in the Wannier prescription.
This greatly simplifies the numerical implementation and
nearly squares the largest Hilbert space dimension that we
can study in numerics.
We now turn to the case of C> 1 and construct a Bloch-

like basis in the C-component LLL with N� ¼ NxNy=C

fluxes that forms an Nx � Ny BZ with flat curvature and

Chern number C. The starting point is to look for two
commuting translation operators that resolve an Nx � Ny

BZ. The finite magnetic translations T� ¼ TðL�=N�Þ
seem natural, but they do not commute; TxTy ¼
TyTxe

i2�=C. The cure must come from the color structure

of the multicomponent system. We assume a color-neutral
Hamiltonian H. Two color operators P and Q (diagonal in
real space) commute with the Hamiltonian,
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Pj	i ¼ j	þ 1 ðmodCÞi; Qj	i ¼ ei2�	=Cj	i: (5)

j	i, with 	 2 ZC, are color eigenstates. Their commuta-

tion relation PQ ¼ QPe�i2�=C is complementary to that of
Tx, Ty. The two color-entangled operators ~Tx ¼ TxP and
~Ty ¼ TyQ commute with each other and with H [49]. We

define the eigenstates jki with ~T�jki ¼ e�i2�k�=N� jki,

hx; y; 	jki ¼ 1

ð ffiffiffiffi
�

p
NxLylBÞ1=2

XZ
n

ei2�ðnCþ	Þkx=Nx

� exp

�
2�

�
ky þ nNy þ 	

C
Ny

�
xþ iy

Ly

� i
�Lxe

�i�

N�Ly

�
ky þ nNy þ 	

C
Ny

�
2
�
e�x2=ð2l2BÞ:

(6)

Because of ½TðL�Þ; ~T�� � 0, generically we have to aban-

don the boundary condition TðL�Þ ¼ 1 and adopt the

color-entangled generalization ~TN�
� ¼ 1, i.e.,

TðLxÞPNx ¼ TðLyÞQNy ¼ 1: (7)

This quantizes k� to integers. Since ~TN�
� commute with

each other by construction, N� is not restricted to an

integer anymore, unlike Ref. [29]. We only require Nx,
Ny, C 2 Z. The jki states are periodic in kx but quasiperi-

odic in ky, jkx; ky þ Nyi ¼ e�i2�kxC=Nx jkx; kyi. There are

Nx � Ny independent jkx; kyi states, which form a BZ of

the same size as the lattice and with the same Chern
number C. After summing over colors, the LLL-projected
density operator �q ¼ P

C
	 �q	 in the color-entangled basis

jki takes an identical form to Eq. (4), except for the
generalization N� ¼ NxNy=C. The color-entangled BZ

has flat curvature fk ¼ 1=N�, as inferred from WjðkÞ ¼
ei2�=N� . The matrix elements of �q in the C-component

LLL, which are the building blocks of the interacting
Hamiltonian, are exactly equal to the Cth power of those
in the single-component LLL. Model wave functions of
pseudopotential Hamiltonians in the jki basis can imme-
diately be translated to the FCI with arbitrary C. Further,
we can generalize the color-entangled boundary conditions

in the LLL to ~TN�
� ¼ e�i2�
� , where the twist angle 
� 2

R corresponds to flux insertions. This shifts the momentum
k ! kþ � with � ¼ P

�
�g�. The connections become
A�ðkþ �Þ, while the large Wilson loops around k� ¼ 0

are Wxð
yÞ ¼ e�i2�C
y=Ny and Wyð
xÞ ¼ ei2�C
x=Nx .

Linking together the LLL jki and the lattice jki bases
requires one additional step of gauge fixing jki ! ei�k jki.
After that, any many-body state j�iL over our colorful
LLL can be transcribed to the FCI [50],

j�i ¼ X
fkg

e
i
P
k

�k jfkgi � �
Lhfkgj�iL; (8)

where
�
Lhfkgj is the color-entangled occupation-

number basis in the LLL with twist �. See the
Supplemental Material [51] for the explicit construction
of ei�k and �.
For FCI with C> 1, previous studies suggested that the

equivalent FQH states are the SUðCÞ color-singlet Halperin
states [29,33,34,52]. They are the exact zero modes of
the color-neutral LLL-projected Hamiltonian HFQH ¼P

qVq�q��q, where q is summed over the infinite lattice

reciprocal to (Lx, Ly) and the interaction between color-

neutral densities �q ¼ P
	�q	 is Vq ¼ V0 for bosons and

Vq ¼ V0 þ ð1� q2l2BÞV1 for fermions, with pseudo-

potential Vn > 0 [53]. For the FQH effect in a 2D electron
gas, the boundary conditions TðL�Þ ¼ 1 are imposed sepa-
rately on different color components. In the LLL descrip-
tion of a FCI, however, we require the system to be periodic

under the color-entangled translations ~TN�
� . This breaks the

SUðCÞ symmetry. To compare with the Halperin SUðCÞ
singlet states, we examine the commensurate caseNx=C 2
Z. The boundary conditions in Eq. (7) thread �	 ¼
	Ny=C (color-dependent) magnetic fluxes along the y

direction into the 	 component of the LLL [54]. In the
one-dimensional localized basis for the LLL [Eq. (2)], this
shifts the Landau orbitals of color 	 by �	Lx=N� in real

space. Hence, we propose that the Wannier mapping [29]
be modified to identify the hybrid Wannier states with our
shifted LLL orbitals. In the generic, noncommensurate
case, the translation TðLxÞ changes the color of the parti-
cle, due to TðLxÞPNx ¼ 1. Our construction thus provides a
finite-size realization of the ‘‘wormhole’’ connecting dif-
ferent color components [29].
We demonstrate the Bloch construction using the ruby

lattice model (C ¼ 1) [7] and the two-orbital triangular
lattice model (C ¼ 3) [31]. We construct the FCI model
states through Eq. (8) from the exact-diagonalization
ground states of HFQH with color-entangled boundaries.

We find high overlaps [Fig. 1(a)] and an identical low-lying
structure in the entanglement spectrum with the FCI
ground states [10,34]. The 12-fermion Laughlin state on
the ruby lattice model has a Hilbert space of dimension
3:4� 107. This state is well captured by the model wave
function obtained from our construction (overlap � 0:99).
The triangular lattice model has decent overlaps, albeit
lower than the ruby lattice model. The model we propose
has the particle-hole symmetry, which is generally absent
in the FCI models [27,35]. When the lattice model exhibits
such an emergent symmetry, our construction can also
capture it [51].
To further examine our construction for C> 1, we

study the interpolation Hamiltonian H� ¼ ð1� �ÞHFCI þ
�HFQH, 0 	 � 	 1 [42,43]. For bosonic on-site density-

density interaction on the triangular lattice HFCI¼
U
P

ab

P
fk1�3g ~c

y
k1a

~c y
k2b

~c k3b
~c k4a, where k4 ¼ k1 þ k2 �

k3 (mod N�g�) and ~c y
kb ¼ ei�ku�bðkÞc y

k is gauge fixed
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by ei�k , with jki ¼ c y
kj;i. For HFQH, we use color-

entanglement boundary conditions �. We find that the
FCI model states are adiabatically connected to the actual
ground states: H� remains gapped for � 2 ½0; 1�, and its
ground states retain the characters of the FCI model states
as seen in both overlaps and the particle entanglement
spectrum [Figs. 1(b)–1(d)]. As observed in Ref. [34], the
six-boson state on 6� 4 lattice has clear deviations from
the usual Halperin state in the entanglement spectrum. Our
FCI model state exactly reproduces these novel features.
Note that the 8� 4 lattice is closer to the thin-torus limit
[55], resulting in smaller overlaps and �
 values.

In this Letter, we introduce a Bloch basis for a multi-
component LLL with a rational number of fluxes that
entangles real and internal spaces on the one-body level.
We establish a Bloch-basis mapping between a Chern band
with an arbitrary Chern number C on an arbitrary Nx � Ny

lattice and a C-component LLL with N� ¼ NxNy=C 2 Q
fluxes. This mapping leads to a novel scheme, which we
call Bloch construction, to build FCI model states from
color-neutral FQH Hamiltonians. It treats bosonic or fer-
mionic FCI with arbitrary Nx, Ny, C 2 Z in a wholesale

fashion and can handle large system sizes. The new gauge
fixing in our basis significantly improves the overlaps with
the actual ground states when curvature strongly fluctuates.

We refer to the constructed FCI model states as the
color-entangled Halperin states. They are distinct from
the SUðCÞ singlet Halperin states due to the color-
entangled boundary conditions. When the lattice size is
commensurate with C, the color-entangled states are the
generalization of the usual Halperin states to color-
dependent twisted boundaries. More generally, the lattice
setup opens up access to the color-entangled, unphysical
sectors of a multicomponent FQH system in a physical
way. Our new formalism can be applied to the NASS states
and can be used to extract the exclusion principle for the
counting of low-lying levels in the energy and the entan-
glement spectra.
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