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1 Introduction and summary

The study of operators with large quantum numbers has played a central role in the
development of the gauge/string duality and AdS/CFT correspondence [1, 2]. Under
the duality, operators with large quantum numbers are dual to macroscopic string states,
which can be quantized by semiclassical methods. For instance, the scaling dimensions of
single-trace operators with large charges in the gauge theory are dual to the energies of
semiclassical closed string states in AdS. The investigation of such large charge sectors of
AdS/CFT also paved the way to the discovery of integrable structures on the gauge and
string sides, leading to rather non-trivial dynamical tests of the correspondence (see for
instance [3] for a review of this extensive topic). More recently, general properties of the
large charge expansion in CFTs with global symmetries have been extensively studied using
effective field theory methods, see for instance [4–7] and [8] for a recent review.

In this work, our focus is on the large charge sector of the defect CFT associated with
the half-BPS Wilson loop in the N = 4 supersymmetric Yang-Mills (SYM) theory. This is a
well-known generalization of the usual Wilson loop operator that couples to one of the scalar
fields of the theory, and is supported on a circular (or infinite straight line) contour. It
preserves a one-dimensional superconformal group OSp(4∗|4) that includes 16 supercharges
(half of the superconformal symmetry of the N = 4 SYM theory) and the bosonic subgroup
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SL(2,R) × SO(3) × SO(5). Here SL(2,R) is the 1d conformal symmetry preserved by a
circle (or line), SO(3) is the symmetry under spacetime rotations transverse to the defect,
and SO(5) is the residual R-symmetry that rotates the five scalars that do not couple to the
Wilson loop. The correlation functions of operator insertions on the Wilson loop (together
with correlation functions involving “bulk” single-trace operators) define a rather rich defect
CFT that is amenable to studies via holography [9–11], localization [11–13], conformal
bootstrap [14–16] and integrability [9, 17–21].1

A Wilson loop operator in the fundamental representation is dual to an open string
minimal surface extending in AdS and ending at the boundary on the contour that defines
the loop operator. For the half-BPS Wilson loop, the corresponding minimal surface is
an open string worldsheet with AdS2 induced geometry. Defect operator insertions on
the Wilson loop are dual to fluctuations of the string about the AdS2 geometry, and their
correlation functions at strong coupling can be computed holographically by evaluating
Witten diagrams in the string sigma model perturbation theory. For instance, the 4-point
functions of the “elementary” insertions dual to fluctuations of string coordinates in static
gauge were computed in [10]. Similarly, one can also compute correlation functions of
“composites” of those excitations (see for instance [12] for some explicit examples). This
perturbative approach via AdS2 Witten diagrams is appropriate as long as the quantum
numbers of the inserted operators are small compared to the string tension, or

√
λ (where

λ = g2
YMN is the gauge theory ‘t Hooft coupling, and in this paper we focus on the

planar limit throughout). When the quantum numbers become of order
√
λ, the boundary

insertions are of the same order as the string action and one then expects a new open string
solution to dominate the path-integral. A special class of operator insertions that are ideal
for exploring this regime are the chiral primaries corresponding to products of scalar fields
transforming in the symmetric traceless representations of the SO(5) R-symmetry. These
operators have protected scaling dimensions, but their two-point and three-point functions
are non-trivial functions of the coupling constant that can nevertheless be computed exactly
via localization [12, 13]. More generally, localization allows to compute the n-point functions
in a subsector of “topological” chiral primaries (to be reviewed below), which have position
independent correlation functions.

In the large charge regime, the simplest object to consider in the defect CFT is the
insertion of two chiral primaries with charge J such that

J →∞ , λ→∞ ,
J√
λ

fixed . (1.1)

On the string theory side, the worldsheet corresponding to this configuration was identified
first in [9] in the limit J√

λ
→∞, and later generalized to finite J√

λ
in [28].2 We review the

solution in detail in section 4. Starting from this string worldsheet and inserting additional
operators with small quantum numbers, one can then obtain new results on correlation

1The defect CFT defined by the half-BPS Wilson loop is also of interest in the study of renormalization
group flows on defects. It can be thought as the IR fixed point of a RG flow which starts in the UV from
the ordinary, non-supersymmetric Wilson loop [22–24]. See also [25–27] for related work.

2In [28] a general solution parametrized by two cusp angles was considered. Here we focus on the case
where both angles are zero, which corresponds to insertions on a straight line or circular loop.
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a. N = 4 SYM b. String

Figure 1. Large charge correlation functions on the gauge theory side and on the string theory
side. a. Correlation functions of insertions on the half-BPS circular Wilson loop. In this paper, we
take two of them (ZJ and Z̄J ) to have large charges (J ∼

√
λ� 1) and the others (O`j (ϕj)’s) to be

light. b. At strong coupling, the same correlation functions are described by a non-trivial classical
string solution which ends at the Wilson loop on the boundary. In the absence of the insertions, the
string worldsheet lies on the Euclidean AdS2 subspace inside AdS5×S5. The large charge insertions
deform this solution and the string worldsheet has a non-trivial profile around the insertion points.
As an illustration of the string solution, the figure above shows a density plot of the worldsheet
curvature. The leading large J answer can be computed by evaluating the light vertex operators on
this deformed solution.

functions of two “heavy” (large charge) operators and any number of “light” operators,
normalized by the heavy-heavy two-point function. See figure 1. These correlators include
in particular the defect CFT OPE data in the heavy-heavy-light configuration. In this
paper we focus on the leading order in the large charge limit (1.1), corresponding to the
classical analysis on the string side, while subleading corrections corresponding to quantum
fluctuations will be discussed in the companion paper [29].

A more basic quantity that one can also study is the correlation function of the two
heavy operators alone. Since the operators are protected with dimension ∆ = J , their
two-point function on the Wilson loop has the form

〈OJOJ〉 = nJ(λ)
d2J , (1.2)

where d is the distance between the operators, and nJ(λ) is a non-trivial function of the
coupling constant and charge J . This normalization constant has physical meaning because
the operators are protected (for instance, for J = 1 it is related to the Bremsstrahlung
function [18]). In the large charge limit, eq. (1.1), it is expected to exponentiate as
nJ(λ) ∼ e

√
λf(J/

√
λ), where the non-trivial function in the exponent should correspond to

the classical string action. In section 4 we discuss this holographic two-point calculation in
detail (refining and extending earlier attempts in [30]). We will propose, in particular, that
a suitable modification of the boundary term prescription of [31] is needed in this case to
properly account for the presence of the boundary vertex operators for the large charge
insertions.
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A non-trivial test of the string theory predictions can be obtained by comparing to
the localization approach, which was developed in [12, 13] in the present context of the
defect CFT on the Wilson loop. Interestingly, when two chiral primaries with semiclassical
charges J ∼

√
λ are inserted, the localization results can be recast in terms of the “planar”

limit of a matrix model of a J × J Hermitean matrix.3 Using this matrix model description,
in section 3 we obtain the localization prediction for the two-point function of the heavy
operators as well as the topological n-point functions of the two heavy operators and any
number of light primaries, working to leading order in the large charge limit. The results are
found to be in complete agreement with the string theory predictions we obtain in section 4.
On the string theory side, in addition to the modified boundary term mentioned above, an
additional ingredient that is crucial to obtain the correct result for the correlation functions
is the averaging over a classical modulus of the string solution— namely, a constant angle
φ0 corresponding to the circle on S5 that is dual to the charge J . This averaging is similar
to the one recently advocated in [32], and previously in [33] (see also [5] for the analogous
effect in the effective field theory description of the large charge expansion of CFTs).

It is interesting to note that our matrix model shares some features with the matrix
model derived in [34], which describes the extremal correlation functions in N = 2 SCFTs.
In particular, the size of the matrix in both cases is given by the R-charge of the operators.
However, there are also notable differences. Firstly, while the matrix model in [34] describes
a subsector of the rank-1 SCFTs4 e.g. SU(2) N = 4 SYM, our matrix model describes a
subsector of U(N) N = 4 SYM at large N , which is in a completely different parameter
regime. Secondly, in the setup discussed in [34], all the physical information is in the
two-point function,5 and correspondingly, the matrix model only computes such two-point
functions. By contrast, in our setup, there are non-extremal higher-point functions which
encode non-trivial physical information, and we can study them using our matrix model.
Finally and perhaps most importantly, the classical spectral curve of our matrix model,
which controls the leading large charge answer, coincides with the spectral curve of the
classical string solution describing the holographic dual of the large charge operators on
the Wilson loop. This provides a clear physical interpretation of the spectral curve of the
large charge matrix model [28]. In addition, it suggests that the structure observed in the
topological subsector may extend to more general non-SUSY sectors. This optimism comes
from the fact that the spectral curve of the classical string is known to control the full
non-protected spectrum of semiclassical fluctuations on the worldsheet [36, 37].

There are several future directions worth exploring. First, it would be interesting to con-
sider large charge limits of the correlation functions which involve “bulk operators”, namely
operators outside the defect (previous work on some of these observables include [38–40]).
Studying such correlation functions would allow us to analyze the interplay between the
large charge limit and the defect crossing equation. Second, the generalization of our

3This matrix model was obtained first in [28] using integrability-based methods, and was rederived in [12]
using the localization approach.

4The generalization of [34] to higher-rank theories was discussed in [35].
5This is because all the other extremal correlation functions, including the three-point functions, are

automatically determined by the normalization of the two-point function.
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results to 1/8-BPS Wilson loops [41–43] should be possible. In this case, the relation to the
defect CFT will be lost since general 1/8-BPS Wilson loops do not preserve the conformal
symmetry. Nevertheless, we can analyze the correlation functions on these Wilson loops
both from the localization and the (semi-)classical string. Third, the localization analysis
can be applied away from the large N limit, in particular to SU(2) N = 4 SYM [12]. The
large charge limit in this case would be more directly related to large charge limits of rank-1
SCFTs studied in the literature [34, 44], and it would be interesting to explore their relation.

The remainder of this paper is organized as follows. In section 2 we review some basic
facts about the defect CFT on the half-BPS Wilson loop and introduce the large charge
operators of interest in this paper. In section 3 we review the localization results for the
correlation functions on the Wilson loop and the matrix model describing the large charge
sector, and then use it to compute the two-point function of the heavy operators and the
topological n-point functions of two heavy and any number of light operators. In section 4
we introduce the string solution describing the insertion of two large charges on the Wilson
loop, and then discuss the computation of the two-point function of the heavy operators
and the correlation functions of the two heavy and any number of light operators. The
appendices include some technical details on the “quasi-momentum” associated to the
matrix model and on the supersymmetries preserved by the string solution.

2 Large charges in the Wilson loop defect CFT

This section introduces the defect CFT observables we will analyze in this paper. First,
our conventions for N = 4 SYM: we work in Euclidean signature and use the standard
Cartesian coordinates xµ, µ = 1, . . . , 4, on R4. We take the gauge group to be U(N), denote
the Yang-Mills coupling constant gYM, and the ’t Hooft coupling λ ≡ g2

YMN . Below we will
also often adopt the notation g ≡

√
λ

4π commonly used in the integrability literature.

The Wilson loop defect CFT. Our starting point is the half-BPS Wilson loop in
N = 4 SYM whose contour is a circle and which couples to a single scalar. The Wilson
loop is

W ≡ 1
N

Tr P exp
(∮

(iAµ(x)ẋµ + |ẋ|Φ6(x)) dϕ
)
, (2.1)

where ẋµ = dxµ

dϕ and ϕ is a coordinate parameterizing the loop. Below we will mostly work
with the explicit parameterization xµ(ϕ) = (cosϕ, sinϕ, 0, 0) with ϕ ∈ [−π, π) (in which
case |ẋ| = 1). The gauge field Aµ and the scalars ΦI , I = 1, . . . , 6, transform in the adjoint
of U(N) and the trace is taken in the fundamental. The expectation value of W, as well
as its planar limit (N → ∞, g fixed) and supergravity limit (N → ∞, g � 1), is well
known [45–47]:

〈W〉N=4 SYM = 1
N
L1
N−1

(
−g

2
YM
4

)
e
g2
YM
8

N→∞→ 1
2πg I1(4πg) g�1∼ e4πg

4
√

2π2g3/2 . (2.2)

The Wilson loop preserves an SL(2,R) subgroup of the SO(5, 1) conformal group of
N = 4 SYM and defines a one dimensional defect CFT in which local adjoint operators
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Oi(x), i = 1, . . . , n are inserted along the contour [9–15, 19–21, 23, 24, 48, 49]. We will use
the “single bracket” notation for the unnormalized defect correlators given by

〈O1(ϕ1) . . . On(ϕn)〉 ≡
〈 1
N

Tr P
[
O1(ϕ1) . . . On(ϕn)e

∫
(iAµẋµ+Φ6)dϕ

] 〉
N=4 SYM

, (2.3)

where Oi(ϕi) ≡ Oi(x(ϕi)) and the path ordering in the N = 4 SYM correlator acts both
on the local operators and on the Wilson loop. It is also convenient to define the “double
bracket” defect correlators normalized by the Wilson loop expectation value

〈〈O1(ϕ1) . . . On(ϕn)〉〉 ≡ 〈O1(ϕ1) . . . On(ϕn)〉
〈W〉N=4 SYM

, (2.4)

which satisfy 〈〈1〉〉 = 1. The defect correlators obey the axioms outlined in appendix A
of [50] for correlators in a one dimensional CFT. Since the defect is a circle, the conformal
correlators are composed of ratios of the chordal distances, which we will denote

dij ≡ d(ϕi, ϕj) ≡ 2 sin
(
ϕi − ϕj

2

)
. (2.5)

Although our discussion is framed in terms of the circular Wilson loop, the anal-
ysis of the half-BPS Wilson line Wline is essentially equivalent.6 Its expectation value,
〈Wline〉N=4 SYM = 1, differs from eq. (2.2) due to a “conformal anomaly” [45, 46], but the
defect correlators on the circle and line, when normalized by the corresponding Wilson loop
operator without insertions, behave in the standard way under conformal transformations.
Specifically, under the map ti = tan ϕi

2 , the correlators are related by

〈O1(t1) . . .On(tn)Wline〉N=4 SYM
〈Wline〉N=4 SYM

=
(
dtan ϕ1

2
dϕ1

)−∆1

. . .

(
dtan ϕn

2
dϕn

)−∆n

〈〈O1(ϕ1) . . .On(ϕn)〉〉

= 〈〈O1(ϕ1) . . .On(ϕn)〉〉
∣∣
dij→tij

, (2.6)

where tij ≡ ti − tj . Thus, we may readily switch between correlators on the circle and
correlators on the line by exchanging chordal distances with Euclidean distances.

Chiral primaries. We are interested in the large charge sector of defect correlators of
chiral primaries of the form

OJ(ϕ, ε) ≡ (ε · Φ(x(ϕ)))J , (2.7)

where Φ = (Φ1, . . . ,Φ5) is a vector of the scalar fields not coupled to the Wilson loop in
eq. (2.1) and ε = (ε1, . . . , ε5) is a complex polarization vector satisfying ε2 = 0. These
operators transform in the symmetric traceless representation of SO(5) ⊂ SO(6) and have
protected dimension ∆ = J equal to the R-charge. Conformal symmetry and R-symmetry

6One way to explicitly parametrize the half-BPS line is to pick the contour xµ(t) = (t, 0, 0, 0) and let

Wline ≡
1
N

Tr P exp
(∫ ∞
−∞

(iA1(x) + Φ6(x)) dt
)
.
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then fix the two and three-point functions of the chiral primaries, up to the operator
normalizations and OPE coefficients:

〈〈OJ1(ϕ1, ε1)OJ2(ϕ2, ε2)〉〉 = nJ1(g,N)(ε1 · ε2)J1

d2J
21

δJ1J2 , (2.8)

〈〈OJ1(ϕ1, ε1)OJ2(ϕ2, ε2)OJ3(ϕ3, ε3)〉〉 = cJ1J2J3(g,N)(ε1 · ε2)J12|3(ε2 · ε3)J23|1(ε3 · ε1)J31|2

d
2J12|3
21 d

2J23|1
32 d

2J31|2
31

.

(2.9)

Here, Jij|k ≡ (Ji + Jj − Jk)/2. The 3-pt function is zero unless J1, J2 and J3 satisfy the
triangle inequality (J1 + J2 ≥ J3, plus permutations) and sum to an even integer.

Furthermore, the chiral primaries have a topological sector, which is accessible for finite
N and g using localization [12], in which the correlators are position independent and the
OPE is closed. We will discuss the topological sector in greater detail in section 3, but we
presently define the topological operators to be chiral primaries whose polarization vectors
are correlated with their positions in the following way:7

Φ̃J(ϕ) ≡ (cosϕΦ3(ϕ)− sinϕΦ4(ϕ) + iΦ5(ϕ))J . (2.10)

We will usually drop the explicit dependence on ϕ. Since ε(ϕi) · ε(ϕj) = −1
2d

2
ij , the

topological two and three-point correlators are manifestly constant:

〈〈Φ̃J1Φ̃J2〉〉 =
(
−1

2

)J1

nJ1δJ1J2 , (2.11)

〈〈Φ̃J1Φ̃J2Φ̃J3〉〉 =
(
−1

2

)J1+J2+J3
2

cJ1J2J3 . (2.12)

In accordance with localization, higher-point correlators are also constant. Given eqs. (2.8)–
(2.9), the topological two and three-point functions fully determine the general two and
three-point functions, but the same is not true of the higher-point functions because their
form is not fixed up to an overall constant by conformal symmetry.

Correlators in the large charge sector. In this work, we study the correlators of 2+n

chiral primaries, two of which have charge J and n of which have charges `1, . . . , `n. We
analyze the correlators in the large charge regime, in which we first take N →∞ with g, J ,
and `i held fixed, and then take g →∞ with `i and

J ≡ J

g
, (2.13)

held fixed. Thus, in the planar limit and strongly coupled regime, the two operators
with charge J are the same size as the coupling and the operators with charges `i are
parametrically smaller. We call the former “large charges” or “heavy operators” and the
latter “finite charges” or “light operators.” In the present work we focus mostly on the
leading behavior, and postpone the analysis of subleading corrections in 1/g to [29].

7This particular definition for the topological operators is equivalent to the one in [12] up to relabelling
of scalar flavor indices and flipping the sign of Φ4.
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In the first half of our analysis, in section 3, we start from the planar-exact integral
representation of the topological correlators that was derived in [12], and use it to derive
a matrix model that describes the large charge sector. This lets us determine, to leading
order, the normalized higher-point correlators

〈〈Φ̃J Φ̃J ∏n
i=1 Φ̃`i〉〉

〈〈Φ̃J Φ̃J〉〉
, (2.14)

as well as the two-point function

〈〈Φ̃J Φ̃J〉〉. (2.15)

In the second half of our analysis, in section 4, we analyze the string dual to the large
charge defect correlator

〈〈ZJ(−ϕL)Z̄J(ϕL)〉〉 = 2JnJ
d2J , (2.16)

where we have chosen the specific chiral primaries

Z ≡ Φ4 + iΦ5, and Z̄ ≡ Φ4 − iΦ5, (2.17)

and where

d ≡ d(−ϕL, ϕL) (2.18)

is the chordal distance between the large charges. In eq. (2.16), we have used the rotational
symmetry to put the two heavy operators at ϕ = ±ϕL and assume for simplicity that
ϕL ∈ (0, π/2], but otherwise let the locations of the insertions be general.8 By evaluating
the action and vertex operators of the classical string, we can determine the leading behavior
of the two-point function, eq. (2.16), and of higher correlators with additional insertions of
powers of Z and Z̄. Finally, we will also be able to use the classical string to reproduce the
topological correlators computed by the matrix model. This is because ZJ and Z̄J become
topological in the antipodal configuration ϕL = π/2, since

ZJ
(
−π2

)
= Φ̃J

(
−π2

)
, Z̄J

(
π

2

)
= (−1)J Φ̃J

(
π

2

)
, (2.19)

and because the light topological operators, Φ̃`, truncate to linear combinations of powers
of Z and Z̄ at leading order.

3 Large charge correlators from localization

In this section, we compute correlation functions with large charge insertions in the
topological sector. We achieve this by deriving a matrix model that describes the large
charge topological sector and applying the matrix model techniques. We will later see in
section 4 that the results obtained from localization are in perfect agreement with the
results from the classical string.

8Because of the conformal symmetry, we could without loss of generality set ϕL = π/2. However, we
prefer to keep ϕL general in order to explicitly keep track of the conformal form of the correlators.
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3.1 Matrix model for large charge correlators

Integral representation for the topological sector. Let us first review the integral
representation of the correlation functions of insertions on the half-BPS Wilson loop in
N = 4 SYM that was derived in [12, 13].

The correlation functions in the topological sector on the half-BPS Wilson loop at large
N are given by the following integral,

〈
n∏
k=1

Φ̃Lk〉 =
∮
dµ

n∏
k=1

QLk(x) , (3.1)

where Φ̃L is the charge L protected topological insertion defined in eq. (2.10), dµ is the
measure

dµ = 1
4πg

dx(x+ x−1)
2πix e2πg(x+x−1) , (3.2)

and the contour goes counterclockwise once around the origin. We should emphasize that
the l.h.s. of eq. (3.1) is a single bracket correlator, as defined in eq. (2.3).

The functions denoted by QLk are called Q-functions and are characterized by the
following two important properties:

1. They are orthogonal under the measure dµ:∮
dµQJ(x)QM (x) ∝ δJM . (3.3)

2. They are polynomials in X ≡ g(x− x−1) with a unit leading coefficient:

QJ(x) = XJ + · · · . (3.4)

These two properties uniquely determine the functions QJ , and they can be computed
systematically by performing the Gram-Schmidt orthogonalization on the set of monomials
{1, X,X2, · · · }. Applying the Gram-Schmidt procedure, we obtain the simple expression:

QJ(x) = 1
DJ

∣∣∣∣∣∣∣∣∣∣∣∣∣

I0 I1 · · · IJ
I1 I2 · · · IJ+1
...

... . . . ...
IJ−1 IJ · · · I2J−1

1 X · · · XJ

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.5)

DJ ≡ det (Ij+k−2)1≤j,k≤J Ij ≡
∮
dµ
(
g(x− x−1)

)j
. (3.6)

One important identity that follows from the orthogonalization is the expression for the
two-point function

〈Φ̃J Φ̃M 〉 =
∮
dµ QJ(x)QM (x) = DJ+1

DJ
δJM . (3.7)

The relations, eq. (3.5) and eq. (3.7), hold for any choice of the measure dµ as long as the
Q’s satisfy the aforementioned two properties. This will be important in the analysis of
higher-point functions, as we will see shortly.
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Matrix model. Another identity that we use in this section is the matrix model expression
for the determinant DJ . This can be derived by expanding the determinant and expressing
each component as an integral (see section 7 of [12]). The result reads

DJ = gJ(J−1)

J !

(
J∏
k=1

∮
dµ(xk)

)∏
i<j

(xi − xj)2
(

1 + 1
xixj

)2

. (3.8)

Alternatively we can write it in terms of Xk ≡ g(xk − x−1
k ) as9

DJ = 1
J !


J∏
k=1

∮
dXk

8g2π2i
e2π
√
X2
k

+4g2

︸ ︷︷ ︸
=dµ(xk)


∏
i<j

(Xi −Xj)2 , (3.9)

where the integration contours are around the branch cut of
√
X2
k + 4g2. Setting aside the

unusual choice of contour, this can be regarded as the eigenvalue integral for the partition
function of a J × J Hermitian matrix model with potential e2π

√
M2+4g2

/(8g2π2i):

DJ = ZJ
J ! with ZJ ≡

∮
[dM ]e

2π
√
M2+4g2

8g2π2i
. (3.10)

We can also express the two-point function, eq. (3.7), directly in terms of this matrix
model. For this purpose, we first rewrite DJ+1 as

DJ+1 = 1
(J+1)!

(∮
dY

8g2π2i
e2π
√
Y 2+4g2

)( J∏
k=1

∮
dXk

8g2π2i
e2π
√
X2
k

+4g2(Y −Xk)2
)∏
i<j

(Xi−Xj)2

 .
The terms in the square bracket can be identified with the expectation value of the square of
the determinant operator in the matrix model, det(Y −M)2. Dividing this by DJ , we obtain

〈Φ̃J Φ̃J〉 = DJ+1
DJ

= 1
J + 1

∮
dµ(y)〈det(Y −M)2〉J , (3.11)

where Y ≡ g(y − y−1) and 〈•〉J denotes the expectation value in the matrix model:

〈f(M)〉J ≡
1
ZJ

∮
[dM ]e

2π
√
M2+4g2

8g2π2i
f(M). (3.12)

Let us make several comments about this matrix model. First, eq. (3.8) was derived
initially from integrability in [28] in the computation of the generalized cusp anomalous
dimension. It was later re-derived in [12] from localization and was shown to control the
two-point function in the topological sector as well.

9If one instead performs a change of variables xi = ieiθi , the interaction term in eq. (3.8) becomes

(xi − xj)2
(

1 + 1
xixj

)2

= −16 sin2
(
θi − θj

2

)
sin2

(
θi + θj

2

)
,

which coincides with the Vandermonde factor for the matrix model of the orthogonal group SO(2N).
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Second, it has several similarities with the large-charge matrix model in [34], which
computes the extremal correlation functions in rank-1 N = 2 SCFTs. In both cases,
the matrix model was derived by applying the Gram-Schmidt orthogonalization to the
localization results and the sizes of the matrices are related to the charges of the operators.
Note however that the parameter regimes described by the two models are quite different.
The matrix model in [34] is for the rank-1 SCFTs, a canonical example being N = 4 SYM
with the SU(2) gauge group. By contrast, our matrix model is for the large N limit of
N = 4 SYM. Another difference is that our model can be applied to the non-extremal
correlation functions, as we will see below.

Third, since the measure is given by dµ ∼ e2πg(x+x−1) the standard large N limit in the
matrix model corresponds to the limit in which J is large but J/g is kept fixed. In terms of
the ’t Hooft coupling λ, this corresponds to the limit

J ∼
√
λ� 1 , (3.13)

which is precisely the strong coupling limit in which the theory is described by classical
strings. In other words, the large J expansion of the matrix model gives the semi-classical
quantization of the classical string.

Higher-point functions. Let us now use the formalism reviewed above to derive a
matrix model representation for the correlation functions of two large-charge insertions
(Φ̃J) and several light insertions (Φ̃`k):

〈Φ̃J Φ̃J
n∏
j=1

Φ̃`j 〉 =
∮
dµQJ(x)QJ(x)

n∏
j=1

Q`j (x) . (3.14)

To compute this correlation function, we first deform the measure by exponentiating the
light operators:

dµ̃ ≡ dµ exp

t n∏
j=1

Q`j (x)

 . (3.15)

Next, we construct the orthogonal polynomials of X under this measure, which we denote by
Q̃J (x, t). Using the relations reviewed in the previous section, we can express the two-point
function of the Q̃J ’s as a ratio of (deformed) determinants,∮

dµ̃ Q̃J(x, t)Q̃J(x, t) = D̃J+1

D̃J

, (3.16)

with
D̃J ≡ det

(
Ĩj+k−2

)
1≤j,k≤J

, Ĩj ≡
∮
dµ̃
(
g(x− x−1)

)j
. (3.17)

Then we differentiate the left hand side of eq. (3.16) with respect to t and set t to zero.
Since both the measure and Q̃ depend on t, the differentiation produces three different
terms,∮

dµQJ(x)QJ(x)
n∏
j=1

Q`j (x) ,
∮
dµ

dQ̃J
dt

∣∣∣∣∣
t=0

QJ ,

∮
dµQJ

dQ̃J
dt

∣∣∣∣∣
t=0

. (3.18)
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However, the latter two terms identically vanish for the following reason: since the leading
coefficient of the polynomial Q̃J is 1, the derivative dQ̃J/dt is always a polynomial of lower
degree. Thus one can express dQ̃J/dt|t=0 as a linear combination of QM with M < L. We
can then use the orthogonality of the Q-functions, eq. (3.7), to conclude that the latter two
integrals vanish.

In summary, we arrive at the equality

〈ΦJΦJ
n∏
j=1

Φ`j 〉 =
∮
dµQJ(x)QJ(x)

n∏
j=1

Q`j (x) = d

dt

[∮
dµ̃ Q̃J(x, t)Q̃J(x, t)

]∣∣∣∣
t=0

= d

dt

D̃J+1

D̃J

∣∣∣∣∣
t=0

.

(3.19)

If we divide this correlation function by the two-point function of the heavy insertions, we
arrive at the simpler formula

〈Φ̃J Φ̃J ∏n
j=1 Φ̃`j 〉

〈Φ̃J Φ̃J〉
= d log D̃J+1

dt
− d log D̃J

dt

∣∣∣∣∣
t=0

. (3.20)

Now the final step is to translate this into the matrix model. As with DJ , the deformed
determinant admits a matrix model representation eq. (3.8) with dµ replaced with dµ̃. By
differentiating it with respect to t and setting it to zero, we get

dD̃J

dt

∣∣∣∣∣
t=0

= gJ(J−1)

J !

(
J∏
k=1

∮
dµ(xk)

)∏
i<j

(xi−xj)2
(

1+ 1
xixj

)2 J∑
k=1

 n∏
j=1

Q`j (xk)

 (3.21)

In the matrix model language, after dividing by DJ , this corresponds to the expectation
value of the “single-trace operator” Tr

[∏n
j=1Q`j (M)

]
. Therefore, we arrive at the relation

〈Φ̃J Φ̃J ∏n
j=1 Φ̃`j 〉

〈Φ̃J Φ̃J〉
=
〈

Tr

 n∏
j=1

Q`j (M)

〉
J+1

−
〈

Tr

 n∏
j=1

Q`j (M)

〉
J

. (3.22)

Note that this formula naturally reduces to the original integral representation eq. (3.1)
when J = 0 because 〈•〉J=1 is a single-integral with the measure dµ, and 〈•〉J=0 = 0.

3.2 Large J analysis

Higher-point functions. To evaluate eq. (3.22) in the large J limit, it is convenient to
use the quasi-momentum discussed in [12, 28]:

p(x) ≡ 1 + x2

1− x2

J∑
k=1

1
g(x− x−1)− g(xk − x−1

k )

= x2

g(1− x2)

J∑
k=1

(
1

x− xk
+ 1
x+ 1

xk

− 1
x

)
.

(3.23)

To motivate this definition, let us consider the one form p(x)du, where u is the Zhukovsky
variable often used in the integrability literature:

u(x) ≡ g
(
x+ 1

x

)
. (3.24)
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An important property of this one form is that it has poles with residue −1 at x = xk and
x = −x−1

k and poles with residue J at x = 0 and x =∞. In addition, it is related to the
resolvent in the matrix model that we introduced earlier. Using the standard definition, the
resolvent of the matrix model is

R(X) ≡
J∑
k=1

1
X −Xk

, (3.25)

where we recall that the Xk’s are the eigenvalues of the matrix M . Now, by explicit
computation, we can check

R(X)dX = −p(x)du(x) , (3.26)

where X ≡ g(x− x−1).
Using eq. (3.25), we can express the expectation value of the “single-trace” operators as〈

Tr

 n∏
j=1

Q`j (M)

〉
J

=
∮
C

dX

2πi 〈R(X)〉J
n∏
j=1

Q`j (X) , (3.27)

where C is a contour which encircles all the eigenvalues Xk’s counterclockwise. To proceed, it
is convenient to rewrite the above expression in terms of the x, rather than the X, variables.
To do so, we need to remember that the x-plane is a double cover of the X-plane and each
eigenvalue Xk has two images xk and −x−1

k in the x-plane. Taking this into account, we
obtain the expression〈

Tr

 n∏
j=1

Q`j (M)

〉
J

= −
∮
C+∪C−

du(x)
4πi 〈p(x)〉

n∏
j=1

Q`j (x) , (3.28)

where the contours C+ and C− encircle xk’s and −x−1
k ’s counterclockwise respectively. Note

that we used the symmetry of Q`j (x)

Q`j (x) = Q`j (−x−1) , (3.29)

and the relation eq. (3.26) to get eq. (3.28). The expression eq. (3.28) is valid at finite J . If
we take the large J limit, we can approximate 〈p(x)〉 with its classical value pcl(x), which
was computed10 in [28]. We then get〈

Tr

 n∏
j=1

Q`j (M)

〉
J

J→∞= −
∮
C+∪C−

du(x)
4πi pcl(x)

n∏
j=1

Q`j (x) . (3.30)

The classical limit of the quasi-momentum pcl is given in terms of elliptic functions [28],
but we do not need its explicit form in this paper. Instead we use its following properties
(see also figure 2):

• In the x-plane, pcl(x) has two (square-root) branch cuts along a unit circle; one along
the arc C+ = [e−iθ0 , eiθ0 ] and the other along the arc C− = [−e−iθ0 ,−eiθ0 ].

10Precisely speaking, the matrix model studied in [28] is different from the one analyzed here. However
the large J behavior of the quasi-momentum in the two matrix models was shown to be the same in [12].
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Figure 2. Analytic structure of pcl(x). It has two branch cuts C±, around which the integral∮
pcl(x)du gives −J , as well as two poles at x = 0 and x =∞, around which

∮
pcl(x)dx gives J . In

addition, pcl = π at the right branch points, e±iθ, and pcl = −π at the left branch points, −e±iθ.

• The parameter θ0 determining the size of the branch cuts is related to the charge J
of the heavy operators by

J = 4g
[
K(sin2 θ0)− E(sin2 θ0)

]
. (3.31)

Here K and E are the complete elliptic integrals of the first and second kind. J is a
monotonic function of θ0 satisfying J = 0 when θ0 = 0 and J →∞ when θ0 → π/2.
As will be explained in section 4, the angle θ0 also controls the extension of the
classical string solution in one of the S5 directions.

• On the branch cuts, pcl satisfies

pcl(x+ i0) + pcl(x− i0) = ±2π on C± . (3.32)

In particular, at the branch points, pcl(x) = ±π. The integrals around the branch
cuts and at x = 0,∞ are given by

J =
∮
x=0

pcl(x)du =
∮
x=∞

pcl(x)du = −
∮
C+
pcl(x)du = −

∮
C−
pcl(x)du . (3.33)

• pcl(x) = −pcl(−x−1)

• The derivative ∂Jpcl(x)du admits a simple expression (see appendix A for the deriva-
tion):

∂Jpcl(x)du = (x+ x−1)dx√
(x− e−iθ0)(x− eiθ0)(x+ e−iθ0)(x+ eiθ0)

. (3.34)

Let us also note that, as shown in [28], pcl(x) coincides with the quasi-momentum of the
classical string solution11 to be discussed in the next section, which is a holographic dual
of the large charge operator on the Wilson loop. This relation is intriguing for several

11For the definition of the quasi-momentum in the classical string, see e.g. [51, 52].
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reasons: first it provides a clear physical interpretation of the spectral curve of our large
charge matrix model. (By contrast, an analogous interpretation for the large charge matrix
model for N = 2 SCFTs has not yet been established at the present time). Second the
quasi-momentum of the classical string (and therefore pcl discussed here) is expected to
control observables beyond the topological subsector. For instance, in the case of closed
string solutions, one can also describe the spectrum of general semi-classical fluctuations
using the quasi-momentum as was demonstrated in [36, 37]. We plan to revisit this (in the
context of correlation functions) in the upcoming paper [29].

To evaluate eq. (3.30), we deform the contour and bring it around x = 0 and x =∞.
Using the invariance of the integrand under x→ −x−1, we then arrive at〈

Tr

 n∏
j=1

Q`j (M)

〉
J

J→∞= 2
∮
x=0

du(x)
4πi pcl(x)

n∏
j=1

Q`j (x) , (3.35)

where the contour encircles x = 0 counterclockwise and the factor of 2 comes from the
contribution at infinity. Plugging this expression into the large J limit of the formula for
the higher-point function eq. (3.22), we obtain

〈Φ̃J Φ̃J∏n
j=1 Φ̃`j 〉

〈Φ̃J Φ̃J〉
J→∞=

∮
x=0

du(x)
2πi ∂Jpcl(x)

n∏
j=1

Q`j (x)

=
∮
x=0

dx(x+x−1)
2πi

∏n
j=1Q`j (x)√

(x−e−iθ0)(x−eiθ0)(x+e−iθ0)(x+eiθ0)
.

(3.36)

The final step is to substitute Q`j with its strong coupling limit determined in [12],

Q`(x) g→∞= (−i)`
(
g

2π

)`/2
H`

(
i

√
πg

2 (x− x−1)
)
, (3.37)

where H` is the Hermite polynomial. As can be seen from this expression, the leading
contribution at large g comes from the highest power in the Hermite polynomial. Therefore,
for the purpose of computing the leading answer, we can simplify eq. (3.37) to

Q`(x) g→∞= g`(x− x−1)` . (3.38)

Performing the integral in eq. (3.36) analytically, we find that the result is nonzero only
when the total length of light operators

`tot ≡
n∑
j=1

`j , (3.39)

is even, and it is given by

〈Φ̃J Φ̃J ∏n
j=1 Φ̃`j 〉

〈Φ̃J Φ̃J〉
g→∞= (−g2 sin2 θ0)`tot/2

(
`tot
`tot/2

)
. (3.40)

We will later see that this agrees precisely with the result from the classical string.
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Two-point function. We can also compute the two-point function, 〈Φ̃J Φ̃J〉, using the
matrix model techniques.

For this purpose, we start with the “planar” approximation of the expression eq. (3.11),

〈Φ̃J Φ̃J〉 = 1
J + 1

∮
dµ(y)

〈
det(Y −M)2

〉
J

J→∞∼ 1
J + 1

∮
dµ(y) e2〈Tr log(Y−M)〉J . (3.41)

The exponent can be computed using the matrix model techniques. Namely, we have

〈Tr log(Y −M)〉J
J→∞= −

∮
C+∪C−

du(x)
4πi pcl(x) log [g(y − x)(1 + 1/xy)] . (3.42)

To evaluate this integral, we rewrite the logarithmic term as12

log [g(y − x)(1 + 1/xy)] = lim
Λ→∞

[
log(gΛ) +

∫ y

Λ
dy′

( 1
y′ − x

+ 1
y′ + 1/x −

1
y′

)]
. (3.43)

We then get

〈Tr log(Y −M)〉J
J→∞=

lim
Λ→∞

[
J log(gΛ)−

∫ y

Λ
dy′

∮
C+∪C−

du(x)
4πi pcl(x)

( 1
y′ − x

+ 1
y′ + 1/x −

1
y′

)]
.

(3.44)

Here we used eq. (3.33) to evaluate
∮
pcl(x)du. Next we deform the contour of x and pick

up the residues of poles at x = y′,−1/y′, 0,∞. As a result we obtain

〈Tr log(Y −M)〉L→∞ = lim
Λ→∞

[
J log(gΛ)−

∫ u(y)

Λ
pcl(y′)du(y′)

]
. (3.45)

Now, inserting this expression to the original integral eq. (3.41), we find that the
integral of y can be evaluated at the saddle point. The saddle point equation receives a
contribution from e2πg(y+1/y) = e2πu(y) in the measure and gives

pcl(y) = π . (3.46)

This condition is satisfied at the right branch points of pcl (i.e., y = e±iθ0). We thus obtain
the following expression for the two-point function in the large J limit:

〈Φ̃J Φ̃J〉 ∼ exp
(

2J log(gΛ) + 2πu(eiθ0)− 2
∫ u(eiθ0 )

Λ
pcl(x)du

)
. (3.47)

Here we took y = eiθ0 ; the other choice, e−iθ0 , will give the same answer.
Before proceeding, let us make a few comments. The last term in eq. (3.47) can be

rewritten as an integral from x = Λ on the first sheet (denoted by Λ+) to x = −Λ on the
second sheet (denoted by Λ−):

− 2
∫ u(eiθ0 )

Λ
pcl(x)du =

∫ Λ+

Λ−
pcl(x)du . (3.48)

12Λ is an artificial cut-off that we introduce solely to write the logarithm as an integral of rational functions
with simple poles. This makes the contour deformation analysis easier.
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Figure 3. The period integrals on the spectral curve. The charge of the operator, J , is given by an
integral of −pcldu around a branch cut. On the other hand, the logarithm of the two-point function,
log〈Φ̃J Φ̃J〉, is given (up to terms that come from regularization) by an integral on a “dual” cycle
denoted by JD.

On the other hand, the left hand side of eq. (3.47) is given by a ratio of matrix integrals
DJ+1/DJ , and it becomes exp (∂JF0) in the large J limit, where F0 is the “genus-0”
free energy

logDJ
J→∞∼ F0 . (3.49)

Note that J is also given by an integral of pcl(x)du albeit on a different contour C±. Therefore
eq. (3.47) can be regarded as a relation between period integrals along two “dual” cycles:13

∂JF0 = JD ,

J = −
∮
C±
pcl(x)du , JD ≡

∫ Λ+

Λ−
pcl(x)du+ 2J log(gΛ) + 2πu(eiθ0) .

(3.50)

See also figure 3. This is an analog of the relations known in conventional large N matrix
models and topological strings, which relate the genus 0 free energy with the prepotential
of period integrals [53, 54].

Now, to evaluate eq. (3.47), we first differentiate the exponent with respect to J .
This gives two contributions: one is proportional to the deformation of the branch point
∂Ju(y∗) while the other comes from the explicit J-dependence in pcl and J log(gΛ). The
first contribution is proportional to π − pcl, which vanishes at the saddle point. Therefore,
we only need the second contribution, which gives

∂J log〈Φ̃J Φ̃J〉 ∼ 2 log(gΛ)− 2
∫ eiθ0

Λ
∂Jpcl(x)du

= 2 log(gΛ)− 2
∫ eiθ0

Λ
dx

x+ x−1√
(x− eiθ0)(x− e−iθ0)(x+ eiθ0)(x+ e−iθ0)

.
(3.51)

This integral can be evaluated analytically, and after sending the cut-off Λ to infinity, we get

∂J log〈Φ̃J Φ̃J〉 J→∞= log(−g2 sin2 θ0). (3.52)
13The extra terms in JD can be viewed as a regularization which makes the period integral finite.

– 17 –



J
H
E
P
0
3
(
2
0
2
2
)
0
2
0

It is useful to pause at this point and switch to the compact notation

c ≡ sin θ0. (3.53)

Because of eq. (3.31), c ∈ [0, 1) is a monotonic function of J defined implicitly by the
relation

J

4g = J4 = K(c2)− E(c2) . (3.54)

It satisfies c = 0 when J = 0 and c → 1 when J → ∞. This parametrization of the
large charge is convenient in the remainder of the localization analysis in this section,
and especially in the dual string analysis in section 4. When we wish to emphasize its
J-dependence or let J vary, we will write c(J) instead of c.

Returning to the computation of 〈Φ̃J Φ̃J〉, it follows from eq. (3.54) that

dJ

dc2 = 2gE(c2)
1− c2 . (3.55)

This lets us integrate the c2-dependent piece of the r.h.s. of eq. (3.52) with respect to J :
∫ J

0
dJ ′ log(c2(J ′)) = 2g

∫ c2

0
dx

E(x)
1− x log x (3.56)

= 4g
[
K(c2)− E(c2)

]
log(c2) + 8g

[
E(c2)− E(0)

]
= log(c2J) + 8g

[
E(c2)− E(0)

]
.

Meanwhile, the integral of the l.h.s. of eq. (3.52) yields log 〈Φ̃J Φ̃J〉 − log 〈1〉. Putting
everything together, we finally obtain the two-point correlator,

〈〈Φ̃J Φ̃J〉〉 = nJ
(−2)J = (−g2c2)Je8g(E(c2)−E(0)). (3.57)

We will be able to rederive eq. (3.57) from the classical action of the dual string in section 4.

3.3 Large charge correlators from the Bremsstrahlung function

The large charge behavior of the topological two-point correlator can alternatively be
determined from the ratio of incrementally shifted two-point functions,

RJ ≡
〈〈Φ̃J Φ̃J〉〉
〈〈Φ̃J−1Φ̃J−1〉〉

, (3.58)

which can in turn be related to the Bremsstrahlung function, BJ .14 This lets us take
advantage of the leading large charge expression for BJ determined in [28] and the first

14The Bremsstrahlung function B0 was introduced in [18] as a quantity related to the cusp anomalous
dimension of the Wilson loop and the radiation emitted by an accelerating quark, and was computed using
localization. The generalized Bremsstrahlung function, BJ , was defined and computed using integrability
in [28] and computed using localization in [12].
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subleading correction determined in [55]. We will derive the relation between RJ and BJ
using the localization framework developed in [12], which we therefore first briefly summarize.

Firstly, the half-BPS Wilson loop defined in eq. (2.1) can be generalized to a 1/8−BPS
Wilson loop [42, 43], W1/8, whose contour xµ(ϕ) is any closed curve on the two-sphere
x2

1 + x2
2 + x2

3 = 1 and which couples to the scalars as ~Φ× ~x · d~x, where ~x ≡ (x1, x2, x3) and
~Φ ≡ (Φ3,−Φ4,Φ6).15 The expectation value of W1/8 is found by replacing g → gA(4π−A)

4π2 in
eq. (2.2), where A is the area of one of the two regions of the two-sphere demarcated by
the contour. The 1/8-BPS loop reduces to the half-BPS loop when ~x = (cosϕ, sinϕ, 0), in
which case A = 2π.

Secondly, taking L derivatives of the 1/8-BPS Wilson loop with respect to A inserts L
copies of the unit charge topological operator Φ̃ ≡ x1(ϕ)Φ3 − x2(ϕ)Φ4 + x3(ϕ)Φ6 + iΦ5,16

along the loop:

∂LA〈W1/8〉N=4 SYM = 〈W1/8[Φ̃ · · · Φ̃︸ ︷︷ ︸
L

]〉N=4 SYM. (3.59)

For this subsection, we will use 〈. . .〉1/8 ≡ 〈W1/8[. . .]〉N=4 SYM to denote the topological
defect correlators on the 1/8-BPS loop. These reduce to the topological correlators on
the half-BPS Wilson loop when A = 2π. Namely, 〈. . .〉1/8|A=2π = 〈. . .〉. We also use the
notation Φ̃ · · · Φ̃︸ ︷︷ ︸

L

to denote L non-coincident copies of Φ̃, which is different from the charge

L topological operator Φ̃L that can be thought of as the normal-ordered insertion of L
coincident copies of Φ̃.

Thirdly, the higher charge topological operators on the half-BPS Wilson loop can
be defined by imposing two properties that are directly parallel to the two properties in
eqs. (3.3)–(3.4) defining the Q-functions. Namely,

〈Φ̃J Φ̃M 〉1/8 ∝ δJM , (3.60)

and Φ̃J is a linear combination of the Φ̃ · · · Φ̃︸ ︷︷ ︸
L

operators for L ≤ J with a unit leading

coefficient:

Φ̃J = Φ̃ · · · Φ̃︸ ︷︷ ︸
J

+ . . . . (3.61)

In this way the higher charge topological operators define an orthogonal basis that can
be constructed from non-coincident insertions of the unit topological operators using the
Gram-Schmidt procedure.

15We pick this combination of scalar fields to couple to the 1/8-BPS Wilson loop in order to match our
conventions for the half-BPS Wilson loop and topological operators in section 2.

16More generally, we may equivalently define the topological operator to be ~x(ϕ) · ~Φ + in̂ · ~Φ⊥, where
~Φ⊥ ≡ (Φ1,Φ2,Φ5) and n̂ is any unit 3-vector. We use the freedom to pick n̂ = (0, 0, 1) so that this topological
operator reduces to the topological operator defined in eq. (2.10) when the 1/8-BPS Wilson loop reduces to
the half-BPS Wilson loop.

– 19 –



J
H
E
P
0
3
(
2
0
2
2
)
0
2
0

Finally, the topological correlators are closed under the OPE. As a special case, the
OPE between a charge J insertion and a unit charge is simply

Φ̃J Φ̃ = Φ̃J+1 +
〈Φ̃J Φ̃J〉1/8
〈Φ̃J−1 Φ̃J−1〉1/8

Φ̃J−1 . (3.62)

The prefactors on the r.h.s. of eq. (3.62) can be determined by taking the expectation value
after multiplying both sides above by Φ̃J+1 or Φ̃J−1, and also noting that

〈Φ̃ Φ̃J Φ̃J+1〉1/8 = 〈Φ̃J+1 Φ̃J+1〉1/8 . (3.63)

This is a special case of the statement that the extremal topological correlators, for which the
largest charge is equal to the sum of all the smaller charges, reduce to two-point functions.
Namely,

〈Φ̃J1Φ̃J2 . . . Φ̃Jn〉1/8 = 〈Φ̃J1Φ̃J1〉1/8 , if J1 = J2 + . . .+ Jn, (3.64)

as was shown in [12].
We have now laid all of the groundwork needed to relate the topological two-point

function to the Bremsstrahlung function. We begin with the expression derived in [12] (see
also [18]) for the Bremsstrahlung function as the second area derivative of the two-point
function:

BJ = −∂2
A log 〈Φ̃J Φ̃J〉1/8

∣∣∣∣
A=2π

. (3.65)

Each area derivative in eq. (3.65) can either act on the Wilson loop to insert a factor of Φ̃
or on one of the topological operators. In particular, when we expand

Φ̃J = Φ̃ · · · Φ̃︸ ︷︷ ︸
J

+cJ(A) Φ̃ · · · Φ̃︸ ︷︷ ︸
J−1

+ . . . , (3.66)

then all the coefficients other than the leading one depend on the area. We have explicitly
labelled the next-to-leading coefficient, cJ(A), since it plays an important role in what
follows. Eq. (3.65) therefore evaluates to

−BJ = 〈Φ̃
J Φ̃J Φ̃Φ̃〉
〈Φ̃J Φ̃J〉

+ 2dcJ
dA

∣∣∣∣
A=2π

. (3.67)

Various other terms on the r.h.s. drop out due to the orthogonality in eq. (3.60). The
next step is to deduce a more transparent form for dcJ

dA . Taking one area derivative of
〈Φ̃J Φ̃J−1〉 = 0 yields

dcJ
dA

∣∣∣∣
A=2π

= − 〈Φ̃
J Φ̃J−1Φ̃〉

〈Φ̃J−1Φ̃J−1〉
= −RJ . (3.68)

To get to the second equality, we used eq. (3.63) and recalled the definition of RJ in
eq. (3.58).
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Finally, applying the OPE in eq. (3.62) to both copies of Φ̃J Φ̃ in the four point correlator
on the r.h.s. of eq. (3.67), we can write it in terms of RJ as well:

〈Φ̃J Φ̃J Φ̃Φ̃〉
〈Φ̃J Φ̃J〉

= RJ+1 +RJ . (3.69)

Therefore, eqs. (3.67), (3.68) and (3.69) yield

−BJ = RJ+1 −RJ , (3.70)

which is the desired relation for RJ in terms of BJ . It holds for any g and J .
We are in particular interested in eq. (3.70) in the large charge regime. If we expand

RJ and BJ in 1/g,

RJ ≡ g2r2 (J/g) + gr1(J/g) + . . . , (3.71)
BJ ≡ gb1(J/g) + b0(J/g) + . . . , (3.72)

then we can use eq. (3.70) to relate r2 and r1 to b1 and b0. The latter two were determined
in [28, 55]:

b1(J/g) = 1− c2

2E(c2) , b0(J/g) = 1
2b
′
1(J/g). (3.73)

Here, we have written b1 in terms of the parameter c2 introduced in eq. (3.54), and have
found that b0 simplifies when written in terms of b1.17 Substituting eqs. (3.71) and (3.72)
into eq. (3.70) and matching the two sides order by order yields the following pair of
differential equations:

r′2(x) = −b1(x), 1
2r
′′
2(x) + r′1(x) = −b0(x). (3.74)

Eqs. (3.73) and (3.74) together imply r′1(x) = 0. Furthermore, writing r′2(J/g) = g dr2
dc2

dc2

dJ

and noting from eq. (3.55) that b1(J/g) = g dc
2

dJ , we find dr2
dc2 = −g2. Finally, imposing the

initial conditions r2(0) = r1(0) = 0,18 we arrive at the following particularly simple form
for RJ :

RJ = −g2c2 +O(g0). (3.75)

17To get this result, we set r = 1 and sin2 ψ = c2 in eqs. (5.11) and (5.12) of [55].
18These initial conditions can be justified as follows. As we’ll discuss in section 4.4, the small J expansion

of the large charge correlators matches the large J expansion of the strongly coupled finite charge correlators.
Thus, we can partly determine the behavior of RJ as J → 0 using the expression for the finite charge
correlator determined in [12], which is given in eq. (3.81). From

RJ = − nJ
2nJ−1

= −gJ
π

(
1− 3J

8πg +O(1/g2)
)

= g2
(
−J
π

+ 3J 2

8π2g
+O(J 3)

)
+ gO(J 2) +O(g0),

we explicitly see that r2 → 0 and r1 → 0 as J → 0.
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Eq. (3.75) lets us determine the large charge limit of the two-point correlator. Keeping
only the leading order term in RJ , we find

〈〈Φ̃J Φ̃J〉〉 =
J∏
j=1

R(j) = (−g2)Jexp

 J∑
j=1

log c2(j)

 . (3.76)

To leading order, we may approximate the sum by the integral computed in eq. (3.56). This
reproduces the result in the previous subsection, eq. (3.57).

Returning to eq. (3.69), eq. (3.75) also lets us determine the four-point correlator:

〈Φ̃J Φ̃J Φ̃Φ̃〉
〈Φ̃J Φ̃J〉

= 2RJ −BJ = −2g2c2 − g

2
1− c2

E(c2) +O(g0). (3.77)

We will see in section 4 that, in the dual string calculation, 2RJ is the classical contribution
to the four point function. The other term, −BJ , corresponds to the contribution from
semiclassical fluctuations, which we will discuss in [29].

Finally, eq. (3.75) also lets us determine the normalized extremal OPE coefficient,

c2
J+`,J,`

nJ+`nJn`
≡ 〈〈Φ̃J+`Φ̃JΦ`〉〉2

〈〈ΦJ+`ΦJ+`〉〉〈〈ΦJΦJ〉〉〈〈Φ`Φ`〉〉
, (3.78)

to next-to-leading order. We first note from eq. (3.55) how c changes when J changes by a
finite amount:

c2(J + j) = c2 + j

2g
1− c2

E(c2) +O(j2/J2). (3.79)

Therefore,

〈Φ̃J+`Φ̃J+`〉
〈Φ̃J Φ̃J〉

=
∏̀
j=1

RJ+j = (−g2c2)`
(

1 + `(`+ 1)
4g

1− c2

c2E(c2) +O(1/g2)
)
. (3.80)

Noting the strong coupling expansion of n` for finite ` [12],

n`(g) =
(2g
π

)`
`!
(

1− 3
16πg `(`+ 1) +O(1/g2)

)
, (3.81)

the normalized extremal OPE coefficient becomes

c2
J+`,J,`

nJ+`nJn`
=
(
gπc2)`
`!

(
1 + `(`+ 1)

4g

[
3

4π + 1− c2

c2E(c2)

]
+O(1/g2)

)
. (3.82)

4 Large charge correlators from the classical string

Now we turn to the analysis of the large charge correlators using the classical string solution
in AdS5 × S5 that is holographically dual to the Wilson operator with ZJ and Z̄J inserted.

The classical string was discussed previously in a few closely related contexts. The
string with J → ∞ was first identified in [9], and its spectrum of fluctuations in the BMN
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limit was matched to the anomalous dimensions, computed in weakly coupled gauge theory,
of “words” inserted on the Wilson loop that are composed of many copies of Z interspersed
with a few copies of an orthogonal scalar. Then [30] used the same classical string to explore
the J → ∞ limit of the two-point function in eq. (2.16). Finally, the string with general J
is a special case of a more general string solution identified in appendix E of [28], which
was used to determine the classical limit of the cusp anomalous dimension of the Wilson
line with cusps simultaneously in both the ambient and internal contours at the locations
of the ZJ and Z̄J insertions. (In our analysis the Wilson loop has insertions but no cusps.)

We will first review the general J string solution and, as an additional check building
on the previous works, we show in appendix B that the supersymmetries of the dual string
match those of the Wilson loop with insertions by extending the discussion in section 4.2
of [9] to the case with general J . The main new results of our analysis are the evaluation
of the classical action of the string solution (including the identification of the relevant
boundary terms), which gives the holographic prediction for the two-point function of
the large charge insertions, and the calculation of higher-point correlators with two heavy
charges using the classical string.

4.1 Identifying the dual string solution

In this section, generalizing section 4.1 in [9], we identify the classical string dual to the
Wilson operator with ZJ and Z̄J inserted and J finite. We begin by writing the metric in
AdS5 × S5 using global coordinates on AdS5 and embedding coordinates on S5:

ds2 = ds2
AdS5 + ds2

S5 , (4.1)

where

ds2
AdS5 = dρ2 − cosh2 ρdt2 + sinh2 ρ

(
dψ2

1 + sin2 ψ1
(
dψ2

2 + sin2 ψ2dψ
2
))

ds2
S5 = dΘIdΘI .

(4.2)

Here, ρ ∈ [0,∞) is the bulk coordinate of AdS5 such that ρ = 0 is the middle of AdS5
and ρ → ∞ is the conformal boundary, R × S3; t is the time coordinate along R; and
ψ1, ψ2 ∈ [0, π] and ψ ∈ [0, 2π) are spherical coordinates on S3. Furthermore, the coordinates
ΘI , I = 1, . . . 6, satisfy ΘIΘI = 1 and embed S5 in R6.

We let the contour of the half-BPS Wilson operator on the boundary consist of the two
antiparallel, antipodal lines that lie at ρ → ∞, ψ1 = ψ2 = π

2 and ψ = 0, π, such that the
line at ψ = 0 runs in the positive t direction and the line at ψ = π runs in the negative
t direction. Furthermore, we put ZJ in the infinite past, t→ −∞, and Z̄J in the infinite
future, t→∞. Given this symmetric choice of the Wilson contours in global coordinates,
we may restrict our attention to the AdS3 subspace of AdS5 with ψ1 = ψ2 = π

2 . We could
also fix ψ = 0, π and restrict to an AdS2 subspace but it is convenient to keep track of ψ
for when we ultimately change to Poincaré coordinates and map this configuration to the
circular Wilson loop with two insertions at ϕ = ±ϕL, as in eq. (2.16).

The coordinate ΘI is dual to ΦI . Since the Wilson loop couples only to Φ6 and the
insertions ZJ and Z̄J are composed of only Φ4 and Φ5, it follows that the dual string also
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lies in the S2 subspace of S5 defined by Θ2
4 +Θ2

5 +Θ2
6 = 1, Θ1 = Θ2 = Θ3 = 0. We introduce

the coordinates θ ∈ [0, π] and φ ∈ [0, 2π) to parametrize this two-sphere such that θ is the
polar angle from the north pole, Θ6 = 1, and φ is the azimuthal angle that rotates parallel
to the Θ4-Θ5 plane:

Θ4 = sin θ cosφ, Θ5 = sin θ sinφ, Θ6 = cos θ. (4.3)

Therefore, restricting to the AdS3 × S2 subspace that contains the dual string, we may
write the relevant parts of the metric as

ds2 = ds2
AdS3 + ds2

S2 , (4.4)
ds2

AdS3 = dρ2 − cosh2 ρdt2 + sinh2 ρdψ2, ds2
S2 = dθ2 + sin2 θdφ2. (4.5)

It is convenient to extend ρ to negative values and identify (−ρ, t, ψ) = (ρ, t, ψ + π).
The string moving in the background in eq. (4.4) is governed by the Nambu-Goto action

(recall that we use the notation g ≡
√
λ

4π ),

SNG[Ψ] = −2g
∫
d2σ
√
−h, (4.6)

where Ψ is shorthand for the all the coordinates of the string, 2g is the string tension, σα,
α = 0, 1, are the worldsheet coordinates, and h denotes the determinant of hαβ , the metric
induced on the worldsheet. Following [9], we identify the classical string dual to the Wilson
operator with ZJ and Z̄J in the large charge limit as the solution extremizing eq. (4.6) with
the following properties:

1. The string is incident on the antiparallel lines at ψ = 0, π on the boundary of AdS3 and
is at θ = 0, the north pole of S2, when it reaches the boundary.

2. As the string moves away from the antiparallel lines on the boundary, it simultaneously
moves away from the north pole in S2 and reaches a maximum angle, θ0 ∈ [0, π/2), when
it reaches the middle of AdS3.

3. The string rotates in S2 in the φ direction with angular momentum J .

A family of string solutions satisfying the equations of motion and having the first two
properties is given by:

ρ = σ1, t = σ0, ψ = 0,

sin θ = c

cosh σ1 , φ = φ0 + σ0.
(4.7)

Here, the worldsheet coordinates, σ1 ≡ ρ and σ0 ≡ t, span R, the parameter c ∈ [0, 1) is
related to the maximum value of θ by

c = sin θ0 , (4.8)

and φ0 ∈ [0, 2π) is a modulus whose significance will become clear in the next section.
The string is depicted in figure 4. While we have presented the string solution using the
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a. Classical string solution in AdS5 b. Classical string solution in S5

Figure 4. The classical string solution in AdS5 × S5 dual to the Wilson loop operator with ZJ

and Z̄J . a. In global AdS5 coordinates, the string forms a strip stretching between the antipodal,
antiparallel lines forming the contour of the Wilson operator. The insertions, ZJ and Z̄J , are located
at the infinite past and future, respectively. b. In S5, the string wraps part of the upper half of
the two-sphere Θ2

4 + Θ2
5 + Θ2

6 = 1. When the string is at the boundary of AdS, ρ→ ±∞, it is at
the north pole of the sphere, θ = 0. When the string is in the center of AdS, ρ = 0, it is at the
maximum polar angle on the sphere, θ = θ0. Furthermore, translations in t in AdS are accompanied
by rotations in φ on the sphere.

Nambu-Goto description, one may also use the conformal gauge and the Polyakov action,
as in [9, 28]. The solution in the conformal gauge is related to eq. (4.7) by a change of
variable of the σ2 coordinate (involving elliptic functions) with σ0 = t unchanged. We find
it more convenient to work with the Nambu-Goto action and the solution eq. (4.7).

Finally, to complete the identification of the classical string dual to the Wilson loop
operator with insertions, we require that it have the correct angular momentum in accordance
with the third property above. This fixes the value of the parameter c in terms of the charge
J . Noting the angular momentum density Πφ ≡ −2g ∂

√
−h

∂(∂0φ) = −2g sin2 θ
√
−hh0α∂αφ, and

setting the anguluar momentum of the string equal to J , we find

J =
∫ ∞
−∞

dρΠφ = 2g
∫ ∞
−∞

dρ
c2 sech2 ρ√
cosh2 ρ− c2

= 4g(K(c2)− E(c2)), (4.9)

which matches eq. (3.54) derived from the matrix model side. This tells us that the
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maximum polar angle of the classical string is the same as the angle parametrizing the
branch cuts of pcl (see figure 2), which justifies our use of the same symbol, θ0, for both.
Therefore, we may also identify the parameter c in the string solution in eq. (4.7) with the
parameter introduced in eq. (3.53). In fact, as shown in [36], the classical quasi-momentum
of the matrix model coincides with that obtained from the string solution.

To connect our discussion above with previous work, we note that the string solution
found in [9] is given by eq. (4.7) when J → ∞ or c = 1. The classical string we consider is
a simple generalization of the c = 1 string that preserves the same supersymmetries, as we
check explicitly in appendix B. It is in turn a special case of the string considered in [28]
when the Wilson loop on the boundary does not have cusps in either the ambient contour
or the internal contour at the locations of the two insertions.19

To close this section, we transform the solution in eq. (4.7) into a form more suitable
for computing correlations functions on the Wilson loop. We begin by continuing from
Lorentzian to Euclidean signature, letting t = −iτ where τ ∈ R is Euclidean time. Then
φ = φ0 − iτ in (4.7), and the Euclidean action is SNG = 2g

∫
d2σ
√
h. The Euclidean

worldsheet coordinates will be denoted by σ1 = ρ and σ2 ≡ iσ0 = τ . Secondly, as an
intermediate step, we map the solid cylinder in global coordinates to the half-volume in
Poincaré coordinates using the transformation

z′ = 1
cosh ρ cosh τ + sinh ρ cosψ , x′1 = z′ sinh ρ sinψ, x′2 = z′ sinh τ cosh ρ. (4.10)

This maps the Wilson contour to the line x′1 = 0 on the boundary z′ = 0 and sends ZJ to
x′2 = −1 and Z̄J to x′2 = 1. It maps the dual string to the half-plane x′1 = 0. See figure 5a.

Next, we shift the string in the x′1 direction by a ≡ cot
(ϕL

2
)
and then invert, rescale

and recenter to get the transformation

z= 2az′

z′2+(x′1+a)2+x′2
2 , x1 = a2−x′1

2−x′2
2−z′2

z′2+(x′1+a)2+x′2
2 , x2 = 2ax′2

z′2+(x′1+a)2+x′2
2 . (4.11)

This maps the Wilson contour to the circle (x1, x2) = (cosϕ, sinϕ) on the boundary z = 0
and sends ZJ to ϕ = −ϕL and Z̄J to ϕ = ϕL. It maps the dual string to the hemisphere
x2

1 + x2
2 + z2 = 1. See figure 5b.

Therefore, the composition of eqs. (4.10) and (4.11) produces the classical string in
EAdS3×S2 ⊂ EAdS5×S5 that we can use to study the large charge correlator in eq. (2.16).
The solution in these coordinates takes the explicit form

z = sinϕL
∆ , x1 = cosϕL cosh τ cosh ρ+ sinh ρ

∆ , x2 = sinϕL sinh τ cosh ρ
∆ ,

sin θ = c

cosh ρ, φ = φ0 − iτ , ∆ = cosh τ cosh ρ+ cosϕL sinh ρ.
(4.12)

When c = 1, this solution is essentially equivalent to the one in [30].
The string in eq. (4.12) is incident on ZJ at ϕ = −ϕL as τ → −∞, on Z̄J at ϕ = ϕL

as τ → ∞, and on the unit circle as ρ → ±∞. To approach the specific point ϕ on the
19Specifically, to match the string solution defined in eq. (4.7) to the one in [28], the parameters `θ, `φ, κ

and γ in appendix E.1 of [28] should be set to `θ = `φ = 0 and κ = γ = 1
c
.
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a. Half-plane b. Hemisphere

Figure 5. The classical string solution in AdS global coordinates in figure 4 can be mapped to: a.
a half-plane in Poincaré coordinates using eq. (4.10), in which case the string is dual to the Wilson
line x′1 = 0 with ZJ and Z̄J at x′2 = ∓1; or to b. the hemisphere in Poincaré coordinates using
eq. (4.11), in which case the classical string is dual to the Wilson loop x2

1 + x2
2 = 1 with ZJ and Z̄J

at ϕ = ∓ϕL.

circle from the worldsheet, we fix τ and send ρ → η∞, where η = +1 for ϕ ∈ [−ϕL, ϕL]
and η = −1 otherwise and τ is determined by the pair of implicit equations

cosh τ ± sinh τ
cosh τ + η cosϕL

= 2 sin2
(
ϕ± ϕL

2

)
/ sin2 ϕL. (4.13)

This follows from eq. (4.12) and we have expressed it in terms of the chordal distances from
ϕ to the insertions.

A note about notation: going forward, we will continue to write d2σ ≡ dρdτ for the
measure on the worldsheet and use α and β as free or summed worldsheet indices, but we
will label particular components of worldsheet tensors using ρ, τ instead of 1, 2.

4.2 Two-point function

The two-point correlator in eq. (2.16) can be computed using a semiclassical evaluation of
the string path integral of the appropriate vertex operators weighted by the action:

〈〈ZJ(−ϕL)Z̄J(ϕL)〉〉 =
∫
DΨe−S[Ψ] vJ(−ϕL; Ψ)v̄J(ϕL; Ψ)∫

DΨ e−S[Ψ] . (4.14)

Here
∫
DΨ is the path integral over all the fields in the superstring sigma model, which are

collectively denoted by Ψ. Furthermore, v and v̄ are the vertex operators dual to Z and Z̄,
which are determined by sending the insertions of Θ4 ± iΘ5 = sin θe±iφ to the boundary of
the world sheet:

v(ϕ; Ψ) ≡ 2g lim
ρ→η∞

sin θeiφ
z

, v̄(ϕ; Ψ) ≡ 2g lim
ρ→η∞

sin θe−iφ
z

. (4.15)

The limits are taken in accordance with eq. (4.13). We have defined the vertex operators
with the usual factor of 1/z (recall that the unit charge chiral primaries have unit conformal
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dimension) that appears in the AdS/CFT dictionary when extrapolating bulk points to
the boundary. The vertex operators also include the natural string tension factor 2g =

√
λ

2π .
And, finally, S[Ψ] in eq. (4.14) is the complete action of the string, which is the sum of the
Nambu-Goto action and a boundary action:

S[Ψ] ≡ SNG[Ψ] + Sbdy[Ψ]. (4.16)

Identifying Sbdy[Ψ] is the focus of the next section.
In the large charge regime, the path integral in eq. (4.14) is dominated by the classical

string solution given in eq. (4.12), which we shall schematically denote Ψcl(c, φ0, ϕL) (or
Ψcl(c) when we only want to emphasize the c-dependence). The action and the vertex
operators in eq. (4.14) can therefore be evaluated on this solution. Let us adopt the
shorthand

Scl(c) ≡ S[Ψcl(c, φ0, ϕL)] (4.17)

for the classical action of the string, and

vcl(ϕ) ≡ v(ϕ; Ψcl(c, φ0, ϕL)), v̄cl(ϕ) ≡ v̄(ϕ; Ψcl(c, φ0, ϕL)) (4.18)

for the vertex operators evaluated on the classical string solution. The action Scl(c) does not
depend on φ0 or ϕL, since changing φ0 is implemented by an isometry on S2 and changing
ϕL is implemented by an isometry on EAdS3. By contrast, the vertex operators, vcl and
v̄cl, do depend on c, φ0 and ϕL as well as on ϕ, but we drop the explicit dependence for
ease of notation. The two-point function in the large charge limit therefore becomes

〈〈ZJ(−ϕL)Z̄J(ϕL)〉〉 = 1
2π

∫ 2π

0
dφ0 v

J
cl(−ϕL)v̄Jcl(ϕL)e−Scl(c)+Scl(0). (4.19)

The term Scl(0) in the exponent comes from the denominator in eq. (4.14). To understand
and apply eq. (4.19), we need to understand the origin of the integral over φ0, determine
the classical vertex operators, vcl and v̄cl, and evaluate the classical action Scl(c)− Scl(0).

We begin with the integral over φ0. Recall that moduli of classical solutions play
an important role in relating the observables in semiclassical eigenstates of a quantum
mechanical system to the observables along trajectories of the corresponding classical system.
The quantum mechanical counterpart of a family of classical trajectories labelled by a
modulus is a family of coherent states rather than eigenstates. Since a particular eigenstate
can be realized by a suitable linear combination of the coherent states, one should suitably
average the expectation values of the classical trajectories over the moduli to reproduce the
quantum expectation value. See sections 2–3 of [33] and also [32] for discussions. In our
case, the semiclassical string with a given φ0 is dual to a coherent state of average charge J ,
and integrating over φ0 in eq. (4.19) ensures that the resulting expectation value on the
l.h.s. is for an eigenstate of charge J .

Next, we note the explicit form of the vertex operators on the classical string:

vcl(ϕ) = 2g lim
ρ→η∞

∆
sinϕL

c

cosh ρe
iφ0+τ = 2gceiφ0 d

d(ϕ,ϕL)2

v̄cl(ϕ) = 2g lim
ρ→η∞

∆
sinϕL

c

cosh ρe
−iφ0−τ = 2gce−iφ0 d

d(ϕ,−ϕL)2 ,

(4.20)
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where ∆ was defined in eq. (4.12). Above we used eq. (4.13) to evaluate the limit in terms of
ϕ instead of τ and wrote the result in terms of the chordal distances introduced in eq. (2.5).
Thus, the contribution of the large charge vertex operators to the r.h.s. of eq. (4.19) is20

vJcl(−ϕL)v̄Jcl(ϕL) = (2gc)2J

d2J . (4.21)

This has the correct position dependence for a conformal two-point correlator, as in eq. (2.16).
Furthermore, the factors of eiφ0 and e−iφ0 from the two vertex operators evidently cancel
and the integral over φ0 in eq. (4.19) simply yields 1. Stated differently, given the explicit
forms of the vertex operators in eq. (4.20), the integral over φ0 ensures that the r.h.s. of
eq. (4.19) is nonzero only if equal numbers of vcl and v̄cl are inserted on the boundary of the
worldsheet. This mirrors the requirement from R-symmetry that the l.h.s. is nonzero only if
equal numbers of Z and Z̄ are inserted along the Wilson loop. The role of the integration
over φ0 will be slightly less trivial when we consider higher-point functions below.

The last step in evaluating eq. (4.19) is to determine the value of the action on the
classical string solution, Scl(c). For simplicity we compute the action for the case of
antipodal insertions, which is equal to the action for the case with general insertions.
Setting ϕL = π/2, the form of the string in EAdS3 simplifies to

z = 1
cosh τ cosh ρ, x1 = tanh ρ

cosh τ , x2 = tanh τ. (4.22)

We also note the explicit form of the metric induced on the worldsheet,

hρρ = cosh4 ρ− c2

cosh4 ρ− c2 cosh2 ρ
, hττ = cosh2 ρ− c2

cosh2 ρ
, hρτ = hτρ = 0. (4.23)

This follows equally from eq. (4.22), eq. (4.12) or the Euclidean continuation of eq. (4.7).

Computing the action. As is familiar from the study of classical strings dual to Wilson
loops without insertions [31, 45, 56, 57], the string action is not simply the Nambu-Goto or
Polyakov action since the area of the minimal surface diverges as it approaches the Wilson
contour on the boundary. One possible remedy in that context is to regularize the area by
shifting the contour from z = 0 to z = ε, remove the divergent piece from the area that is
proportional to the length of the contour as ε→ 0+, and interpret it as a renormalization
of the mass of the particle moving around the loop [56, 57]. An alternative approach is
to take the Legendre transform of the Nambu-Goto action with respect to the bulk radial
coordinate [31]. This adds a boundary term to the string action that does not change the
equations of motion or the extremal surface but does change the value of the action and
makes it well-defined (and, when applicable, in agreement with gauge theory). We adopt
this second approach for the computation of the action of the classical string dual to the

20One may also define the large charge vertex operators to be vJ ≡ limτ→−∞(2g sin θeiφ/z)J and
v̄J ≡ limτ→∞(2g sin θe−iφ/z)J , so that we send τ → ∓∞ without sending ρ→ ±∞ first. The order of limits
does not matter and the resulting classical vertex operators reproduce vJcl(−ϕL) and v̄Jcl(ϕL), as given by
eq. (4.20).
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Wilson loop with insertions, but must modify the precise prescription in [31] to reflect the
modified boundary conditions of the string arising from the insertions.

Because of its important role in what follows21 let us briefly review the boundary term
proposed in [31] for the classical string dual to a smooth Wilson loop without insertions.
We call this the DGO boundary term, in reference to the authors’ initials. We begin by
combining the inverse bulk coordinate u ≡ 1/z with the embedding coordinates ΘI for S5

into uI ≡ uΘI . This satisfies uIuI = u2. In these coordinates, the metric on EAdS5 × S5

can be written

ds2 = u2dxµdxµ + du2

u2 + dΘIdΘI = u2dxµdxµ + duIduI
u2 . (4.24)

Then the induced metric on the worldsheet is hαβ = u2∂αx
µ∂βxµ + u−2∂αuI∂βuI , and we

define the canonical momenta conjugate to uI and u to be

Πα
I ≡ 2g ∂

√
h

∂(∂αuI)
= 2g
u2

√
hhαβ∂βuI , Πα

u ≡ 2g ∂
√
h

∂(∂αu) = 2g
u2

√
hhαβ∂βu. (4.25)

In this language, the DGO prescription is to take the Legendre transform with respect to u
or, equivalently, with respect to the uI by adding to the Nambu-Goto action the following
boundary action:

SDGO[Ψ] = −
∫
d2σ∂α(uΠα

u) = −
∫
d2σ∂α(uIΠα

I ). (4.26)

The variation of the Nambu-Goto action plus the DGO action under uI → uI + δuI about
a classical solution is then

δSNG[Ψclassical] + δSDGO[Ψclassical] = −
∫
d2σ∂α (uIδΠα

I ) . (4.27)

For the variation to be zero, we must send δΠα
I → 0 at the boundary of the worldsheet,

which means the complete action is to be viewed as a functional of the momentum ΠI

instead of the coordinates uI at the boundary. The DGO boundary term can therefore be
thought of as imposing Neumann, rather than Dirichlet, boundary conditions on uI .22

As a simple check of eq. (4.26), we compute the action of the string with c = 0,
which is dual to the half-BPS Wilson loop without insertions. In this case

√
h = cosh ρ,

∂ρ(uΠρ
u) = 2g cosh ρ, and ∂τ (uΠτ

u) = 2g sech2 τ sech ρ, which reproduces the well known
result

SNG[Ψcl(0)] + SDGO[Ψcl(0)] = −2g
∫
dτdρ sech ρ sech2 τ = −4πg. (4.28)

This is just the string tension, 2g, times the regularized area of EAdS2, −2π, and matches
the leading behavior of the gauge theory result in the supergravity regime given in eq. (2.2).

21There also appears to be a subtle issue with a minus sign in the original discussion [31]. We thank
Nadav Drukker for correspondence on this detail.

22This in turn is equivalent to imposing Dirichlet conditions on the ΘI , see [31], which is just the familiar
statement that the coupling to the scalars in the Wilson loop sets the boundary values of the S5 coordinates
of the dual string.
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Our characterization of the boundary term in eq. (4.26) closely follows the one in [31]
except that the original discussion was framed in terms of z and YI ≡ zΘI , and the momenta
Πα
z ≡

2g
z2

√
hhαβ∂βz and Πα

YI
≡ 2g

z2

√
hhαβ∂βYI . But since zΠα

z = −uΠα
u and YIΠα

YI
= −uIΠα

I ,
the DGO boundary term expressed in terms of the z and YI coordinates does not have the
minus sign in eq. (4.26). Therefore, in contrast with eq. (4.27), the variation about a classical
solution of the Nambu-Goto action plus DGO boundary term under Y I → Y I+δY I does not
vanish when the momenta Πα

YI
conjugate to Y I are fixed at the boundary. For this reason,

the DGO term should be viewed as a Legendre transform in u, not z, or in uI , not Y I .
Finally, we are ready to propose a precise form for Sbdy[Ψ] and evaluate the ac-

tion. We begin with a few motivating observations. First, the vertex operators in
eq. (4.15) are naturally written in terms of u4 and u5 as v ≡ 2g limρ→η∞(u4 + iu5) and
v̄ ≡ 2g limρ→η∞(u4 − iu5). Secondly, the limiting behavior of u4 ± iu5 evaluated on the
classical solution, eq. (4.22), as the string approaches the insertions is

lim
τ→−∞

u4 + iu5 = ceiφ0

2 , lim
τ→∞

u4 − iu5 = ce−iφ0

2 . (4.29)

These limits are taken with ρ fixed but general. Finally, the limiting behavior of the
momenta conjugate to u4 ± iu5, Πα

4±i5 ≡ 1
2(Πα

4 ∓ iΠα
5 ), evaluated on the classical solution is

lim
τ→−∞

Π4−i5 = 0, lim
τ→∞

Π4+i5 = 0. (4.30)

By contrast, u4 + iu5 and u4 − iu5 diverge as τ →∞ and τ → −∞, respectively and Π4−i5
and Π4+i5 approach non-trivial functions of ρ as τ →∞ and τ → −∞, respectively.23

Eqs. (4.29) and (4.30) indicate that, as compared to the general prescription in [31],
inserting ZJ and Z̄J on the Wilson loop changes the boundary condition of u4 + iu5 at
τ → −∞ and of u4 − iu5 at τ →∞ from Neumann to Dirichlet. We therefore propose that
the correct boundary action is the DGO action in eq. (4.26), except with the Legendre
transformation on u4 ± iu5 at τ = ∓∞ removed:

Sbdy[Ψ] ≡ SDGO[Ψ]−
∫
dρ lim

τ→−∞
(u4 + iu5)Πτ

4+i5 +
∫
dρ lim

τ→∞
(u4 − iu5)Πτ

4−i5. (4.31)

Like the Nambu-Goto action, this boundary action is not finite by itself. The bulk and
boundary actions should be added as in eq. (4.16) with IR cutoffs imposed on both ρ and
τ , and the sum then approaches a finite value as the cutoffs are removed.

The evaluation of the complete action is now simple, especially using the coordinates
in eq. (4.22). Firstly, we note

(u4 + iu5)Πτ
4+i5 = tanh τ − 1

2 Πφ, (u4 − iu5)Πτ
4−i5 = tanh τ + 1

2 Πφ, (4.32)

where Πφ is the angular momentum density introduced in eq. (4.9). The second two terms
in eq. (4.31) therefore evaluate to

−
∫
dρ lim

τ→−∞
(u4 + iu5)Πτ

4+i5 =
∫
dρ lim

τ→∞
(u4 − iu5)Πτ

4−i5 =
∫
dρΠφ = J. (4.33)

23Specifically, limτ→∞Πα
4−i5 = − limτ→−∞Πα

4+i5 = 4gc/ cosh2 ρ/
√

cosh2 ρ− c2δτα.
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Furthermore, one can check that the ρ term in the DGO Lagrangian satisfies ∂ρ(uΠρ
u) =

2g
√
h and therefore cancels with the Nambu-Goto Lagrangian, while the τ term simplifies

to ∂τ (uΠτ
u) = 2g sech2 τ/

√
cosh2 ρ− c2. Therefore,

SNG[Ψcl(c)] + SDGO[Ψcl(c)] = −2g
∫ ∞
−∞

dτ

cosh2 τ

∫ ∞
−∞

dρ√
cosh2 ρ− c2

= −8gK(c2). (4.34)

Combined with eq. (4.33) and recalling eq. (4.9), we determine the complete action of the
classical string to be

Scl(c) = SNG + Sbdy = −8gK(c2) + 2J = −8gE(c2). (4.35)

Then, from eq. (4.19) and including the contribution of the vertex operators eq. (4.21), we
obtain the two-point function

〈〈ZJ(−ϕL)Z̄J(ϕL)〉〉 = (2gc)2J

d2J e8gE(c2)−8gE(0). (4.36)

Note that if we put ZJ and Z̄J in the topological configuration by sending ϕL → π/2, as in
eq. (2.19), we find

〈〈Φ̃J Φ̃J〉〉 = (−g2c2)Je8gE(c2)−8gE(0). (4.37)

This is in precise agreement with the localization result in eq. (3.57).
We should emphasize that although we have for simplicity written the boundary action

eq. (4.31) using the global coordinates ρ and τ , the complete action is independent of the
choice of worldsheet coordinates and IR regularization.24

Before proceeding to the computation of the higher-point functions, we close this section
with some comments about the evaluation of the string action. We begin by noting, since
dE(c2)/dc = (K(c2)− E(c2))/c, that the two-point function is extremized with respect to c:

∂

∂c
(2J log c+ Scl(c))

∣∣∣∣
c=c(J)

= 0. (4.39)

24This can be seen as follows. Firstly, the sum of the Nambu-Goto and DGO actions is manifestly
worldsheet reparametrization invariant and one can also readily check that it is finite without need for
regularization. Secondly, the first boundary term in eq. (4.31) can be written in a coordinate independent
way as follows (the treatment of the second boundary term is analogous):

−
∫
dρ lim

τ→−∞
(u4 + iu5)Πτ

4+i5 = − lim
Λ→∞

∫
ηΛ

dλ
√
γnαP

α. (4.38)

Here, ηΛ is a family of curves that approach ZJ as Λ → ∞, λ is a coordinate along ηΛ that we may for
concreteness take to run from −1 to 1, γαβ ≡ dηα

dλ
dηβ

dλ
hαβ is the induced metric on ηΛ, nα is a unit normal

vector (i.e., dη
α

dλ
nα = 0 and nαnβhαβ = 1), and finally Pα ≡ (u4 + iu5)Πα

4+i5/
√
h. The point, then, is that

the limit on the r.h.s. of eq. (4.38) is independent of the particular choice of ηΛ(λ) ≡ (ρΛ(λ), τΛ(λ)) as long
as ρΛ(+1)→∞, ρΛ(−1)→ −∞ and maxλ∈[−1,1]τΛ(λ)→ −∞ as Λ→∞, which is what we mean when we
say that ηΛ “approaches ZJ” as Λ→∞.
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Here, we treat c and J as independent variables when taking the partial derivative, and c(J)
is the particular value of c satisfying eq. (4.9). If we view the vertex operators in eq. (4.14)
as additional boundary terms in a “total” action,

Stot[Ψ] ≡ −J log (v(−ϕL; Ψ)v̄(ϕL; Ψ)) + S[Ψ], (4.40)

then eq. (4.39) is equivalent to

∂Stot[Ψcl(c)]
∂c

∣∣∣∣
c=c(J)

= 0 . (4.41)

This tells us that the total action is invariant when we vary θ by δθ = δc/
√

cosh2 ρ− c(J)2

about the classical string solution, which is equivalent to varying c by δc about c(J), as we
would expect from a purportedly extremal solution. By contrast, the Nambu-Goto action
plus the DGO action without the additional two terms in eq. (4.31), which evaluates to
eq. (4.34) on the classical string, does not satisfy this extremization property. Therefore, we
may say that modifying the boundary conditions of u4 + iu5 and u4 − iu5 to be Dirichlet
instead of Neumann at τ → −∞ and τ →∞, respectively— and implementing the necessary
Legendre transforms with the boundary action given in eq. (4.31)— fixes the θ variational
problem, which would otherwise not be well defined.25

Requiring the θ variational problem to be well defined does not uniquely determine
Sbdy[Ψ]. For example, the boundary terms in the DGO action implementing the Legendre
transforms of u1, u2, and u3 at τ → ±∞ are all zero because Θ1 = Θ2 = Θ3 = 0 on the
string solution. And given eq. (4.32), the same is true for the two terms implementing the
Legendre transforms of u4 + iu5 at τ →∞ and of u4− iu5 at τ → −∞. Any of these terms
may therefore be dropped without changing the value of the action. Thus, our findings
do not rule out the possibility that the correct boundary prescription is to also impose
Dirichlet conditions on u1, u2, and u3 at τ → ±∞, and/or perhaps on u4 + iu5 at τ →∞
and u4 − iu5 at τ → −∞. However, we consider the boundary conditions we identified and
the boundary action given in eq. (4.31) to be the most plausible. Our proposal could be
further tested by applying it to a more general string solution in which the behavior of the
S5 directions orthogonal to the large charge directions is not trivial. One possibility is to
study the semiclassical string dual to the quarter-BPS Wilson loop [58] with ZJ and Z̄J
additionally inserted.

Next, it is instructive to compare the behavior of eq. (4.36) in the limit J → ∞ to the
results in [30]. Noting that 2J log c → 0 and E(c2) → 1 as J → ∞, we find that in the
large J limit

〈〈ZJ(−ϕL)Z̄J(ϕL)〉〉 = (2g)2J

d2J exp
[
g
(
8− 4π +O(J e−

J
2 )
)

+O(g0)
]
. (4.42)

25Incidentally, eq. (4.39) uniquely determines Scl(c). It allows to completely bypass the detailed discussion
of the boundary action and uses only the fact that the c dependence of the vertex operators goes like c2J

and that the variation of Stot[Ψ] about the classical string solution should vanish, including when we vary θ
by varying c.
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Eq. (18) in [30] differs from our result above by an extra 2J in the exponent.26 This is
because the analysis in [30] used the DGO boundary action in eq. (4.26) instead of the
modified boundary action in eq. (4.31). We have seen that this difference in choice of
boundary term indeed changes the action by 2J .

Finally, it is interesting to compare our analysis of the classical string dual to large
charges ZJ and Z̄J inserted on the Wilson loop to the string calculation of the correlation
function of the Wilson loop and a large charge single-trace local operator trZJ inserted away
from the Wilson loop [38, 40, 59]. The classical string solution in that case is topologically
a cone whose boundary is the disjoint union of a point incident on the local insertion and a
circle incident on the Wilson loop. Our analysis is most directly similar to the one in [59],
where the action is also computed with a DGO boundary term added to the Nambu-Goto
action.27 In that paper, the DGO term is written not as a bulk integral of a total derivative
like in eq. (4.26), which would give contributions from both boundaries, but rather as a
boundary integral over only the boundary incident on the Wilson loop. Given our discussion
above, we interpret this to mean that the uI coordinates satisfy Neumann conditions on the
boundary incident on the Wilson loop, as in the DGO prescription, but Dirichlet conditions
on the boundary incident on the local insertion.28 Moreover, if we instead write the DGO
term in [59] as a bulk integral of a total derivative or equivalently add the DGO term also
for the boundary incident on the local operator, then we find the action changes by J , just
like in eq. (4.33). Thus, the semiclassical string analysis of ZJ and Z̄J inserted on the
Wilson loop is very similar to the analysis of trZJ inserted away from the Wilson loop,
except that splitting the boundary of the string worldsheet into a part incident on the local
insertions and a part incident on the Wilson loop proper is more subtle in the former case.

4.3 Higher-point functions

The procedure we used to compute the large charge limit of the two-point function can be
straightforwardly extended to higher-point functions. For every extra insertion of Z`(ϕ) in
the Wilson loop correlator, we simply add an extra factor of v`cl(ϕ) in the integral over φ0

26Specifically, eq. (18) in [30] gives the following value for the total action (including the contributions
from the vertex operators):

Stot = 2J log 2`
ε
− 2J − 2R2

πα′
.

Identifying 2`→ d as the distance between the insertions, R2

2πα′ → 2g as the string tension and ε as an IR
regulator as z → 0 that [30] imposed, we find that the above expression differs from the negative log of
eq. (4.42) by 2J + 4πg + 2J log ε

2g . The 4πg and 2J log ε
2g terms in the difference arise because, unlike [30],

we normalize the Wilson loop with insertions by the Wilson loop without insertions (see eqs. (2.4) and (4.14))
and we include a factor of 2g/z in the vertex operators as we approach the boundary (see eq. (4.15)).
Accounting for these differences in convention, the substantive difference between the two results is therefore
simply 2J .

27[38, 40] used different, equivalent methods to regulate the semiclassical action.
28More precisely, we would say that the combination of the uI coordinates dual to Z satisfies the Dirichlet

condition on the insertion. The other linear combinations should still satisfy Neumann conditions but the
boundary terms implementing their Legendre transforms evaluate to zero and can effectively be dropped.
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in eq. (4.19), and likewise for Z̄`(ϕ) and v̄`cl(ϕ). Thus, in the large charge limit,

〈〈ZJ(−ϕL)Z̄J(ϕL)∏n
i=1 Z

`i(ϕi)
∏m
j=1 Z̄

¯̀
j (ϕ̄j)〉〉

〈〈ZJ(−ϕL)Z̄J(ϕL)〉〉

= 1
2π

∫ 2π

0
dφ0

n∏
i=1

v`icl (ϕi)
m∏
j=1

v̄
¯̀
j

cl (ϕ̄j)

= (2gc)2`totd2`tot∏n
i=1 d(ϕi, ϕL)2`i

∏m
j=1 d(ϕ̄j ,−ϕL)2¯̀

j
δ`tot,¯̀tot

. (4.43)

Here, we let `tot ≡
∑n
i=1 `i and ¯̀tot ≡

∑m
j=1

¯̀
j .

We could also be interested in higher-point functions in which the light operators are not
just finite powers of Z and Z̄. However, the orthogonal scalars Φ1, Φ2 and Φ3 are effectively
“invisible” in the large charge limit, as is clear from the perspective of the dual string: since
Θi = 0 for i = 1, 2, 3 on the classical string solution, the corresponding classical vertex
operators, limbulk→bdy Θi/z, are trivially zero. This means that correlators involving light
operators of the form (ε·Φ)`, where ε·Φ = ε1Φ1+ε2Φ2+ε3Φ3+εZZ+εZ̄Z̄, reduce to linear com-
binations of the correlators in eq. (4.43) after the truncation ε·Φ→ εZZ+εZ̄Z̄. Alternatively,
we can compute correlators of the more general light operators directly using the classical
string by replacing ε·Φ in the Wilson loop correlator with εZvcl +εZ̄ v̄cl in the integral over φ0.
(The correlators resulting from such truncation may of course be zero, like when εZ = εZ̄ = 0,
in which case we need to go beyond the classical analysis to determine the leading non-trivial
contribution. For instance, to determine the four-point correlator 〈〈ZJ Z̄JΦ1Φ1〉〉, we need
to study fluctuations of the semiclassical string, which will be discussed in [29].)

As a special case, we will compute the higher-point topological correlator in eq. (2.14).
Firstly, we again set ϕL = π/2 to put the large charges in the topological configuration.
The light vertex operators then simplify to vcl(ϕ) = 2gceiφ0/(1 − sinϕ) and v̄cl(ϕ) =
2gce−iφ0/(1 + sinϕ). Furthermore, since Φ̃`(ϕ) =

(
cosϕΦ3 +

(
1−sinϕ

2

)
Z −

(
1+sinϕ

2

)
Z̄
)`
,

the light vertex operators for the topological operators on the classical string are manifestly
position independent:

Φ̃` →
(1− sinϕ

2 vcl(ϕ) + 1 + sinϕ
2 v̄cl(ϕ)

)`
= (gc)`

(
eiφ0 − e−iφ0

)`
. (4.44)

Therefore, eq. (2.14) becomes

〈〈Φ̃J Φ̃J ∏n
i=1 Φ̃`i〉〉

〈〈Φ̃J Φ̃J〉〉
= (gc)`tot

2π

∫ 2π

0
dφ0(eiφ0 − e−iφ0)`tot . (4.45)

Here, we again have defined `tot ≡
∑n
i=1 `i. If we expand the integrand using the binomial

theorem, the only term that does not integrate to zero has equal numbers of eiφ0 and e−iφ0 .
Thus, the integral counts the number of ways of grouping `tot objects into two equal halves,
and the correlator simplifies to

〈〈Φ̃J Φ̃J ∏n
i=1 Φ̃`i〉〉

〈〈Φ̃J Φ̃J〉〉
= (−g2c2)`tot/2

(
`tot
`tot/2

)
. (4.46)

This matches the localization result in eq. (3.40).
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We can also extend the analysis to correlators involving two large operators with
unequal charges J and J + `, where ` is held fixed in the large charge limit. The string path
integral is dominated by the same saddle point, Ψ→ Ψcl(c(J)), and therefore the classical
action and the vertex operators are the same as before.29 The only difference is that the
classical vertex operator for the J + ` charge has ` extra copies of vcl(−ϕL). For instance,
the generalization of eq. (4.43) is

〈〈ZJ+`(−ϕL)Z̄J(ϕL)∏n
i=1 Z

`i(ϕi)
∏m
j=1 Z̄

¯̀
j (ϕ̄j)〉〉

〈〈ZJ(−ϕL)Z̄J(ϕL)〉〉

= 1
2π

∫ 2π

0
dφ0v

`
cl

(
−ϕL2

) n∏
i=1

v`icl (ϕi)
m∏
j=1

v̄
¯̀
j

cl (ϕ̄j)

= (2gc)`tot+¯̀tot+`d`tot+¯̀tot−`∏n
i=1 d(ϕi, ϕL)2`i

∏m
j=1 d(ϕ̄j ,−ϕL)2¯̀

j
δ`tot+`,¯̀tot

. (4.47)

Furthermore, to determine the corresponding topological correlators, we again set ϕL = π/2,
replace Φ̃J+` → vcl(−π

2 )J+` = (gc)J+`ei(J+`)φ0 and Φ̃J → (−1)J v̄(π2 )J = (−gc)Je−iJφ0 for
the heavy operators and use eq. (4.44) for the light operators. This yields

〈〈Φ̃J+`Φ̃J ∏n
i=1 Φ̃`i〉〉

〈〈Φ̃J Φ̃J〉〉
= (gc)`tot+`

2π

∫ 2π

0
dφ0e

i`φ0(eiφ0 − e−iφ0)`tot

= (−g2c2)
`tot+`

2

(
`tot

(`tot − `)/2

)
, (4.48)

which indeed reduces to eq. (4.46) when ` = 0. One consequence of eqs. (4.46) and (4.48) is
that Φ̃`1Φ̃`2 and Φ̃`1+`2 are equal in the large charge limit, but Φ̃J+` and Φ̃J Φ̃` are not.

As a simple check of eq. (4.48), we note that when ` = `tot it reproduces the leading
behavior of 〈Φ̃J+`Φ̃J+`〉 / 〈Φ̃J Φ̃J〉, which is given in eq. (3.80).30 This is in accordance with
the property of extremal correlators stated in eq. (3.64). It also follows that, if we use
eq. (4.48) to determine the normalized extremal OPE coefficient defined in eq. (3.78), then we
reproduce the leading order term, (gπc2)`/`!, in eq. (3.82). This normalized OPE coefficient
can alternatively be extracted from a simple conformal block calculation, as we’ll see next.

CFT data from a four-point function. The final correlator we consider is the non-
topological correlator with two equal large charges and two equal light charges. This is a

29We could also alternatively localize the path integral to Ψ→ Ψcl(c(J ′)) for any J ′ = J+O(g0), including
J ′ = J + `. The resulting string correlators, now with vertex operators vcl, v̄cl ∝ c(J ′) and action Scl(c(J ′)),
have the same leading behavior in the large charge limit. This follows from eq. (4.41). The analogous
statement for the one-dimensional Laplace integral

∫
e−Nf(x)g(x)dx, with N large and f minimized at x0,

is that the leading term e−Nf(x0)g(x0) is invariant under x0 → x0 + a/N because f ′(x0) = 0. See also the
next footnote.

30The leading term in eq. (3.80) can also be deduced using only results from the dual string. Firstly,
given eq. (3.79), we see that c(J)` = c(J + `)`(1 +O(1/g)) for finite `. Also, it follows from eq. (4.39) that
c(J)2Je−Scl(c(J)) = c(J + `)2Je−Scl(c(J+`))(1 +O(1/g)). Applying these to eq. (4.37) implies 〈Φ̃J+`Φ̃J+`〉 =
(−g2c(J)2)` 〈Φ̃J Φ̃J〉 (1 +O(1/g)), which is the desired result.
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special case of eq. (4.43) and is given by

〈〈ZJ(−ϕL)Z̄J(ϕL)Z`(ϕ)Z̄`(ϕ̄)〉〉
〈〈ZJ(−ϕL)Z̄J(ϕL)〉〉

= (2gc)2` d(−ϕL, ϕL)2`

d(ϕ,ϕL)2`d(ϕ̄,−ϕL)2` . (4.49)

This four point function contains some simple large charge CFT data. We choose to study
the conformal block expansion in the Z`ZJ → Z̄`Z̄J channel, so that the smallest exchanged
operators also have large charges. (By contrast, the smallest operators exchanged in the
Z`Z̄` → ZJ Z̄J channel are light).

Therefore, let us map ϕ → ϕ1, ϕ̄ → ϕ3, −ϕL → ϕ2 and ϕL → ϕ4, and assume for
simplicity that −π < ϕ1 < ϕ2 < ϕ3 < ϕ4 < π. The four point function can be written

〈〈Z(ϕ1)ZJ(ϕ2)Z̄(ϕ3)Z̄J(ϕ4)〉〉 = (2gc)2(J+`)e−Scl(c)

(d21d43)J+`

(
d31
d42

)J−` χJ+`

(1− χ)2` , (4.50)

where we have introduced the conformally invariant cross ratio, χ:

χ ≡ d21d43
d31d42

,
χ

1− χ = d21d43
d41d32

,
1

1− χ = d31d42
d41d32

. (4.51)

(4.50) is in a form that is convenient for comparing with the conformal block expansion [60],

〈〈Z(ϕ1)ZJ(ϕ2)Z̄(ϕ3)Z̄J(ϕ4)〉〉 (4.52)

= 1
(d21d43)J+`

(
d31
d42

)J−`∑
n

pnχ
∆n2F1(∆n + `− J,∆n + J − `, 2∆n, χ).

Here, n = 0, 1, 2, . . . labels the nth operator On appearing in the OPE of ZZJ (and its
conjugate Ōn appearing in the OPE of Z̄Z̄J ), ∆n is the dimension of On (and Ōn), χ∆

2F1(χ)
is the conformal block in one dimension and pn is the nth conformal block coefficient.

The operators On in the OPE of Z and ZJ have dimensions of order J or higher.
Therefore, two of the three parameters of the hypergeometric function are large, in which
case it takes a simplified form [61]:

2F1(α,L+ β, L+ γ, χ) = 1
(1− χ)α

(
1 +O

( 1
L

))
. (4.53)

Letting L = 2J , α = ∆n + ` − J , β = ∆n − ` − J , γ = 2(∆n − J), we see that the
leading behavior of the conformal block in eq. (4.52) is χ∆n/(1−χ)∆n+`−J . Then, matching
eqs. (4.50) and (4.52), we find that there is only one operator, O0, contributing to the
conformal block expansion in the large charge regime, and that its dimension and conformal
block coefficient are:

∆0 = J + `, p0 = (2gc)2(J+`)e−Scl(c). (4.54)

We identify O0 = Z̄J+`, Ō0 = ZJ+`, which have the right dimension. Additionally, the
conformal block coefficient p0 is related to the OPE coefficient for the three-point function
ZZJ Z̄J+` and the normalization of the two-point function ZJ+`Z̄J+`, which up to factors
of 2 coming from the polarization vectors of Z and Z̄ are given by cJ+`,J,` and nJ . More
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precisely, p0 = 2J+`c2
J+`,J,`/nJ+`. Then, combining eq. (4.54) with eq. (4.37) and eq. (3.81)

we find,

c2
J+`,J,`

nJ+`nJn`
= p0

2J+`nJn`
= (gπc2)`

`! . (4.55)

This agrees at leading order with eq. (3.82).

4.4 Small and large J

In this final section, we discuss the behavior of some of the large charge correlators we
have computed when J � 1 or J � 1. We also compare them to the large g and small g
perturbative results for the planar, finite charge correlators from [10, 12, 19].

Small J . When J � 1, J and c2 are related by the Taylor series

J = πc2 + 3π
8 c4 +O(c6), c2 = J

π
− 3

8
J 2

π2 +O(J 3). (4.56)

The first few terms in the small J expansions of the two-point function in eq. (4.37) and
the normalized extremal three-point function in eq. (3.82) are:

〈〈Φ̃J Φ̃J〉〉= (−g2)Jexp
[
g

(
J logJ −J (1+logπ)− 3J 2

16π +O(J 3)
)

+O(g0)
]
, (4.57)

c2
J+`,J,`

nJ+`nJn`
= g`

(
J `

`! −
3

8π
J `+1

(`−1)! +O(J `+2)
)

+g`−1
(

`+1
2(`−1)!J

`−1− 3
16π

`(`+1)
(`−1)!J

`+O(J `+1)
)

+O(g`−2). (4.58)

We recall that our matrix model in sections 3.1–3.2 and the dual string analysis in section 4.3
only determine the g` term in eq. (4.58). The g`−1 term comes from the Bremsstrahlung
analysis in 3.3.

The expansion of the large charge correlators in small J pushes results that are valid
when 1� J ∼ g into the regime 1� J � g. This should agree with the expansion of finite
charge correlators in large J , which pushes results that are valid when 1 ∼ J � g also into
the regime 1� J � g. More specifically, we expect the coefficient of the g−mJ n term in
the double expansion in 1/g and J to match the coefficient of the g−m−nJn term in the
double expansion in 1/g and 1/J .31

Therefore, we can use the 1/g expansion of the finite J correlators, determined using
localization in [12], to test eqs. (4.57)–(4.58). The two-point function (modulo eq. (2.11)) is
given in eq. (3.81) and the three-point function is

c2
J+`,J,`

nJ+`nJn`
= (J + `)!

J !`!

(
1− 3

8π
J`

g
+O(1/g2)

)
. (4.59)

31This is equivalent to saying that the mth sub-leading term in the 1/g expansion with finite J should
equal the resummation of the (m+ 1)th largest J terms at each order in the 1/g expansion with finite J .
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Putting the two-point function in a form parallel to eq. (4.57) and then expanding in large
J , we find

〈〈Φ̃J Φ̃J〉〉= (−g2)Jexp
[
log J !

(gπ)J −
3

32πg (2J2+J)+O(1/g2)
]

(4.60)

= (−g2)Jexp
[(
J log J

g
−J(1+logπ)+O(J0)

)
− 1
g

(
3J2

16π+O(J)
)

+O(1/g2)
]

which matches eq. (4.57) in the overlapping terms. Likewise, expanding the three-point
function in large J yields

c2
J+`,J,`

nJ+`nJn`
=
(
J `

`! + (`+ 1)J `−1

2(`− 1)! +O(J `−2)
)

− 1
g

(
3

8π
J `+1

(`− 1)! + 3
16πg

`(`+ 1)J `
(`− 1)! +O(J `−1)

)
+O(1/g2), (4.61)

which matches eq. (4.58) in the overlapping terms.
Eqs. (3.81) and (4.59) follow from localization, but may also be understood in terms

of the EAdS2 string dual to the Wilson loop without insertions. The leading strong
coupling behavior of the finite charge correlators is determined by a free theory with
boundary-to-boundary propagators [10]

〈ΦI(ϕi)ΦJ(ϕj)〉 = 2g
π

δIJ
d2
ij

, (4.62)

where I, J = 1, . . . , 5. For non-coincident insertions of the topological operators, the
boundary propagator is 〈Φ̃Φ̃〉 = −g/π. For Z and Z̄, the boundary propagator is
〈Z(ϕi)Z̄(ϕj)〉 = 4g

π
1
d2
ij
, 〈ZZ〉 = 〈Z̄Z̄〉 = 0. In this language, the leading term in eq. (4.60)

arises from the J ! ways to contract the two insertions of Φ̃J , and the leading term in cJ+`,J,`
in eq. (4.59) comes from the

(J+`
J

)
J !`! ways to contract J fields in Φ̃J+` with Φ̃J and the

remaining ` fields in Φ̃J+` with Φ̃`.32

Using the EAdS2 free theory, we can similarly determine the leading strong coupling
behavior of eq. (4.43) when J is finite. This serves as a check of the large charge result,
including the position dependence. The general expression resulting from summing all pos-
sible boundary-to-boundary contractions between the Z and Z̄ insertions in the numerator
of eq. (4.43) is rather cumbersome. However, to compare with the large charge result in
eq. (4.43), we only need the contribution with the largest power of J , which comes from the
diagrams where the light operators are contracted only with the heavy operators, and the
remaining fields of the heavy operators are contracted with each other; see figure 6. The
number of such contractions is J !2/(J − `tot)!. After dividing by 〈ZJ Z̄J〉 = J !

(
4g
πd2

)J
, and

32It is also possible to reproduce the next-to-leading order terms by considering fluctuations of the EAdS2

string and including the contribution of the four-point contact diagram with an interaction in the bulk
that was studied in [10]. However, we stick to the free theory analysis both for simplicity and because it is
sufficient for the purpose of checking leading large charge behavior.
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Figure 6. In the planar and strongly coupled regime, the leading behavior (in 1/g) of the defect
correlators of operators with parametrically small charges can be analyzed using the free theory on
the EAdS2 classical string dual to the Wilson loop without insertions. When two of the operators
have a large charge, 1� J � g, the leading contributions (in 1/J) come from diagrams in which
the light operators are fully contracted with the large charges, and the remaining fields of the large
charges are contracted with each other.

noting J !/(J − `tot)! = J `tot +O(J `tot−1), we find:

〈〈ZJ(−ϕL)Z̄J(ϕL)∏n
i=1 Z

`i(ϕi)
∏m
j=1 Z̄

¯̀
j (ϕ̄j)〉〉

〈〈ZJ(−ϕL)Z̄J(ϕL)〉〉

= g`tot

J `tot

(
4
π

)`tot
d2`tot∏n

i=1 d(ϕL, ϕi)2`i
∏m
j=1 d(−ϕL, ϕj)2`j δ`tot,¯̀tot

+O(J `tot−1)

+O(g`tot−1).

(4.63)

This matches the leading term in the small J expansion of eq. (4.43), which is given
by replacing c2 → J /π. One consequence of this comparison is that we may view the
light vertex operators on the J � 1 semiclassical string as arising from the boundary-to-
boundary contractions on the EAdS2 string between the light insertions and the charge
J � 1 insertions. The factors of c2 ∼ J in the vertex operators reflect the fact that there
are J fields in the large insertions that the light insertions can contract with.

Large J . When J � 1, J and c2 are related by the asymptotic series

J = −2 log(1− c2) + 4(2 log 2− 1) +O((1− c2) log(1− c2)), (4.64)

c2 = 1− 16
e2 e
−J2 +O(J e−J ). (4.65)

We have already noted the leading large J behavior of the two-point function in eq. (4.42).
Meanwhile, the leading behavior of the three-point function is especially simple:

c2
J+`,J,`

nJ+`nJn`
= g`

[
π`

`! +O(e−
J
2 )
]

+O(g`−1). (4.66)
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It is perhaps interesting to compare eqs. (4.58) and (4.66) with the general charge dependence
of the heavy-heavy-light OPE coefficient that one would expect based on an effective field
theory analysis expanding in inverse powers of the large charge. As in [5, 7], the OPE
coefficient typically grows as a power of the large charge. Though the extremal OPE
coefficient indeed has this behavior at small J (see eq. (4.55)), we see from eq. (4.66) that
it instead saturates to a constant at large J .

Finally, as noted in [38], if J were the only parameter governing the correlators when
J is large, then the 1 � g � J regime probed by eqs. (4.42) and (4.66) should match
the g � 1 ∼ J regime accessible to weakly coupled gauge theory, thus creating a bridge
between two regimes that a priori seem very different. This agreement was verified in [38],
at least schematically, for the correlator of the half-BPS Wilson loop and a single large
charge insertion off the Wilson loop. Likewise, in [9] the anomalous dimensions of “words”
composed of many copies of Z interspersed with orthogonal scalars inserted on the half-BPS
Wilson loop were found to match in both the small g, large J regime and the large g, large
J regime. However, we observe that this agreement between the two regimes does not
extend to the correlators we have been studying. From either localization [12] or gauge
theory [19], one finds that the two and three-point functions in the weakly coupled limit are

〈〈Φ̃J Φ̃J〉〉 = (−g2)J
(

1− 2π2

3 g2 +O(g4)
)
, (4.67)

c2
J+`,J,`

nJ+`nJn`
= 1 + 2π2g2

3 +O(g4). (4.68)

These are manifestly different from eqs. (4.42) and (4.66).
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A Derivative of the quasi-momentum

In this appendix, we derive the expression for the derivative of the quasi-momentum,
eq. (3.34).

For this purpose, we use the fact that the one form pcldu has poles with residue J at
x = 0 and x =∞, while its integral along two branch cuts gives −J . From these properties,
we immediately conclude that its derivative ∂Jpcldu satisfies

1.
∮
C± ∂Jpcldu = −1.

2.
∮
x=0 ∂Jpcldu =

∮
x=∞ ∂Jpcldu = 1.

In addition, one can check that pcldu flips a sign upon x→ −x−1. This follows from the
definition of the (quantum) quasi-momentum, eq. (3.23).
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These conditions are sufficient for fixing the one form up to a constant α:

∂Jpcldu = (x+ x−1 + α)dx√
(x− eiθ0)(x− e−iθ0)(x+ eiθ0)(x+ e−iθ0)

. (A.1)

To determine α, we expand the quantum quasi-momentum eq. (3.23) around x = 0:

p(x)du ∼ J

x
dx+

J∑
k=1

(xk − x−1
k )dx+O(x) . (A.2)

In the classical limit, xk’s are distributed symmetrically with respect to the real axis (see
figure 2), we have

J∑
k=1

(xk − x−1
k ) J→∞= 0 . (A.3)

Comparing this with the expansion of eq. (A.1) around x = 0, one can show that α = 0
and reproduce eq. (3.34).

B Supersymmetries of the classical string

This appendix demonstrates that the string solution identified in eq. (4.7) has the same
supersymmetries as the string solution analyzed in [9], which corresponds to c = 1, and
therefore has the same supersymmetries as the Wilson operator with ZJ and Z̄J inserted.
More precisely, we will impose the supersymmetry conditions identified in section 4.2 of [9]
on a string ansatz and will show that eq. (4.7) give the general solution to the resulting
pair of differential equations. We closely follow the approach of [9]. To avoid confusion, it
should be noted that some of the notation in this appendix differs from that in the rest of
the text.

Letting κ, λ denote the spacetime indices on AdS5 × S5 and run over t, ρ, θ, φ, . . ., and
letting Xκ = (ρ, t, θ, φ, . . .), the relevant part of the metric is

ds2 = GκλdX
κdXλ = − cosh2 ρdt2 + dρ2 + dθ2 + sin2 θdφ2. (B.1)

We introduce the vielbeins ea = eaκdX
κ satisfying ds2 = ηabe

aeb where ηab = diag(−1,1, . . . ,1)
and a= 0,1,2 . . . ,9. The relevant vielbeins are e0 = coshρdt, e1 = dρ, e5 = dθ, and e6 = sinθdφ.
We introduce 32×32 real constant Dirac matrices Γa on 10 dimensional Minkowski space;
they satisfy the Clifford algebra {Γa,Γb}= 2ηab. The Dirac matrices on AdS5×S5 are then
γκ≡ eaκΓa, and satisfy {γκ,γλ}= 2Gκλ. The relevant γ matrices are γt = coshρΓ0, γρ = Γ1,
γθ = Γ5, and γφ = sinθΓ6. Finally, we define the chirality matrix Γ? = Γ0Γ1Γ2Γ3Γ4, which
satisfies [Γ?,Γa] = 0 for a= 0, . . . ,4, {Γ?,Γb}= 0 for b= 5, . . . ,9, and Γ2

? =−1.
The supersymmetries of a string Xκ(σ, τ) embedded in AdS5 × S5, with σ and τ as

worldsheet coordinates, are determined by the linearly independent solutions to the Killing
spinor equation,

(Dκ + i

2Γ?γκ)ε = 0, (B.2)
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that also satisfy the projection condition imposing kappa symmetry, Γε = ε. Here, Dκ ≡
∂κ + 1

4ω
ab
κ Γab is the spinor covariant derivative and the relevant components of the spin

connection are ω01
t = sinh ρ and ω56

φ = − cos θ. Further, the kappa symmetry projector is

Γ ≡ 1√
−h

∂τx
κ∂σx

λγκγλK, (B.3)

where h is the metric induced on the string worldsheet and K acts by complex conjugation
to the right. As noted in [9], the general t, ρ, θ, φ dependence of the Killing spinors may be
written

ε = e−
i
2 (ρΓ?Γ1+θΓ?Γ5)e−

i
2 (tΓ?Γ0+iφΓ5Γ6)ε0, (B.4)

where ε0 does not depend on the relevant coordinates.
Finally, let us consider the string ansatz of section 4.1 of [9]: t = ωτ , φ = w1τ , ρ = ρ(σ),

θ = θ(σ). When w1 = ω and sin θ = sech ρ = tanh(ωσ), [9] showed that imposing the
projection condition on eq. (B.4) reduces to two compatible conditions on ε0:

(Γ?Γ0Γ5Γ6 − i)ε0 = 0, (B.5)
(Γ0Γ1K + 1)ε0 = 0. (B.6)

These each halve the degrees of freedom of ε0 and imply that the string solution, like the
dual half-BPS Wilson operator with ZJ and Z̄J inserted, is quarter-BPS. We now derive a
more general string configuration, specified by θ(σ) and ρ(σ), with these supersymmetries.

To begin, the metric induced on the worldsheet is

hαβdσ
αdσβ = (−ω2 cosh2 ρ+ sin2 θw2

1)dτ2 + ((ρ′)2 + (θ′)2)dσ2, (B.7)

where the prime denotes differentiation with respect to σ, and the projector becomes

Γ = ωρ′ cosh ρΓ0Γ1 + ωθ′ cosh ρΓ0Γ5 + w1ρ
′ sin θΓ6Γ1 + w1θ

′ sin θΓ6Γ5√
(ω2 cosh2 ρ− w2

1 sin2 θ)((ρ′)2 + (θ′)2)
K. (B.8)

Γ is a function only of σ, and the τ dependence of ε is contained in the right exponent in
eq. (B.4). Thus, for Γε = ε to hold for all τ , we follow [9] and impose33

(ωΓ?Γ0 + iw1Γ5Γ6)ε0 = 0. (B.9)

Acting on the left of the above condition with −iΓ?Γ0, we see that eq. (B.9) is equivalent
to eq. (B.5) only if w1 = ω, as in the Drukker-Kawamoto solution.

More non-trivially, to get the analog of eq. (B.6), we commute Γ past e− i
2 (ρΓ?Γ1+θΓ?Γ5)

in Γε = ε and arrive at
(ωρ′ cosh ρ cos θ − ωθ′ sin θ sinh ρ)Γ0Γ1 + (ωθ′ cosh ρ cos θ + ωρ′ sin θ sinh ρ)Γ0Γ5√

(ω2 cosh2 ρ− w2
1 sin2 θ)((ρ′)2 + (θ′)2)

Kε0 = ε0.

(B.10)
33One could try to impose more generally that (ωΓ?Γ0 + iw1Γ5Γ6)ε0 = λε0 for some complex λ. Then,

because of the action of K in Γ, λ must be imaginary in order for Γε = ε to hold for all τ . But since Γ?Γ0

and Γ5Γ6 can be simultaneously diagonalized (because they commute) and have eigenvalues ±1 and ±i,
respectively, λ must also be real. Therefore, λ = 0.
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In order for eq. (B.10) to be equivalent to eq. (B.6), θ and ρ must satisfy the following two
differential equations.

θ′ cosh ρ cos θ + ρ′ sin θ sinh ρ = 0, ρ′ cosh ρ cos θ − θ′ sin θ sinh ρ√
(cosh2 ρ− sin2 θ)((ρ′)2 + (θ′)2)

= −1, (B.11)

where we have assumed ω > 0. The first equation is separable and its general solution is

sin θ = c

cosh ρ. (B.12)

Since θ ∈ [0, π], it follows that 0 ≤ c ≤ 1. The second differential equation is then
automatically satisfied. Thus, along with t = φ = ωτ , eq. (B.12) defines the more general
string configuration with the supersymmetries specified by eqs. (B.5) and (B.6).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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