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1 Introduction and summary

In quantum field theory, there are few instances where, absent extra symmetries or du-

alities, one can analytically compute changes in observables under renormalization group

(RG) flow between conformal fixed points. In the presence of a small parameter, more

progress is possible. A special class of large N RG flows in this category are those trig-

gered by a “double-trace” deformation of a conformal field theory (CFT). These flows

– 1 –



J
H
E
P
0
2
(
2
0
1
8
)
1
7
5

UV

IR

Figure 1. A renormalization group flow triggered by a double-trace deformation of a large-N CFT:

the UV fixed point, at which the operator O has ∆ < d/2, flows to an IR fixed point, at which O

has conformal dimension d − ∆, at leading order in 1/N . In this paper, we compute the leading

order change in four-point functions of single-trace operators, other than O, that couple to O.

have long been part of the vector model paradigm, in which the critical boson and fermion

theories [1, 2] may be reached by double-trace deformations of free bosons and fermions,

respectively. They also have a natural interpretation in the context of AdS/CFT, where

they are generated by a change in boundary conditions [3–5].

The effect of such deformations at the level of the CFT partition function [6], and the

relation to AdS boundary conditions [3, 4, 6–11], was clearly laid out in the early days of

AdS/CFT. In this work, inspired by a contemporary perspective on the value of correlation

functions to the foundations of CFT, we compute some more complicated quantities: the

change in CFT four-point functions under double-trace flow from UV to IR, and the effect

of such flows on the sector of double-trace operators in the IR CFT. The calculations

have simple bulk duals in AdS, an elegant relation to harmonic functions for the conformal

group, and reveal new observables whose change from UV to IR is sign-definite.

A double-trace flow is defined as follows. Consider a CFTd that admits a large N

expansion, and possesses a single-trace scalar operator O with ∆ < d/2. Then we can

consider the relevant double-trace deformation

Sλ = SCFT + λ

∫
ddxO2 (1.1)

This triggers a flow from the unperturbed CFT in the UV to a new CFT in the IR in which

the operator O has dimension d−∆+O(1/N). (We use the “vector model convention” CT ∼
N throughout this work.) See figure 1. On the AdS side, this has a clean interpretation: it

corresponds to changing the boundary conditions on the bulk scalar field ϕ dual to O [3, 12].

The bulk scalar has mass given by m2L2
AdS = ∆(∆ − d), and when d/2 − 1 < ∆ < d/2 it

admits two unitary boundary conditions: the choice ϕ ∼ z∆ (with the AdS boundary in

Poincaré coordinates at z = 0) corresponds to the UV CFT, while ϕ ∼ zd−∆ corresponds

to the IR CFT reached after the double-trace perturbation.

Double-trace flows are special: in the 1/N expansion (where the notion of “double-

trace” is well-defined), the IR CFT is only mildly different than its UV counterpart. To

leading order in 1/N , the single-trace dimensions and OPE coefficients are identical except
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for those involving O. Beyond leading order, all operator data is generically modified.

This includes the dimensions and OPE coefficients of double-trace composite operators not

comprised of O. Given some other single-trace operator Φ, there exist infinite towers of

double-trace primary operators of schematic form

[ΦΦ]n,` ≈ :Φ∂2n∂µ1 . . . ∂µ`Φ: − (traces) , (1.2)

where the subtraction enforces the primary condition. There is one operator for each (n, `),

with conformal dimensions

∆n,` = 2∆Φ + 2n+ `+ γn,` (1.3)

for some γn,`. We now know that their quantum numbers are a rich source of dynamical

information about interacting large N CFTs: they are sensitive to the coupling strength;

they are constrained by causality and unitarity [13–15]; crossing symmetry of four-point

functions relates the exchange of double-trace operators to Regge trajectories of single-

trace operators [16–18], and hence γn,` to the cusp anomalous dimension and the higher

spin gap scale; and in the AdS/CFT context, the nature of inter-particle forces in the

bulk is manifest in the behavior of γn,` as a function of (n, `), thus making γn,` a sensitive

probe of bulk locality [19–26]. These reasons motivate the study of how the γn,` change

under double-trace flow. The γn,` are 1/N -suppressed, so it would seem more difficult to

compute their change under double-trace flow. The same is true for three-point functions

〈ΦΦ[ΦΦ]n,`〉. However, the change of the γn,` from UV to IR can be extracted from the

leading-order change in the connected part of the four-point funtion 〈ΦΦΦΦ〉, which itself

may be straightforwardly computed.1

In section 2, we begin with an exercise, in which we compute the change in three-

point functions 〈OOO〉, 〈ΦOO〉 and 〈ΦΦO〉. These results are known — for instance, by

modifying the boundary condition in AdS calculations of CFT three-point functions — but

will appear in our later analysis and serve as a useful warmup.

In section 3, we compute the change in connected four-point functions 〈ΦΦΦΦ〉 and

〈ΦΨΦΨ〉 from UV to IR, where Φ and Ψ are distinct scalar primaries. Part of our message is

that the result, which is manifestly crossing-symmetric, may be expressed simply in terms of

a single D̄-function — see (3.9) and (3.31). The D̄-functions are themselves not elementary,

but arise in many contexts in CFT at both weak and strong coupling (e.g. [27–31]). In

section 3.2, we review the manifest equivalence [10, 32] between our CFT calculation and a

tree-level AdS calculation. Moreover, the change in these four-point functions is technically

essentially identical to the computation of four-point conformal partial waves for principal

series representations, whose utility has recently been emphasized [33–38].2 Thus, our

result may be viewed as a novel physical interpretation of these objects in terms of double-

trace flows, and provides for them a mathematical expression in terms of a D̄-function.

1Note that we do not compute the change from UV to IR of the dimension ∆Φ of the single-trace

constituents. This is encoded in the 1/N correction to the two-point function of Φ, which corresponds to a

one-loop diagram from the AdS point of view.
2See also e.g. [39–44] for further related work on harmonic analysis in AdS/CFT.
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We also point out that the special cases ∆ + ∆Φ = ∆Ψ − 2p and ∆ + ∆Ψ = ∆Φ − 2p for

p ∈ Z≥0 involve “extremal” three-point functions [45], and simplify dramatically.

In section 4, we use the change in four-point functions to extract the change in OPE

data of the leading-twist double-trace operators [ΦΦ]0,` and [ΦΨ]0,`, for all `. We focus

mostly on anomalous dimensions γ` ≡ γ0,`, although we compute some OPE coefficients

as well. The results for δγ` ≡ γIR
` − γUV

` , in (4.20) and (4.32), have various universal

features. We wish to highlight one here: for [ΦΦ]0,` operators, δγ0 as given in (4.11) is

independent of ∆Φ. It is also always positive for unitary values of the dimensions (∆Φ,∆).

Therefore, we arrive at the interesting conclusion that this privileged class of RG flows

admits sign-definite quantities over and above the usual a/c/F observables.

In section 5, we specify the conformal dimensions ∆ and ∆Φ to certain values where

the results simplify, and use these results as a tool to derive anomalous dimensions of some

double-trace operators in the O(N) vector model, in which the constituents are not O(N)

singlets. This is possible because δγ` = γIR
` , since the UV theory from which the O(N)

model descends is free. Specifically, we derive 〈ΦΦ∗ΦΦ∗〉 where Φ and Φ∗ are conjugate

operators in the O(N) model, each a scalar bilinear in the rank-two symmetric traceless

representation of O(N), and extract γ` for double-trace operators [ΦΦ∗]0,`. The result for

γ` in various spacetime dimensions can be found in (5.7). This is, to our knowledge, a new

result. It exhibits interesting harmonic behavior in d = 4 − ε. While our technique here

— of using a calculation of δγ` between fixed points to derive γ` at the IR fixed point —

is essentially identical to an ordinary large N calculation in the O(N) model, it would be

interesting to apply it to other CFTs beyond the O(N) model, where it acts as a simpler

alternative to standard computation of a full four-point function. A recent application can

be found in [47].

Appendices A–D contain some background material, various details of calculations in

the text, and a conformal perturbation theory cross-check of our result for γIR
0 in the O(N)

model in d = 4− ε.

2 Warmup: three-point functions

To introduce some formalism, and to derive a result we will use later, let us first compute

the change of some three-point coefficients. All of our calculations will rely on the Hubbard-

Stratonovich auxiliary field method, which we recall now.

Upon introducing the deformation (1.1), the large N expansion in the IR can be

developed by introducing an auxiliary field as

SIR = SCFT +

∫
ddxσO (2.1)

where the quadratic term −σ2/(4λ) can be dropped in the IR limit. The auxiliary field σ

acquires the following induced two-point function at leading order in 1/N (see e.g. [48, 49]

for a review and more details)

〈σ(x)σ(y)〉 = − Γ(∆)Γ(d−∆)

πdCOOΓ
(
d
2 −∆

)
Γ
(
∆− d

2

) 1

|x− y|2(d−∆)
≡ Cσ

|x− y|2(d−∆)
. (2.2)
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where O is normalized as

〈O(x)O(0)〉 =
COO
x2∆

. (2.3)

Thus in the IR limit σ, which replaces the operator O, becomes a scalar primary of dimen-

sion d−∆ +O(1/N); that is, O turns into its “shadow”. All other single-trace operators

have the same dimension in the UV and IR to leading order at large N . Correlation func-

tions at the IR fixed point can be computed systematically in the 1/N expansion using the

σ propagator (2.2) and the σO vertex in (2.1).3 Note that (2.1) can be thought as a kind

of Legendre transform relating UV and IR correlators.

To compute the change in three-point functions, we first note that all three-point

functions of single-trace operators that do not involve the perturbing operator O(x) are

unchanged to leading order at large N . This is transparent in the AdS picture, as the cor-

responding tree-level three-point Witten diagrams that do not involve O(x) are unaffected

by the change in boundary conditions.

For what follows, we will define norm-invariant squared OPE coefficients

aO1O2O3 =
C2
O1O2O3

CO1O1CO2O2CO3O3

(2.4)

Let us first consider the OPE coefficient CΦΦO, where Φ is a single-trace scalar operator

other than O. Conformal three-point functions take the form

〈Φ(x1)Φ(x2)O(x3)〉UV =
CΦΦO

x2∆Φ−∆
12 x∆

23x
∆
31

(2.5)

In the IR we replace O by σ, giving the three-point function

〈Φ(x1)Φ(x2)σ(x3)〉IR = −
∫
ddz

Cσ

|x3 − z|2(d−∆)
〈Φ(x1)Φ(x2)O(z)〉UV + . . .

= −
∫
ddz

Cσ

|x3 − z|2(d−∆)

CΦΦO

x2∆Φ−∆
12 (x1 − z)∆(x2 − z)∆

+ . . .
(2.6)

where . . . denotes subleading orders in 1/N . See figure 2. To leading order at large N , we

evaluate this expression using the three-point conformal integral (e.g. [30, 50]),∫
ddz

1

(x1 − z)2∆1(x2 − z)2∆2(x3 − z)2∆3

∑
∆i=d
=

π
d
2 a(∆1)a(∆2)a(∆3)

xd−2∆3
12 xd−2∆1

23 xd−2∆2
31

, (2.7)

where

a(∆i) ≡
Γ(d/2−∆i)

Γ(∆i)
(2.8)

Specialized to our case, we thus obtain

〈Φ(x1)Φ(x2)σ(x3)〉IR =

(
−CσCΦΦO

πd/2Γ2
(
d−∆

2

)
Γ
(
∆− d

2

)
Γ2
(

∆
2

)
Γ(d−∆)

)
1

x2∆Φ−d+∆
12 xd−∆

23 xd−∆
31

(2.9)

3One has to be careful not to include one-loop bubble corrections to σ lines, as those are already

resummed when using the effective propagator (2.2).
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Figure 2. The triangle diagram determines the three-point coupling 〈ΦΦσ〉, to which the UV

coupling 〈ΦΦO〉 flows. The purple point is integrated over.

The factor in parenthesis is the OPE coefficient CΦΦσ. Using the normalized squared OPE

coefficients introduced in (2.4),

aUV
ΦΦO =

C2
ΦΦO

C2
ΦΦCOO

, aIR
ΦΦO =

C2
ΦΦσ

C2
ΦΦCσ ,

(2.10)

the above calculation gives

aIR
ΦΦO = −

Γ4
(
d−∆

2

)
Γ
(
∆− d

2

)
Γ(∆)

Γ4
(

∆
2

)
Γ
(
d
2 −∆

)
Γ(d−∆)

aUV
ΦΦO (2.11)

This can be seen to match a previous derivation using AdS integrals [51]. Notice that

∆↔ d−∆ properly swaps the labels UV and IR.

Similarly, we can compute the change from UV to IR of the CΦOO OPE coefficient by

attaching two σ lines to the UV three-point function 〈ΦOO〉. This was worked out explicitly

in [47], following similar steps as described above. In terms of normalized squared OPE

coefficients, the result is

aIR
ΦOO =

Γ2(∆)Γ2
(
∆− d

2

)
Γ2
(
d−∆− ∆Φ

2

)
Γ2
(
d
2 −∆ + ∆Φ

2

)
Γ2
(
d
2 −∆

)
Γ2(d−∆)Γ2

(
∆− ∆Φ

2

)
Γ2
(
−d

2 + ∆ + ∆Φ
2

)aUV
ΦOO . (2.12)

Finally, the three-point function 〈OOO〉 in the IR can be computed by attaching three

σ lines to the UV three-point function and using repeatedly the conformal integral (2.7).

This yields

aIR
OOO = −

Γ3(∆)Γ2
(
d− 3∆

2

)
Γ6
(
d−∆

2

)
Γ3
(
∆− d

2

)
Γ6
(

∆
2

)
Γ3
(
d
2 −∆

)
Γ3(d−∆)Γ2

(
3∆
2 −

d
2

)aUV
OOO (2.13)

Note that for d = 3 and ∆ = 1, aIR
OOO vanishes, which is a well-known result for the critical

O(N) model in d = 3 [52].

3 Four-point functions from UV to IR

For the following calculations, we suppose the spectrum of the UV CFT includes other

single-trace scalar operators Φ and Ψ with UV dimensions ∆Φ and ∆Ψ, respectively. We
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will compute the change in the connected four-point functions involving Φ and Ψ under

the renormalization group flow triggered by δSCFT =
∫
ddxO2, with ∆ < d/2. In what

follows, we label the difference between UV and IR observables X as

δX ≡ XIR −XUV (3.1)

3.1 Identical operators

For the four-point function 〈ΦΦΦΦ〉, conformal symmetry constrains this difference to take

the form

〈Φ(x1)Φ(x2)Φ(x3)Φ(x4)〉IR − 〈Φ(x1)Φ(x2)Φ(x3)Φ(x4)〉UV ≡
C2

ΦΦ

x2∆Φ
12 x2∆Φ

34

δF(u, v) (3.2)

where δF(u, v) ≡ FIR(u, v)−FUV(u, v) is a function of the conformal cross-ratios

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

(3.3)

that is undetermined by conformal symmetry. Our goal is to determine δF .

The connected four-point function of Φ in the IR can be computed in the large N

expansion as

〈Φ(x1)Φ(x2)Φ(x3)Φ(x4)〉IR = 〈Φ(x1)Φ(x2)Φ(x3)Φ(x4)〉UV

+
1

2

∫
ddz1

∫
ddz2

Cσ

|z1 − z2|2(d−∆)
〈Φ(x1)Φ(x2)Φ(x3)Φ(x4)O(z1)O(z2)〉UV + . . .

(3.4)

To leading order at large N , we can factorize the six-point function in the second line as

〈Φ(x1)Φ(x2)Φ(x3)Φ(x4)O(z1)O(z2)〉UV

' 〈Φ(x1)Φ(x2)O(z1)〉UV〈Φ(x3)Φ(x4)O(z2)〉UV + perms +O(1/N)
(3.5)

where the permutations account for the t- and u-channels. So the problem is essentially

just to compute the “two-triangle” diagram with a σ field exchange, where each triangle is

the three-point function 〈ΦΦO〉 in the UV CFT. See figure 3. From the AdS point of view,

this computes the difference of two four-point exchange Witten diagrams with external

Φ legs and exchange of the bulk field dual to O, after taking the difference of boundary

conditions on the exchanged field. We demonstrate that explicitly in section 3.2.

Using the form of the conformal three-point function in (2.5), the “two-triangle” dia-

gram is given by

C2
ΦΦOCσ

∫
ddz1

∫
ddz2

1

x2∆Φ−∆
12 |x1−z1|∆|x2−z1|∆

1

|z1−z2|2(d−∆)

1

x2∆Φ−∆
34 |x3−z2|∆|x4−z2|∆

(3.6)

The integration can again be performed using conformal integrals. First, we integrate in

z1 using the three-point integral (2.7). Next, we integrate over z2 using the four-point

– 7 –
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Figure 3. The two-triangle diagram, given in (3.6), determines the change in the connected

correlator 〈ΦΦΦΦ〉 in the s-channel, to leading order in 1/N . The total result is a sum of three

such diagrams, one from each channel.

conformal integral [53]∫
ddz

1

(x1 − z)2∆1(x2 − z)2∆2(x3 − z)2∆3(x4 − z)2∆4

=
π
d
2∏

i Γ(∆i)

∫ ∞
0

∏
i

dαiα
∆i−1
i

e−
1
Λ

∑
i<j αiαjx

2
ij

Λd/2
, Λ ≡

∑
i

αi

∑
∆i=d
=

π
d
2

Γ(∆1)Γ(∆2)Γ(∆3)Γ(∆4)

xd−2∆1−2∆4
14 xd−2∆3−2∆4

34

xd−2∆4
13 x2∆2

24

D̄∆1∆2∆3∆4(u, v)

(3.7)

The function D̄∆1∆2∆3∆4(u, v) defined above is the ubiquitous D̄-function that appears in

calculations of AdS Witten diagrams, see e.g. [30] and appendix B. Note, however, that the

D̄-functions appearing here are of a special type: the sum of the exponents is equal to d.

After these steps, equation (3.6) yields

C2
ΦΦOCσ

πda
(

∆
2

)2
a(d−∆)

Γ2
(
d−∆

2

)
Γ2
(

∆
2

) 1

x2∆Φ
12 x2∆Φ

34

u
d−∆

2 D̄ d−∆
2
, d−∆

2
,∆

2
,∆

2
(u, v) (3.8)

Note that this takes the expected conformal form. Adding all terms related by exchanging

the external points, we arrive at the final, crossing-symmetric result. In terms of the

normalized OPE coefficient aUV
ΦΦO defined in (2.10), and using the definition of Cσ in (2.2),

we can write this in the form (3.2) with

δF(u,v) =−
aUV

ΦΦOΓ(∆)

Γ4
(

∆
2

)
Γ
(
d
2−∆

)× (3.9)[
u
d−∆

2 D̄ d−∆
2
, d−∆

2
,∆

2
,∆

2
(u,v)+u∆ΦD̄ d−∆

2
,∆

2
, d−∆

2
,∆

2
(u,v)+

(u
v

)∆Φ

v
d−∆

2 D̄∆
2
, d−∆

2
, d−∆

2
,∆

2
(u,v)

]
This is one of our main results. The change in the connected part of four-point func-

tions under double-trace flow takes a very simple form, expressed as a manifestly crossing-

symmetric sum of D̄-functions, one from each channel. We can equivalently write this in

terms of aIR
ΦΦO using (2.11).
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3.1.1 The O(N) model four-point function

When ∆ = d− 2 and ∆Φ = (d− 2)/2, our result (3.9) can be compared to the connected

correlator of the elementary fields φi in the critical O(N) model at large N

〈φi(x1)φj(x2)φk(x3)φl(x4)〉conn =
F ijkl(u, v)

(x12x34)2∆φ
(3.10)

upon identifying Φ with φi, and O with σ ∼ φiφi. This is because, even though φi

is not strictly speaking a “single-trace” operator, the calculation of the leading large

N contribution to the connected correlator takes the same form as the two-triangle di-

agram considered above, with the role of the triangle played by the three-point functions

〈φi(x1)φj(x2)φkφk(z)〉 in the UV free theory. To account for the index structure we just

need to slightly generalize our calculation: adding up the singlet contributions in each chan-

nel and using D̄-function identities summarized in appendix B, the expression in brackets

in (3.9) may be written

F ijkl(u,v) =− 2Γ(d−2)

NΓ4
(
d−2

2

)
Γ
(
2− d

2

)× (3.11)

u
d−2

2

[
δikδjlD̄ d−2

2
, d−2

2
,1,1(u,v)+δijδklD̄1, d−2

2
,1, d−2

2
(u,v)+δilδkjD̄1, d−2

2
, d−2

2
,1(u,v)

]
+O(1/N2)

This is indeed the correct result for the connected correlator in the critical O(N)

model [54].4

3.2 Equivalence between CFT and AdS calculations

There is a manifest equivalence between the CFT result in the above language, and the

dual AdS calculation, as previously discussed in [10, 55]. The crucial fact in proving this

equivalence is the following identity for the difference of bulk-to-bulk propagators with

standard and alternate boundary conditions, shown pictorially in figure 4:

Gd−∆(z, ~x, w, ~y)−G∆(z, ~x, w, ~y) =

∫
dd~x0d

d~y0K∆(z, ~x; ~x0)K∆(w, ~y; ~y0)
Cσ

|~y0 − ~x0|2(d−∆)

(3.12)

Cσ was defined earlier as the normalization of the σ propagator, eq. (2.2). Here and

elsewhere in this subsection we use the notation x ≡ (z, ~x), y ≡ (w, ~y) to denote points in

AdSd+1 in the usual Poincare coordinates, with ~x,~y etc. denoting coordinates of the flat

boundary at z = 0. In this identity G∆(z, ~x;w, ~y) is the bulk-to-bulk propagator with its

canonical normalization, i.e. satisfying(
−∇2 +m2

)
G(x, y) = δ(d+1)(x, y) , m2 = ∆(∆− d) , (3.13)

and the bulk-to-boundary propagator is normalized as

K∆(z, ~x; ~x0) = C∆

(
z

z2 + (~x− ~x0)2

)∆

, C∆ =
Γ(∆)

2πd/2Γ(∆ + 1− d/2)
(3.14)

Let us recall that with this choice of normalization of the bulk-to-boundary propagator,

the two-point function of the dual operator is normalized as 〈O(x1)O(x2)〉 = C∆/x
2∆
12 .

4See also (159) of [23], modulo the missing power of u.
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Figure 4. The AdS dual of the two-triangle diagram in CFT. The difference of two exchange

diagrams with external Φ fields — one with standard quantization (∆) of the field dual to O, and

one with alternate quantization (d−∆) — can be written, using the split representation of the AdS

harmonic function, as a pair of boundary three-point functions tied together by a boundary two-

point function of dimension d−∆. This is manifestly equivalent to the two-triangle diagram in CFT.

It is straightforward to prove (3.12) by assembling some known ingredients. First, one

starts with the following single-integral identity [10, 56]:

Gd−∆(z, ~x;w, ~y)−G∆(z, ~x;w, ~y) = (2∆− d)

∫
dd~x0K∆(z, ~x; ~x0)Kd−∆(w, ~y; ~x0) . (3.15)

Next, we use the following relation between the bulk-to-boundary propagators of conjugate

dimension, which can be obtained by straightforward integration

Kd−∆(z, ~x; ~x0) = − Γ(d−∆)

π
d
2 Γ(d/2−∆)

∫
dd~y0K∆(z, ~x; ~y0)

1

|~y0 − ~x0|2(d−∆)
(3.16)

From this formula we see that changing the boundary conditions on bulk-to-boundary lines

essentially amounts, from CFT point of view, to attaching the propagator of the auxiliary

field σ. We can use (3.16) to rewrite (3.15) in the form (3.12); we have used the fact that

in this AdS calculation we can identify COO = C∆. We make some further remarks on the

relation of these identities to AdS harmonic functions in appendix A.

Given (3.12), the relation to the CFT calculation of the “two-triangle” diagram is

transparent. The difference between the two exchange Witten diagrams in the channel

12→ 34 for different boundary conditions on the intermediate field is, using (3.12),∫
dd~x0d

d~y0

[
λΦΦO

∫
dzdd~xK∆Φ

(z, ~x; ~x1)K∆Φ
(z, ~x; ~x2)K∆(z, ~x; ~x0)

]
× Cσ

|~y0 − ~x0|2(d−∆)

×
[
λΦΦO

∫
dwdd~yK∆Φ

(w, ~y; ~x3)K∆Φ
(w, ~y; ~x4)K∆(w, ~y; ~y0)

]
. (3.17)

where λΦΦO is the AdS cubic vertex. The AdS integrals in brackets, each involving three

bulk-to-boundary propagators, just give the three-point functions in the UV:

gΦΦO

∫
dzdd~xK∆Φ

(z, ~x; ~x1)K∆Φ
(z, ~x; ~x2)K∆(z, ~x; ~x0) =

CΦΦO

|~x12|2∆Φ−∆|~x20|∆|~x01|∆
(3.18)
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in a normalization where CΦΦ = C∆Φ
, and COO = C∆. Thus, we see that (3.17) precisely re-

produces the “two-triangle” diagram (3.6) in the corresponding channel. Let us emphasize

that our calculation does not rely on strong coupling, rather, only on large N factorization

and conformal symmetry.

3.3 Relation to SO(d+ 1, 1) harmonic analysis

The result (3.8) for the difference in four-point functions in a single channel should equal

a difference of conformal blocks for O exchange in that same channel. This is clear from

the AdS perspective explained in the previous subsection, combined with the fact that,

in the direct channel conformal block decomposition of an AdS exchange diagram, the

double-trace OPE data depends only on the squared mass, not the quantization, of the

exchanged operator (e.g. [57]). Specifically, accounting for the difference in UV and IR

OPE coefficients, we want to check that

aIR
ΦΦO

aUV
ΦΦO

Gd−∆,0(u, v)−G∆,0(u, v) = − Γ(∆)

Γ4
(

∆
2

)
Γ
(
d
2 −∆

)u d−∆
2 D̄ d−∆

2
, d−∆

2
,∆

2
,∆

2
(u, v) (3.19)

where G∆,J(u, v) is the conformal block for exchange of a dimension-∆, spin-J operator.

Note first that neither side depends on ∆Φ. For the conformal blocks, we use the series

representation [30],

g∆,0(u, v) =

∞∑
m,n=0

(
∆
2

)2
m

(
∆
2

)2
m+n

m!n!
(
−d

2 + ∆ + 1
)
m

(∆)2m+n

um(1− v)n (3.20)

where G∆,0(u, v) = u∆/2g∆,0(u, v). For the D̄ function, we also use the series representa-

tion [30], which we can write as

u
d−∆

2 D̄ d−∆
2
, d−∆

2
,∆

2
,∆

2
(u, v) =

∞∑
m,n=0

u
∆
2 f̄mn(∆)− u

d−∆
2 f̄mn(d−∆)

m!n!
um(1− v)n (3.21)

with

f̄mn(∆) ≡ π csc
(π

2
(d− 2∆)

) Γ2
(
m+ ∆

2

)
Γ2
(
m+ n+ ∆

2

)
Γ
(
−d

2 +m+ ∆ + 1
)

Γ(2m+ n+ ∆)
(3.22)

Accounting for the ratio aIR
ΦΦO/a

UV
ΦΦO given in (2.11), one finds agreement term-wise.

Now, conformally-covariant four-point functions may be expanded in a complete basis

of single-valued functions living in the principal series representations of the conformal

group, with ∆ = d
2 + iν, where ν ≥ 0 and is real (see e.g. [33–38] and references therein).

In the notation of [38], let us call these single-valued functions Ψ∆,J(xi). These functions

are not the ordinary conformal partial waves for unitary representations ∆ ≥ d − 2 + J

with ∆ ∈ R, which are not single-valued. The Ψ∆,J(xi) may be written in terms of the

conformal blocks as

Ψ∆,J(xi) =
Kd−∆,J

x2∆Φ
12 x2∆Φ

34

(
G∆,J(u, v) +

K∆,J

Kd−∆,J
Gd−∆,J(u, v)

)
(3.23)
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where

K∆,J ≡
π
d
2 Γ
(
∆− d

2

)
Γ (∆ + J − 1) Γ2

(
d−∆+J

2

)
Γ (∆− 1) Γ (d−∆ + J) Γ2

(
∆+J

2

) (3.24)

Now, we note that
K∆,0

Kd−∆,0
= −

aIR
ΦΦO

aUV
ΦΦO

(3.25)

where aIR
ΦΦO/a

UV
ΦΦO was computed in (2.11). Therefore, from (3.19), we may write Ψ∆,0(xi)

simply in terms of a single D̄-function:

Ψ∆,0(xi) =
1

x2∆Φ
12 x2∆Φ

34

π
d
2

Γ2
(

∆
2

)
Γ2
(
d−∆

2

)u d−∆
2 D̄ d−∆

2
, d−∆

2
,∆

2
,∆

2
(u, v) (3.26)

This is a concise expression, valid for any d. We are giving both a mathematical expression

for Ψ∆,0(xi), as well as a physical interpretation in terms of double-trace RG flows. In AdS

language, Ψ∆,J(xi) is, up to a prefactor, equal to the difference of exchange diagrams for

which the exchanged operator takes ∆+ and ∆− quantizations. That this is true (for any

J) is obvious from the identities of the previous subsection and appendix A: CFT harmonic

functions are dual to AdS harmonic functions.

3.4 Generalization to pairwise identical operators

The CFT calculation of the two-triangle diagram can be straightforwardly generalized to

the case of four different external operators. With an eye toward applications, we explicitly

consider here the case of pairwise identical scalar operators: given two scalar primary

operators Φ and Ψ, we may compute the difference in the connected four-point function

〈ΦΨΦΨ〉 between UV and IR fixed points,

δ〈Φ(x1)Ψ(x2)Φ(x3)Ψ(x4)〉 =
CΦΦCΨΨ

x∆Φ+∆Ψ
12 x∆Φ+∆Ψ

34

(
x24

x13

)∆Φ−∆Ψ

δF(u, v) (3.27)

Defining the norm-invariant ratio

aUV
ΦΨO ≡

C2
ΦΨO

CΦΦCΨΨCOO
(3.28)

the result in the ΦΨ→ ΦΨ channel is

δF(u, v) = −
aUV

ΦΨOΓ(∆)

Γ2
(

∆+∆Φ−∆Ψ
2

)
Γ2
(

∆−∆Φ+∆Ψ
2

)
Γ
(
d
2 −∆

)u d−∆
2 D̄∆1∆2∆3∆4(u, v) (3.29)

where

∆1 =
d−∆ + ∆Ψ −∆Φ

2

∆2 =
d−∆−∆Ψ + ∆Φ

2

∆3 =
∆ + ∆Ψ −∆Φ

2

∆4 =
∆−∆Ψ + ∆Φ

2

(3.30)
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In the event that 〈ΦΦO〉 = 0 or 〈ΨΨO〉 = 0 — for instance, if O is neutral under a global

symmetry under which Φ and Ψ are charged — the full, crossing-symmetric result is a sum

of two terms,5 one in each available channel:

δF(u, v) = −
aUV

ΦΨOΓ(∆)

Γ2
(

∆+∆Φ−∆Ψ
2

)
Γ2
(

∆−∆Φ+∆Ψ
2

)
Γ
(
d
2 −∆

)
×

(
u
d−∆

2 D̄∆1∆2∆3∆4(u, v) +
(u
v

)∆Φ+∆Ψ
2

v
d−∆

2 D̄∆3∆2∆1∆4(u, v)

) (3.31)

Note that this is symmetric under ∆Φ ↔ ∆Ψ, as it must be. This follows from the D̄-

function relations in appendix B.

As in section 2, one can also derive the ratio between UV and IR three-point coeffi-

cients; the result is

aIR
ΦΨO =

Γ2
(
d−∆−∆Φ+∆Ψ

2

)
Γ2
(
d−∆+∆Φ−∆Ψ

2

)
Γ
(
∆− d

2 + 1
)

Γ(∆)

Γ2
(

∆+∆Φ−∆Ψ
2

)
Γ2
(

∆−∆Φ+∆Ψ
2

)
Γ
(
d
2 −∆ + 1

)
Γ (d−∆)

aUV
ΦΨO (3.32)

3.4.1 Extremal case: ∆ + ∆Φ = ∆Ψ − 2p or ∆ + ∆Ψ = ∆Φ − 2p

In these cases, we have zeroes from the gamma functions in (3.31) for all p ∈ Z≥0. Conse-

quently, the result simplifies even further, which we now show for p = 0. (See appendix C.2

for the p = 1 result and comments on general p.)

Suppose that ∆+∆Ψ = ∆Φ. (The result for ∆+∆Φ = ∆Ψ is the same with ∆Ψ ↔ ∆Φ.)

First, note that the three-point coupling (3.32) vanishes in the IR, due to the Γ−2(0) factor:

aIR
ΦΨO = 0 (3.33)

This happens because for ∆ + ∆Ψ = ∆Φ — indeed, for ∆ + ∆Ψ = ∆Φ − 2p for p ∈ Z≥0 —

the UV three-point function is “extremal” [45]. As explained in [47], changing boundary

conditions on an operator in an extremal correlator implies its vanishing at the new fixed

point. Likewise, the prefactor in (3.31) vanishes. In order to extract the result for δF , we

must introduce a regulator. Take ∆ + ∆Ψ = ∆Φ + 2ε. Then

∆1 =
d

2
−∆ + ε , ∆2 =

d

2
− ε , ∆3 = ε , ∆4 = ∆− ε (3.34)

To determine the finite piece of (3.31), we must extract the O(ε−2) term in the D̄-functions,

to cancel the ε2 prefactor. Using their double-sum representation (see appendix B), one

simply finds6

D̄ d
2
−∆+ε, d

2
−ε,ε,∆−ε(u, v) ≈

u∆− d
2 Γ(d2 −∆)Γ(∆)

ε2
+O(ε−1) (3.35)

5See appendix C.1 for the most general result in which these OPE coefficients are nonzero; there is

simply one more term, of the same functional form as (3.29).
6In particular, everything other than the Γ2(ε) is regular when ε→ 0, including the G-functions (B.8).
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Combining this with (3.31), we get

δF(u, v) ≈ −aUV
ΦΨO u

∆
2

(
1 +

(u
v

)∆Ψ
)

(3.36)

This is the final, extremely simple, result. Remarkably, (3.36) is d-independent, and is

manifestly negative for all real u, v. We will soon see other sign-definite properties of the

double-trace RG flow.

4 Microscopics: extracting OPE data

Having derived the change in a connected four-point function along the double-trace flow

to leading order in 1/N , we may extract the change in OPE data by branching it into

conformal blocks. Under this deformation, the single-trace spectrum is identical between

UV and IR to leading order in 1/N , except for the dimension of O. However, the double-

trace contributions to the leading-order connected correlator also are modified. That this

is true can be seen by considering the requirement of crossing symmetry: if only the O

exchange is modified, this will spoil crossing symmetry unless we compensate with changes

in the other operator exchanges. Because this is a connected correlator at leading order in

1/N , the only other exchanges are double-trace operators.

We focus for now on the result (3.9) for the case of identical external operators. In

general, the four-point function has the conformal block expansion

〈Φ(x1)Φ(x2)Φ(x3)Φ(x4)〉 =
C2

ΦΦ

x2∆Φ
12 x2∆Φ

34

F(u, v)

F(u, v) =
∑
τ,s

aτ,su
τ
2 gτ,s(u, v)

(4.1)

aτ,s are the normalized squared OPE coefficients, and u
τ
2 gτ,s(u, v) is the conformal block

for exchange of a conformal primary of twist τ and spin s, where twist is defined as

τ = ∆− s. The double-trace primaries (1.2) have twists and OPE coefficients that admit

a 1/N expansion,7

an,` − a
(0)
n,` ≈

1

N
a

(1)
n,` + . . .

τn,` − τ (0)
n ≈ 1

N
γn,` + . . .

(4.2)

where τ
(0)
n = 2∆Φ + 2n, and the mean field theory (N = ∞) OPE coefficients a

(0)
n,` are

known in general d [58]. This, in turn, induces a 1/N expansion of F(u, v) at each fixed

point. Taking the difference of IR and UV connected correlators to leading order in 1/N ,

δF(u, v) = δFO(u, v) + δF [ΦΦ](u, v) (4.3)

where

δFO(u, v) ≡ aIR
ΦΦOu

d−∆
2 gd−∆,0(u, v)− aUV

ΦΦOu
∆
2 g∆,0(u, v) (4.4)

7Recall that we define N as cT ∼ N .
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and

δF [ΦΦ](u, v) ≡ u∆Φ

∞∑
n=0

∞∑
`=0,2,...

(
1

2
a

(0)
n,`δγn,`∂n + δa

(1)
n,`

)
ung

τ
(0)
n ,`

(u, v) (4.5)

Writing (3.9) in the form (4.3)–(4.5) and expanding in powers of u and 1−v, we can extract

all OPE data.

In section 3.3, we showed that the O exchange piece δFO(u, v) is indeed accounted

for by the first term in (3.9), i.e. the direct-channel term. In the rest of this section, we

focus on the double-trace terms (4.5), which come from crossed-channel contributions and

contain interesting data.8

4.1 Double-trace anomalous dimensions

First we extract δγn,`, focusing in particular on the leading-twist tower n = 0. (Higher n

may be computed in a systematic expansion in small u.) The final result is in (4.20). In

this subsection and elsewhere, whenever we focus on the n = 0 tower for some double-trace

observable X, we use the notations

δX` ≡ δX0,` (4.6)

We proceed by isolating the log u piece of the full double-trace contribution

δF [ΦΦ](u, v) = u∆Φ

∞∑
n=0

un
∞∑

`=0,2,...

(
1

2
a

(0)
n,`δγn,` log u+ δa

(1)
n,` +

1

2
a

(0)
n,`δγn,`∂n

)
gτn,`(u, v)

(4.7)

In what follows, we will concentrate on δγ`. So to extract the anomalous dimensions, we

will need the expansion of the log u terms of D̄-functions in (3.9) in the OPE limit. These

terms are given by9

D̄ d−∆
2
,∆

2
, d−∆

2
,∆

2
(u, v)

∣∣
log u

= −
Γ2
(

∆
2

)
Γ2
(
d−∆

2

)
Γ
(
d
2

) G

(
∆

2
,
d−∆

2
, 1,

d

2
;u, 1− v

)
D̄∆

2
, d−∆

2
, d−∆

2
,∆

2
(u, v)

∣∣
log u

= −
Γ2
(

∆
2

)
Γ2
(
d−∆

2

)
Γ
(
d
2

) G

(
d−∆

2
,
d−∆

2
, 1,

d

2
;u, 1− v

) (4.8)

where the G-function, introduced by Dolan and Osborn [50], admits the following double-

series expansion:

G(α, β, γ, δ;u, 1− v) =

∞∑
n,m=0

(δ − α)m(δ − β)m
m!(γ)m

(α)m+n(β)m+n

n!(δ)2m+n
um(1− v)n (4.9)

Note that the G-function obeys a small-u expansion

G(α, β, 1, δ;u, 1− v) = 2F1(α, β, δ; 1− v) +O(u) (4.10)
8A complete way to perform these calculations is to use Caron-Huot’s inversion formula [36]. This

requires taking a double-discontinuity of our D̄-function. We will instead use more basic tools.
9Note that the D̄ d−∆

2
, d−∆

2
,∆

2
,∆

2
(u, v) term in (3.9) does not contain log u terms (for generic ∆ and ∆Φ),

consistent with the fact that it contributes only to δFO, as shown in section 3.3, and not to δF [ΦΦ].
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4.1.1 Φ2

Before giving a general result for δγ`, let us start by extracting δγ0, the change in the

anomalous dimension of the leading-twist scalar operator :Φ2 : = [ΦΦ]0,0. In this case, we

have aτ,` = a2∆Φ,0 = 2 +O(1/N), and to leading order at small u we just have

uτ/2gτ,`(u, v) = u∆Φ

(
1 +

γ0

2
log u+ . . .

)
(1 + . . .) .

Then, using (4.8) into (3.9) and matching to (4.1), we find the result

δγ0 = aUV
ΦΦO

2Γ(∆)Γ2
(
d−∆

2

)
Γ
(
d
2

)
Γ2
(

∆
2

)
Γ
(
d
2 −∆

) . (4.11)

We point out two features of this result. First, it is manifestly positive for all d−2
2 < ∆ < d

2 .

Second, it is highly non-trivial that this does not depend on ∆Φ, because γIR
0 and γUV

0 both

do. This ∆Φ-independence will not persist at higher `. Note that, using (2.11), we can

also express (4.11) as

δγ0 = aUV
ΦΦO

Γ(∆)Γ
(
d−∆

2

)2
Γ
(
d
2

)
Γ
(

∆
2

)2
Γ
(
d
2 −∆

) − aIR
ΦΦO

Γ(d−∆)Γ
(

∆
2

)2
Γ
(
d
2

)
Γ
(
d−∆

2

)2
Γ
(
∆− d

2

) (4.12)

which is manifestly odd under ∆→ d−∆, as required.

4.1.2 Leading-twist

We now derive δγ` in closed form. First, we introduce a notation

Fβ(z) ≡ 2F1(β, β, 2β, z) . (4.13)

In the lightcone regime u� 1, the conformal blocks become the collinear SL(2,R) blocks,10

gτn,`(u� 1, v) ≈ gcoll
n,` (v) = x`F`(x) , where x ≡ 1− v . (4.14)

To leading order at small u, the log u term of (4.7) becomes

δF [ΦΦ](u, v)
∣∣∣
u∆Φ log u

≈ 1

2

∑
`

a
(0)
` δγ`x

`F`(x) (4.15)

Now, xβFβ(x) are eigenfunctions of the operator D = x2(1− x)∂2
x − x2∂x, with eigenvalue

β(β − 1). They obey the orthogonality condition

1

2πi

∮
x=0

xβ−β
′−1Fβ(x)F1−β′(x) = δβ,β′ (4.16)

where β−β′ ∈ Z, and the contour runs counterclockwise around the origin. This was used

in a similar context in e.g. [19, 26]. Applying this to (4.15),

δγ` =
1

πia
(0)
`

∮
x=0

x−1−`F1−∆Φ−`(x)
[
δF [ΦΦ](u, 1− x)

∣∣
u∆Φ log u

]
(4.17)

10This defines a convention for the conformal block normalization.
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which is the desired result. Actually, we may go further and explicitly extract the residue

in closed form: from (4.10), it is clear that we need only isolate a term of order x` in the

product of various hypergeometric functions. We carry this out in appendix C.3. The final

result can be written as a finite sum:

a
(0)
` δγ`

a
(0)
0 δγ0

=
∑̀
m=0

(−1)m
(

∆
2

)
m

(
d−∆

2

)
m

(∆Φ +m)2
`−m

m!(`−m)!
(
d
2

)
m

(`+ 2∆Φ +m− 1)`−m
(4.18)

where a
(0)
` are the mean field theory OPE coefficients [19, 58]

a
(0)
` =

(1 + (−1)`)(∆Φ)2
`

`!(2∆Φ + `− 1)`
(4.19)

This can be neatly written in terms of a terminating 4F3 hypergeometric function, with no

explicit appearance of a
(0)
` :

δγ` = 4F3

(
−`, d−∆

2 , ∆
2 , 2∆Φ + `− 1

d
2 , ∆Φ, ∆Φ

∣∣∣1) δγ0 (4.20)

with δγ0 given in (4.11).

As a consistency check on this result, evaluating (4.20) in the large ` limit, one finds

δγ` ≈
2aUV

ΦΦOΓ(∆)Γ (∆Φ)2

Γ
(

∆
2

)2
Γ
(
∆Φ − ∆

2

)2 1

`∆
−

2aIR
ΦΦOΓ(d−∆)Γ (∆Φ)2

Γ
(
d−∆

2

)2
Γ
(
∆Φ − d−∆

2

)2 1

`d−∆
+ . . . (4.21)

This correctly reproduces the leading-order results of the lightcone bootstrap [20, 21]: it is

a difference of the leading large-spin asymptotics of δγ` in the IR and UV.

4.1.3 Comments

RG monotonicity. As we noted earlier, it is interesting that δγ0 in (4.11) is always

positive under double-trace RG flows: that is, γ0 is greater in the IR than the UV,

γIR
0 ≥ γUV

0 , (4.22)

for any spacetime dimension d.

What about δγ` for higher spins? At large spin, `∆ � `d−∆, so the UV term of (4.21)

dominates (assuming aUV
ΦΦO 6= 0), implying δγ`�1 > 0 due to the positivity of aUV

ΦΦO. Thus,

any negativity must be confined to finite `. By a combination of analytical arguments and

numerically sampling many values of parameters, we find the following condition:

γIR
` ≥ γUV

` when ∆Φ ≥
d

4
. (4.23)

This implies that

γIR
` ≥ γUV

` for d ≥ 4 , (4.24)

for all unitary values of parameters.
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0.6 0.7 0.8 0.9 1.0 ΔΦ

-0.04

-0.02

0.02

0.04

δγℓ

Figure 5. In d = 3, a plot of δγ` evaluated at ∆ = 3/2, its minimum, as a function of ∆Φ. We

plot ` = 2, 4, . . . , 16, where red is ` = 2 and the spin increases as we move through the rainbow.

For ∆Φ > 3/4, the function is positive for all `.

(4.24) can be proven in d = 4 as follows. Due to the ∆→ d−∆ symmetry of the 4F3,

its extremum as a function of ∆ sits at ∆ = d
2 ; one can check that it is a minimum. Taking

d = 4, we now utilize the identity [59] (see p.470, eq. 46)

4F3

(
−`, 1, 1, 2∆Φ + `− 1

2,∆Φ,∆Φ

∣∣∣1) =
2(∆Φ − 1)2

(`+ 1)(2∆Φ + `− 2)

[
ψ(∆Φ + `)− ψ(∆Φ − 1)

]
(4.25)

where ψ is the digamma function. The prefactor is manifestly positive for all ∆Φ > 1 and

` > 0. The difference of digamma functions is also positive, because ψ′(x) > 0 for x > 0.

Therefore, δγ` is indeed positive under double-trace RG flow. For d 6= 4, one can show

that at ∆ = d/2 and ∆Φ = d/4, δγ` has a zero for all ` ∈ Z, because

δγ`
δγ0

∣∣∣∣∣∆=d/2,
∆Φ=d/4

=
Γ
(
d
2

)
Γ(1− `)Γ

(
d
2 + `

) (4.26)

Then by plotting many values, one sees that (4.23) holds. In figure 5, we exhibit this

behavior in d = 3. This conclusion would follow if, as suggested by the sampling, ∆Φ = d/4

is the only zero of δγ` at ∆ = d/2, viewed as a function of ∆Φ, for unitary values of ∆Φ.

Flows from UV free CFTs. One may be puzzled about cases in which the UV is a free

theory, so that δγ` = γIR
` . In such cases — again assuming aUV

ΦΦO 6= 0 — one has γIR
`�1 > 0,

because the UV term of (4.21) dominates. This conflicts with naive lightcone bootstrap

intuition at large spin. The resolution to this is that the UV free theory contains an infinite

tower of conserved higher spin currents which becomes nearly conserved in the IR, and

negativity of γ` does not apply, even at large spin [17]: a resummation is required. What

our result shows is that, in fact, every CFT with slightly broken higher-spin symmetry

that is obtained by double-trace flow from a UV-free CFT has γIR
`�1 > 0.
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Heavy operators. Consider the result (4.20) for the change, under double-trace flow,

of the anomalous dimensions of the double-trace operators [ΦΦ]0,`. We now suppose the

external operator Φ is a heavy operator, with 1 � ∆Φ � N . Such an operator may be,

for instance, a string-scale operator in a large N gauge theory.

First, suppose that ` remains finite as we dial ∆Φ � 1. In this case, δγ` = δγ0

to leading order in 1/∆Φ. The reason for this is clear in AdS: the binding energy for a

bound state of two heavy particles with mLAdS � 1 will be unaffected by the addition of a

parametrically small angular momentum J � m. More interesting is the regime in which

∆Φ � 1 , `� 1 , η ≡ `

∆Φ
fixed (4.27)

Representing the 4F3 in series form and taking the limit of the summand, one obtains a

finite result; performing the sum then yields an ordinary hypergeometric function,

δγ` ≈ 2F1

(
∆

2
,
d−∆

2
,
d

2
,−η(η + 2)

)
δγ0 +O(∆−1

Φ ) (4.28)

One readily confirms that for η → ∞ — that is, 1 � ∆Φ � ` — we recover the ∆Φ � 1

limit of the large spin expansion (4.21). It would be interesting to reproduce (4.28) from a

bulk computation in which δγ` is the difference in the contribution of O, for standard versus

alternate quantizations, to the binding energy of the [ΦΦ]0,` state, where Φ is represented

as a particle moving along a bulk worldline.

4.2 Double-trace OPE coefficients

One can also derive the change in OPE coefficients, δa
(1)
n,`, in (4.5). We eschew a comprehen-

sive treatment here, only giving the lowest-lying contribution. Again starting from (3.9), we

use the form of the D̄-functions in appendix B — in particular, equations (B.6) and (B.10)

— to obtain

δa
(1)
0 = 2δγ0

(
ψ

(
d−∆

2

)
− ψ

(
d

2

)
+ ψ

(
∆

2

)
+ γE

)
(4.29)

where γE is the Euler constant. Note the interesting feature that, like δγ0, this is indepen-

dent of ∆Φ. There is simplification for various rational values of ∆, d. One can continute

iteratively for low ` as desired.

4.3 Generalization to pairwise identical operators

We now perform the same analysis for the pairwise identical correlator 〈ΦΨΦΨ〉, whose

change under the RG flow was derived in (3.31).

Let us start by deriving the change in anomalous dimensions, δγ`, for the leading-twist

double-trace operators [ΦΨ]0,`. The strategy for the calculation is the same as for the

correlator 〈ΦΦΦΦ〉: starting with the result for δF(u, v) in (3.31), we expand in collinear

blocks and apply a projector. Some formulas become rather unwieldy, so we present the

results here and describe the detailed calculation in the appendix C.4. We arrive at the

following generalization of (4.18):

a
(0)
` δγ`

a
(0)
0 δγ0

= (−1)`
∑̀
m=0

(
∆−∆Φ+∆Ψ

2

)
m

(
d−∆−∆Φ+∆Ψ

2

)
m

(∆Ψ +m)2
`−m

m!(`−m)!
(
d
2

)
m

(`+ ∆Φ + ∆Ψ +m− 1)`−m
(4.30)
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Using the explicit values of the infinite N OPE coefficients a
(0)
` from [58],

a
(0)
` =

(−1)`(∆Φ)`(∆Ψ)`
`!(∆Φ + ∆Ψ + `− 1)`

(4.31)

the sum above can be rewritten as

δγ` =
(∆Ψ)`
(∆Φ)`

4F3

(
−`, `+ ∆Φ + ∆Ψ − 1, d−∆−∆Φ+∆Ψ

2 , ∆−∆Φ+∆Ψ
2

∆Ψ, ∆Ψ,
d
2

∣∣∣1) δγ0 (4.32)

where the spin-zero anomalous dimension is

δγ0 = aUV
ΦΨO

2Γ(∆)Γ
(
d−∆+∆Φ−∆Ψ

2

)
Γ
(
d−∆−∆Φ+∆Ψ

2

)
Γ
(
d
2

)
Γ
(
d
2 −∆

)
Γ
(

∆+∆Φ−∆Ψ
2

)
Γ
(

∆−∆Φ+∆Ψ
2

) (4.33)

Unlike the identical operator case, this is valid for odd integer ` as well. Note that if

∆Φ = ∆Ψ, (4.32) reduces to the result (4.20) for identical operators. This may be confirmed

by direct calculation.

This result must be symmetric under ∆Φ ↔ ∆Ψ, because it captures coefficients in the

expansion of the symmetric function (3.29), but this symmetry is not manifest in (4.32).

However, the result in (4.32) can be expressed in terms of a certain orthogonal polynomial,

known in the literature as a Wilson polynomial [60]:11

δγ`
δγ0

=
1(

d
2

)
`
(∆Φ)` (∆Ψ)`

× p`
(

2∆−d
4

;
d−∆Φ+∆Ψ

4
,
d+∆Φ−∆Ψ

4
,

∆Φ+∆Ψ

2
− d

4
,
∆Φ+∆Ψ

2
− d

4

) (4.34)

These are known to be symmetric in the last four arguments, which includes the transfor-

mation ∆Φ ↔ ∆Ψ.

In parallel with section (4.2), one may also derive, δa
(1)
0 , which is now the difference

in (normalized) squared OPE coefficients C2
ΦΨ[ΦΨ]0,0

; the result may be found in (C.6).

4.3.1 Extremal case: ∆Φ = ∆Ψ + ∆

Recall that for this extremal alignment of dimensions, we obtained the simple result

in (3.36), where we assumed that the ΦΦ→ O → ΨΨ channel is absent.

The first term in (3.36) represents the UV exchange of O,

δFO(u, v) = −aUV
ΦΨOu

∆
2 g∆,0(u, v)

= −aUV
ΦΨOu

∆
2

(4.35)

11It is not clear whether the orthogonality property is physically interesting here. It is also interesting to

note that these and the related “Wilson functions” have appeared recently in the physics context as fusion

matrices in 2d CFT and as scattering phases near AdS black holes [33, 34, 61]. In the present context, the

δγ` should be thought of as 6j-symbols for the confomal group, which would follow from their derivation

(not performed here) from the inversion formula [36]. We thank David Simmons-Duffin for discussion on

this and related issues.
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where we have used that aIR
ΦΨO = 0 in the first line. The fact that the conformal block is

simply equal to unity can be checked explicitly using the d = 4 blocks,

gτ,`(z,z) =
1

z−z

(
z`+1F

(∆12,∆34)
τ/2+` (z)F

(∆12,∆34)
τ−2

2

(z̄)−z̄`+1F
(∆12,∆34)
τ/2+` (z̄)F

(∆12,∆34)
τ−2

2

(z)

)
(4.36)

where

F
(∆12,∆34)
β (z) ≡ 2F1

(
β − ∆12

2
, β +

∆34

2
, 2β, z

)
(4.37)

When ∆12 = ∆34 = ±∆, indeed one has g∆,0(z, z) = 1.

The second term in (3.36) represents the exchanges of [ΨΦ]n,`:

δF [ΦΨ](u, v) = −aUV
ΦΨOu

∆Φ+∆Ψ
2 v−∆Ψ (4.38)

The absence of a log u term implies that, consistent with (4.33),

δγn,` = 0 , ∀ (n, `) . (4.39)

Moreover, due to the simple form of the result, we can derive explicit formulas for δa
(1)
` .

In terms of conformal blocks, (4.38) comes from a sum, over all n, `, due to the change in

OPE coefficients δa
(1)
n,`: in particular, they obey the sum rule

∞∑
n,`

δa
(1)
n,`u

ng
τ

(0)
n ,`

(u, v) = −aUV
ΦΨOv

−∆Ψ (4.40)

The right-hand side is independent of u. This implies that if we expand the left-hand side

in powers of u, we obtain an infinite set of equations. First, at zeroth order,

∞∑
`=0,2,...

δa
(1)
` gcoll

0,` (v) = −aUV
ΦΨOv

−∆Ψ (4.41)

where gcoll
0,` (u, v) is the n = 0 collinear block for pairwise identical operators in the ΦΨ → ΦΨ

channel, defined in (C.16). Since (4.41) is a sum over collinear blocks, it can be solved for

δa
(1)
` by using the projector for the collinear blocks, just as for the δγ` in appendix C.4.

The result is

δa
(1)
` = −aUV

ΦΨO

(∆Φ + `)`(∆Ψ + `)`
`!(∆Φ + ∆Ψ + 2`)`

3F2

(
−`,∆Ψ,−∆Φ −∆Ψ − 3`+ 1

−∆Φ − 2`+ 1,−∆Ψ − 2`+ 1

∣∣∣1) (4.42)

As a check, this agrees with the (C.6) derived for general ∆Φ, ∆Ψ, when specialized to the

case ∆Φ = ∆Ψ + ∆. Note that at spin-zero,

δa
(1)
0 = −aUV

ΦΨO (4.43)

which is much simpler than the spin-zero result for identical operators in (4.29).

Moreover, all terms in (4.40) carrying powers of u must vanish. This is allowed by

unitarity because there is no sign constraint on the δa
(1)
n,` (nor on the individual a

(1)
n,`, which

are 1/N -suppressed compared to a
(0)
n,`). Solving the resulting infinite set of equations would

yield δa
(1)
n,`.
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4.4 Adding global symmetries

If Φ and O carry charges under some global symmetry group G, this requires a slight

modification of our formulas. Let us call the exchanged operator OI , where I indicates

that the operator sits in some representation of G. There are various possible double-trace

deformations that involve some subset of components of OI . The most symmetric choice

is to activate the singlet,

Sλ = SCFT + λ

∫
ddxOIO

I (4.44)

which preserves G. To analyze the IR CFT, we introduce a Hubbard-Stratonovich field

σI , which couples as
∫
ddxσIO

I and carries the same charges as OI . Correlation functions

of these operators now carry extra dependence on the representations involved, but the

calculations are otherwise essentially identical.

In particular, let us take Φ and O to sit in representationsRΦ andRO of G, respectively,

where RΦ ⊗ RΦ ⊃ RO. The three-point functions of section 2 are unchanged, up to an

overall tensor that encodes this product of representations. Similarly, we can return to the

calculation of the change in the four-point function, (3.9). The result in a single channel

is the same as (3.8), up to multiplication by a tensor T RO1234 that accompanies the exchange

of O, where the subscript labels the external points. Adding the three channels together

yields the total result,

δF(u, v) = T RO1234 × u
d−∆

2 D̄ d−∆
2
, d−∆

2
,∆

2
,∆

2
(u, v) + perms (4.45)

where we must permute the indices of T RO1234 as well as the positions of the operators.12

Note that, upon decomposing this into a single OPE channel, we must project T onto a

crossed channel; in doing so, multiple representations will generically appear, not only RO.

Such projections were carried out for a specific example where G = SO(8) in [47], involving

a double-trace flow from the ABJM theory [62].

5 Applications

In this section, we use our results to derive new double-trace data in interacting vector

models in various d. We also specialize the operator dimensions to certain values where

our results for δγ` simplify.

5.1 ∆Φ = ∆ = d− 2: vector models

In the special case ∆Φ = ∆ = d− 2, our results can be used to extract predictions for the

four-point functions and corresponding OPE data of certain non-singlet operators in the

O(n) vector model, as we now explain.

Let us start with n = NM free scalars ϕia, where i = 1, . . . , N, a = 1, . . . ,M , and take

N to be large with M fixed. This defines a free CFT with O(n) global symmetry, but we

12We have absorbed the overall coefficient into the definition of T RO
1234.
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can now look at the spectrum of singlet operators under the O(N) symmetry rotating the

i-index. The single-trace scalar operators of the free CFT in the O(N) singlet sector are

Φab = ϕi(aϕib) , O = ϕiaϕia (5.1)

where Φab(x) is in the symmetric traceless of O(M), and O(x) is a singlet of O(M).

Similarly, there are towers of conserved higher-spin operators, in the singlet and symmetric

traceless of O(M) for even spin, and in the antisymmetric of O(M) for odd spin. This

singlet sector of the CFT is expected to be dual to Vasiliev higher-spin theory in AdSd+1

with O(M) Chan-Paton factors [63]. (See [64, 65] for reviews of the higher-spin/vector

model duality.) In particular, the bulk spectrum includes scalar fields dual to the operators

in (5.1). All of these bulk scalars have the same mass m2 = −2(d − 2), and admit two

choices of boundary conditions ∆ = d−2 or ∆ = 2. With the former choice, the higher-spin

theory is dual to the free CFT. Suppose we now impose the alternate ∆ = 2 boundary

condition on the O(M) singlet scalar dual to O = ϕiaϕia. This then corresponds to adding

the double-trace deformation

δS = λ

∫
ddx (ϕiaϕia)2 , (5.2)

and flowing to the critical vector model in the IR, where ∆O = 2 + O(1/N). Because we

are concentrating on the O(N) singlet sector, we can develop the usual 1/N expansion,

with Φab and O playing the role of “single-trace” operators. Then our results can be used

to compute the change in the four-point function 〈Φa1b1(x1)Φa2b2(x2)Φa3b3(x3)Φa4b4(x4)〉
from UV to IR.

On the other hand, the fixed point of the vector model (5.2) is just the same as the

usual critical O(n) model with n = NM . From the O(n) point of view, our results give

the four-point function of scalar bilinears in non-trivial representations of O(n), and the

corresponding spinning double-trace anomalous dimensions encoded in it. (Let us stress

once again that we would not be able to compute change in the four-point function of O(x)

with our result.)

As a particularly tractable example where we can directly apply our results for pairwise

identical operators in sections 3.4 and 4.3, we can consider the case M = 2. We can then

introduce a complex basis

φi = ϕi1 + iϕi2 , φ̄i = ϕi1 − iϕi2 . (5.3)

The two symmetric traceless operators Φab in (5.1) correspond to linear combinations of

the complex operators

Φ = φiφi , Φ∗ = φ̄iφ̄i , (5.4)

with charge ±2 under U(1) ' SO(2), while the singlet is just O = φiφ̄i. The change in the

four-point function

〈Φ(x1)Φ∗(x2)Φ(x3)Φ∗(x4)〉 (5.5)

from UV to IR is given by (3.31), provided we identify Ψ = Φ∗ and take ∆ = ∆Φ = ∆Ψ =

d−2.13 The formula for the change in anomalous dimensions of the double-trace operators

13Note that we have 〈ΦΦ∗O〉 6= 0 but 〈ΦΦO〉 = 0 due to U(1) charge conservation.
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[ΦΦ∗]0,` is then given by (4.20) with ∆ = ∆Φ = d− 2, and is valid both for even and odd

`. In fact, since the UV theory is free, γUV
n,` = 0. Therefore, in these cases,

δγ` = γIR
` (5.6)

and we can use our formulas to read off the anomalous dimensions in the interacting IR

CFT. The same observation was made in [47], where γUV
` = 0 due to supersymmetry for

UV-protected double-trace operators. We will denote γIR
` simply by γ` below. For various

values of the spacetime dimension d we find, from (4.20),

d = 3 :
γ`
γ0

=
1

2`+ 1

d = 4 :
γ`
γ0

=
2H`+1

(`+ 1)(`+ 2)

d = 5 :
γ`
γ0

=
12

(`+ 3)(`+ 4)

d = 6 :
γ`
γ0

=
18 (−8H`+3 + `(`+ 7) + 18)

(`+ 1)(`+ 2)(`+ 5)(`+ 6)

(5.7)

where Hx =
∑x

n=1 1/n is the harmonic number, and

γ0 =
8

N

Γ(d− 2)

Γ(d2)Γ2(d−2
2 )Γ(2− d

2)
(5.8)

where we used aUV = 4/N , which can be found by Wick contractions. From (C.6), we can

also find the change in OPE coefficient of the double-trace scalar operator, which is simply

δa
(1)
0 =

2

2− d
γ0 (5.9)

Note that the sign is negative for all d > 2.

Let us analyze these results. We observe that for all d > 4, the anomalous dimensions

γ` grow like

γ`�1 ∼ `−2 (5.10)

consistent with the lightcone bootstrap [20, 21]. This follows from the previous formu-

las and

H`�1 ∼ log `+ γE +O(`−1) (5.11)

where γE is the Euler constant. In d = 3, γ`�1 ∼ `−1; this is also consistent, because the

tower of slightly broken higher spin currents with τ = 1 + O(1/N) furnishes the leading-

twist sector of the Φ× Φ∗ OPE instead of O.

The case of d = 4 is somewhat special: we really should work in d = 4 − ε, since (to

leading order in 1/N)

γ0

∣∣∣
d=4−ε

≈ 4

N
ε+O(ε2) . (5.12)

So

γ`

∣∣∣
d=4−ε

≈ 8

N

(
H`+1

(`+ 1)(`+ 2)

)
ε+O(ε2) (5.13)
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gives the anomalous dimensions of the [ΦΦ∗]0,` operators at the Wilson-Fisher fixed point

of the critical vector model (5.2) in d = 4− ε (for M = 2 in the present case). At large `,

we see logarithmic behavior,

γ`�1

∣∣∣
d=4−ε

≈ 8

N

log `

`2
ε+ . . . (5.14)

We may also write (5.13) in terms of the conformal spin,14

J2 ≡ (`+ d− 2)(`+ d− 3) (5.15)

In d = 4− ε,

γ`

∣∣∣
d=4−ε

≈ 8

N

(
H 1

2
(−1+

√
1+4J2)

J2

)
ε+O(ε2) (5.16)

At large J , after the log J/J2 term, the expansion is in even powers of J−2 [66]. It is

interesting to note the similarity of our result to the one obtained in section 4 of [67],

where 〈φ2φ2φ2φ2〉 was computed in a small deformation of a free scalar CFT in d = 4.

On general grounds, the first-order anomalous dimensions of the “single-trace” currents,

J` = φ∂`φ were found to be γ(J`) = c1 + c2H 1
2

(−1+
√

1+4J2), where now J2 = `(`+ 1), and

the ci are constants that could not be fixed by symmetries alone. It would be interesting

to reproduce our results (5.7) using slightly broken higher spin symmetry, which may give

a natural explanation for the appearance of harmonic functions.

The anomalous dimensions (5.12)–(5.13) may be also computed directly by conformal

perturbation theory methods in d = 4− ε, at finite N ; as a check of our results, we outline

this calculation in appendix D for the case ` = 0. The final result is

γ0 =
4ε

N + 4

N + 1

N
, γΦ =

ε

N + 4
(5.17)

which in turn can be seen to match our prediction (5.12) at large N . Note that in our nota-

tion, ∆ΦΦ∗ = ∆
(0)
ΦΦ∗+4γφ+2γΦ+γ0 where ∆

(0)
ΦΦ∗ = 2(d−2) is the classical scaling dimension.

Recall that, as explained earlier, while in our calculation above we viewed Φ,Φ∗ as

single-trace operators in the O(N) singlet sector of a O(N) × O(2) model, we can view

Φ,Φ∗ as certain bilinear O(2N) non-singlet operators, which belong to the rank-two sym-

metric traceless representation of O(2N) (this is the only non-singlet representation ap-

pearing at the level of scalar bilinears).15 Hence, our results above can be seen to give

the connected four-point function of symmetric traceless scalar bilinear operators in the

usual O(n) model,16 and the anomalous dimensions of their double-trace composites. As

far as we know, the result for the anomalous dimensions of the operators [ΦΦ∗]0,`, with Φ

belonging to the rank-two symmetric traceless representation of O(2N), is new. A closely

14This follows from the general definition J2 ≡ 1
2
(∆O + `)(∆O + ` − 1) for the exchange of an operator

of dimension ∆O; for us, ∆O = 2(d− 2) + ` to leading order in 1/N .
15Under the branching O(2N) 7→ O(N)×O(2), they are invariant under an O(N) subgroup, but charged

under O(2).
16Note that, of course, while (5.2) was written in a “O(N)×O(M)” notation, the fixed point has the full

O(n) = O(NM) symmetry since the perturbation is a singlet of O(n).
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related result, which was derived by Lang and Ruhl [68], are the anomalous dimensions of

the singlet double-trace operators [OO]0,` ∼ [σσ]0,` (see eq. (4.49) of [69]). It is interesting

to note that in d = 4−ε, their result has a similar ∼ log(`)/`2 behavior as our result (5.13).

The calculations of this section can be generalized in a straightforward way to the

O(N)×O(M) case, where we view O as an O(M) singlet, and take Φab in the symmetric

traceless representation of O(M). The OPE data encoded in the change of the four-

point function 〈Φa1b1(x1)Φa2b2(x2)Φa3b3(x3)Φa4b4(x4)〉 can be extracted introducing O(M)

projectors as explained in [47]. In fact, since the exchanged operator O(x) is an O(M)

singlet, the tensor in (4.45) is trivial, and role of the projectors simply cancels out when

expanding in a given OPE channel. Hence, the resulting anomalous dimensions are the

same as those listed above in (5.7).

5.2 ∆Φ = d− 1,∆ = d− 2

In this case, computing the change in anomalous dimensions of [ΦΦ]0,` operators in the IR,

the result (4.20) for low values of d is

d = 3 :
δγ`
δγ0

=
2

2 + `

d = 4− ε : δγ` ≈ 8aUV
ΦΦO

(
H`+2 − 1

(`+ 1)(`+ 4)

)
ε+O(ε2)

d = 5 :
δγ`
δγ0

=
3(40 + 9`)

(4 + `)(5 + `)(6 + `)

(5.18)

where we expanded δγ0 explicitly near d = 4 using (4.11).

One class of UV CFTs in d = 3 in this category comes from supergravity compactifi-

cations on AdS4 ×M7, in which M7 has non-trivial internal cycles. In particular, for any

Sasaki-Einstein M7 with a nonzero second Chern number b2, the CFT has an extra N = 2

conserved current multiplet, the Betti multiplet, due to wrapped M2-branes. These multi-

plets contain ∆ = 1 and ∆ = 2 scalars that are singlets under all global symmetries, which

we identify with O and Φ, respectively, in the calculation above. The ∆ = 1 Betti scalar is

parity odd, so the CFT must break parity in order that aUV
ΦΦO 6= 0. A parity-breaking mech-

anism using internal fluxes for CFTs with AdS4×M7 duals was introduced in the context of

the ABJ theory [70], where M7 = S7/Zk, and applied to other M7 with b2 6= 0 in e.g. [71].

Similar simplifications as (5.18) occur for other special values of (∆Φ,∆).
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A AdS harmonics and propagator identities

The identity (3.15) is closely related to the so-called “split”, or harmonic, representation

of the bulk-to-bulk propagator (see e.g. [39, 41, 72]). Since the bulk-to-bulk propagators

with either boundary condition satisfy the same equation (3.13), their difference must be

proportional to an AdS harmonic function (see e.g. [73] for a review), which may be defined

as the solution to [
∇2
x +

d2

4
+ ν2

]
Ων(x, y) = 0 , . (A.1)

with normalization condition
∫∞
−∞ dν Ων(x, y) = δ(d+1)(x, y). It is well-known that AdS

harmonic functions admit a “split” representation as a convolution of bulk-to-boundary

propagators (see e.g. [39, 41, 56])

Ων(x, y) =
ν2

π

∫
∂AdS

dd~y0K d
2

+iν(x; ~y0)K d
2
−iν(y; ~y0) . (A.2)

Noting that we need to take d2/4 + ν2 = −m2 = −∆(∆ − d), i.e. ν = i(∆ − d
2), and

carefully fixing an overall normalization factor (for instance by looking at the coincident

point limit),17 one recovers the identity (3.15).

Let us also note that a single bulk-to-bulk propagator (as opposed to the difference)

can be written, using (A.1) and (A.2), as

G∆(x, y) =

∫ ∞
−∞

dν
Ων(x, y)

ν2 + (∆− d
2)2

=

∫ ∞
−∞

dν ν2

π(ν2 + (∆− d
2)2)

∫
∂AdS

dd~y0K d
2

+iν(x; ~y0)K d
2
−iν(y; ~y0)

(A.3)

The formula (3.15) for the difference of boundary conditions can then be seen to arise from

just (twice) the contribution of the pole at ν = i(∆ − d/2) in the spectral integral above.

As an additional remark, note that the split representation (A.3), coupled with our result

for the “two-triangle” diagram arising from the difference of boundary conditions, implies

that a given exchange diagram with external operator Φ and exchange of a scalar with

dimension ∆ can be written as a sum of D̄-functions (one for each channel) as in (3.9),

with ∆ in the D̄-function indices replaced by d/2 + iν, and integrated over the spectral

parameter ν with measure determined by (A.3).

B Identities for functions D̄, H and G

Let us recollect here explicit definitions and relations between the functions commonly

appearing in the AdS/CFT literature. We follow the notations of [30, 50].

17The precise proportionality constant between the harmonic function and the difference of bulk-to-bulk

propagators is found to be

Gd−∆(x, y)−G∆(x, y) =
4π

d− 2∆
Ωi(∆− d

2
)(x, y) .
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In AdS/CFT calculations, the D-functions are associated to Witten diagrams involving

contact interactions [28–30]. At the four-point level

D∆1∆2∆3∆4(x1,x2,x3,x4) =

∫
dz dd~x

zd+1
K̃∆1(z,~x;x1)K̃∆2(z,~x;x2) K̃∆3(z,~x;x3)K̃∆4(z,~x;x4) ,

(B.1)

where we defined the “un-normalized” bulk-to-boundary propagators

K̃∆1(z, ~x; ~x′) =

(
z

z2 + (~x− ~x′)2

)∆

. (B.2)

The integral in (B.1) may be evaluated introducing Schwinger parameters, and yields

D∆1∆2∆3∆4(x1,x2,x3,x4) =
Γ
(

1
2

∑
i∆i− d

2

)
2
∏
iΓ(∆i)

∫ ∞
0

∏
i

dαiα
∆i−1
i

e−
1
Λ

∑
i<j αiαjx

2
ij

Λ
1
2

∑
i∆i

, Λ≡
∑
i

αi

(B.3)

This can be written in terms of the “reduced” D̄-functions, which are functions of cross-

ratios only, as [30]

D∆1∆2∆3∆4(x1, x2, x3, x4) =
Γ
(
Σ− d

2

)
2
∏
i Γ (∆i)

x
2(Σ−∆1−∆4)
14 x

2(Σ−∆3−∆4)
34

x
2(Σ−∆4)
13 x2∆2

24

D̄∆1∆2∆3∆4(u, v)

Σ ≡ 1

2

∑
i

∆i .

(B.4)

In the definition above, the powers ∆i are arbitrary. In the special case Σ = d/2, the same

D̄-functions arise from the well-known four-point conformal integral

I∆1∆2∆3∆4(xi) =

∫
ddz

1

(x1 − z)2∆1(x2 − z)2∆2(x3 − z)2∆3(x4 − z)2∆4

=
π
d
2∏

i Γ(∆i)

∫ ∞
0

∏
i

dαiα
∆i−1
i

e−
1
Λ

∑
i<j αiαjx

2
ij

Λd/2
(B.5)

∑
∆i=d
=

π
d
2

Γ(∆1)Γ(∆2)Γ(∆3)Γ(∆4)

xd−2∆1−2∆4
14 xd−2∆3−2∆4

34

xd−2∆4
13 x2∆2

24

D̄∆1∆2∆3∆4(u, v)

as can be seen by comparing the Schwinger parameter integral in the second line of (B.5)

to (B.3).

The D̄-functions can be related to the H function defined in [30, 50] as follows:

D̄∆1∆2∆3∆4(u, v) = H (∆2,Σ−∆4,∆1 + ∆2 − Σ + 1,∆1 + ∆2;u, v) (B.6)

where Σ = 1
2

∑
i ∆i and the function H is given by:

H(α,β,γ,δ;u.v) =
Γ(1−γ)

Γ(δ)
Γ(α)Γ(β)Γ(δ−α)Γ(δ−β)G(α,β,γ,δ;u,1−v)

+u1−γ Γ(γ−1)

Γ(δ−2γ+2)
Γ(α−γ+1)Γ(β−γ+1)Γ(δ−γ+α+1)Γ(δ−γ−β+1)

×G(α−γ+1,β−γ+1,2−γ,δ−2γ+2;u,1−v). (B.7)
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The function G may in turn be defined by explicit power series around u = 0, v = 1:

G(α, β, γ, δ;u, 1− v) =

∞∑
m,n=0

(δ − α)m(δ − β)m
m!(γ)m

(α)m+n(β)m+n

n!(δ)2m+n
um(1− v)n (B.8)

For (positive) integer γ we also get log u terms in the H function, arising from the gamma

functions and Pochhammer symbols in the formulas above,

H(α, β, k, δ;u, v)|log u =
(−1)k

(k − 1)!

Γ(α)Γ(β)Γ(δ − α)Γ(δ − β)

Γ(δ)
G(α, β, k, δ;u, 1− v) (B.9)

These will be required to reproduce the small-u behavior of the sum over the conformal

blocks. The power series part of the H function is also modified for integer γ. We will use

following result for γ = 1 [50]:

H(α, β, 1, δ;u, v) =
1

Γ(δ)
Γ(α)Γ(β)Γ(δ − α)Γ(δ − β)

(
− log uG(α, β, 1, δ;u, 1− v)

+

∞∑
m,n=0

(δ − α)m(δ − β)m
(m!)2

(α)m+n(β)m+n

n!(δ)2m+n
fmnu

m(1− v)n

)
,

fmn ≡ 2ψ(1 +m) + 2ψ(δ + 2m+ n)− ψ(δ − α+m)− ψ(δ − β +m)

− ψ(α+m+ n)− ψ(β +m+ n)

(B.10)

Also note that the G-function obeys a small-u expansion

G(α, β, 1, δ;u, 1− v) = 2F1(α, β, δ; 1− v) +O(u) (B.11)

The D̄-functions obey the following symmetry relations:

D̄∆1∆2∆3∆4(u, v) = v∆1+∆4−ΣD̄∆2∆1∆4∆3(u, v)

= u∆3+∆4−ΣD̄∆4∆3∆2∆1(u, v)

= D̄∆3∆2∆1∆4(v, u)

= D̄Σ−∆3Σ−∆4Σ−∆1Σ−∆2(u, v)

= v−∆2D̄∆1∆2∆4∆3(u/v, 1/v)

= v∆4−ΣD̄∆2∆1∆3∆4(u/v, 1/v)

(B.12)

C Some calculational details

In this appendix we collect various odds and ends of the calculations in sections 3 and 4.

C.1 Adding the ΦΦ→ ΨΨ channel to (3.31)

The result for the change in the four-point function 〈ΦΨΦΨ〉 in the ΦΦ→ ΨΨ channel can

be written as:

δF(u, v)
∣∣
ΦΦ→ΨΨ

= − CΦΦO

CΦΦ

√
COO

CΨΨO

CΨΨ

√
COO

Γ(∆)

Γ
(

∆
2

)4
Γ
(
d
2 −∆

)u∆Φ+∆Ψ
2 D̄ d−∆

2
,∆

2
, d−∆

2
,∆

2
(u, v)

(C.1)
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Let us also define:

cUV
ΦΦO =

CΦΦO

CΦΦ

√
COO

cUV
ΨΨO =

CΨΨO

CΨΨ

√
COO

(C.2)

The UV and IR values of these coefficients obey the relation (2.11). Extracting the anoma-

lous dimensions using the same strategy as before, we may get the following combined

result:

δγ` =
(∆Ψ)`
(∆Φ)`

4F3

(
−`,`+∆Φ+∆Ψ−1,

d−∆−∆Φ+∆Ψ

2
,
∆−∆Φ+∆Ψ

2
;∆Ψ,∆Ψ,

d

2
;1

)

×
2aUV

ΦΨOΓ(∆)Γ
(
d−∆+∆Φ−∆Ψ

2

)
Γ
(
d−∆−∆Φ+∆Ψ

2

)
Γ
(
d
2

)
Γ
(
d
2−∆

)
Γ
(

∆+∆Φ−∆Ψ
2

)
Γ
(

∆−∆Φ+∆Ψ
2

) + (C.3)

+
2cUV

ΦΦOc
UV
ΨΨOΓ(∆)Γ

(
d−∆

2

)2
Γ
(
d
2

)
Γ
(
d
2−∆

)
Γ
(

∆
2

)2 4F3

(
−`,`+∆Φ+∆Ψ−1,

d−∆

2
,
∆

2
;∆Φ,∆Ψ,

d

2
;1

)

Notice that when ∆Φ = ∆Ψ we retain the relationship (4.20) between the δγ` and δγ0. The

value of δγ0 would have the same dependence on d and ∆ with the following prefactor:

δγ0 ∼ aUV
ΦΨO + cUV

ΦΦOc
UV
ΨΨO

Φ≡Ψ−−−→ aUV
ΦΦO (C.4)

as it should, since the three-point coefficient would have two channels contributing in

this case.

We now write down the result of the large spin expansion. It fits the general predictions

of the lightcone bootstrap [20, 21]:

δγ` ≈
2aUV

ΦΨOΓ(∆)Γ(∆Φ)Γ(∆Ψ)

Γ
(

∆+∆Φ−∆Ψ
2

)
Γ
(

∆−∆Φ+∆Ψ
2

)
Γ
(

∆Φ+∆Ψ
2 − ∆

2

) 1

`∆

−
2aIR

ΦΨOΓ(d−∆)Γ(∆Φ)Γ(∆Ψ)

Γ
(
d−∆+∆Φ−∆Ψ

2

)
Γ
(
d−∆−∆Φ+∆Ψ

2

)
Γ
(

∆Φ+∆Ψ
2 − d−∆

2

) 1

`d−∆
(C.5)

+
2cUV

ΦΦOc
UV
ΨΨOΓ(∆)Γ(∆Φ)Γ(∆Ψ)

Γ
(

∆
2

)2
Γ
(
∆Φ − ∆

2

)
Γ
(
∆Ψ − ∆

2

) 1

`∆
−

2cIR
ΦΦOc

IR
ΨΨOΓ(d−∆)Γ(∆Φ)Γ(∆Ψ)

Γ
(
d−∆

2

)2
Γ
(
∆Φ − d−∆

2

)
Γ
(
∆Ψ − d−∆

2

) 1

`d−∆

We may also write down the result for the δa
(1)
0 coefficient:

δa
(1)
0 =

aUV
ΦΨOΓ(∆)Γ

(
d−∆+∆Φ−∆Ψ

2

)
Γ
(
d−∆−∆Φ+∆Ψ

2

)
Γ
(
d
2

)
Γ
(
d
2−∆

)
Γ
(

∆+∆Φ−∆Ψ
2

)
Γ
(

∆−∆Φ+∆Ψ
2

)(ψ(∆+∆Φ−∆Ψ

2

)
+ψ

(
∆−∆Φ+∆Ψ

2

)

+ψ

(
d−∆+∆Φ−∆Ψ

2

)
+ψ

(
d−∆−∆Φ+∆Ψ

2

)
−2ψ

(
d

2

)
+2γ

)

+
2cUV

ΦΦOc
UV
ΨΨOΓ(∆)Γ

(
d−∆

2

)2
Γ
(
d
2

)
Γ
(
d
2−∆

)
Γ
(

∆
2

)2
(
ψ

(
∆

2

)
+ψ

(
d−∆

2

)
−ψ

(
d

2

)
+γ

)
(C.6)
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C.2 ∆ + ∆Ψ = ∆Φ − 2p for p > 0

We can extend the results of section 3.4.1 for all p. In general one has to compute the

D̄-functions in (3.31) with

∆1 =
d

2
−∆− p , ∆2 =

d

2
+ p , ∆3 = −p+ ε , ∆4 = ∆ + p , (C.7)

extracting the term of O(1/ε2) in the small ε limit. Upon doing so we find the follow-

ing features. First, only the first p terms diverge like 1/ε2. The powers of u range from

u∆− d
2 , u∆− d

2
+1, . . . , u∆− d

2
+p. There is never a log term, so the change in anomalous dimen-

sions always vanishes, δγn,` = 0. For example, for p = 1 we find

D̄ d
2
−∆−1, d

2
+1,−1+ε,∆+1(u, v) ≈

Γ(∆ + 1)Γ
(
d
2 −∆− 1

)
u∆− d

2

ε2

× (∆(d− 2(∆ + 1)) + (∆ + 1)(v − 1)(d− 2(∆ + 1))− 2u(∆ + 1)) +O(ε−1)

(C.8)

and hence

δF(u, v) ≈ −aUV
ΦΨO

(
u∆/2

(
2 +

(
2

∆
+ 2

)
(v − 1)− 4(∆ + 1)u

∆(d− 2∆− 2)

)

+
(u
v

)∆Φ+∆Ψ
2

v∆/2

(
2 +

(
2

∆
+ 2

)
(u− 1)− 4(∆ + 1)v

∆(d− 2∆− 2)

)) (C.9)

Note the d-independence of the leading term at small u, in analogy with the result at p = 0.

C.3 Deriving (4.20)

Here we explicitly extract the residue of the contour integral (4.17). The relevant part of

δF is, using (4.10),

δF(u,1−x)|u∆Φ logu =
aUV

ΦΦOΓ(∆)Γ2
(
d−∆

2

)
Γ
(
d
2

)
Γ2
(

∆
2

)
Γ
(
d
2−∆

) (C.10)

×
(

2F1

(
d−∆

2
,
∆

2
,
d

2
,x

)
+(1−x)

d−∆
2
−∆Φ

2F1

(
d−∆

2
,
d−∆

2
,
d

2
,x

))
From (4.17), the residue is given by the coefficient of x` in the product of (C.10) with

F1−∆Φ−`(x), defined as the hypergeometric function in (4.13). For the first term in (C.10)

it is rather straightforward to extract the term of order x` by multiplying the respective

hypergeometric series. For the second term in (C.10) one uses the following identity:

2F1(a, b, c;x) = (1− x)−b2F1

(
b, c− a, c, x

x− 1

)
(C.11)

to transform the integrand of (4.17) to

x−1−` (1− x)`−1 F1−∆Φ−`

(
x

x− 1

)
2F1

(
d−∆

2
,

∆

2
,
d

2
;

x

x− 1

)
(C.12)
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The final step is to take x
x−1→x, which transforms the power law prefactor in the integral as

dxx−1−` (1− x)`−1 → dx (−1)`x−1−` (C.13)

and only deforms the small contour around x = 0 without changing the orientation. This

proves that both terms contribute the same when ` is even and cancel out for odd `. The

end result is given in (4.18)–(4.20).

C.4 ∆Φ 6= ∆Ψ anomalous dimensions

Here we give some intermediate steps leading to (4.32), (4.33). To handle the case of

pairwise identical operators, we introduce a following generalization of the Fβ(x) function

in (4.13):

Fβ;a(x) = 2F1 (β + a, β − a, 2β, x) (C.14)

xβFβ;a(x) are eigenfunctions of the operator Da = x2(1−x)∂2
x−x2∂x+a2x with eigenvalue

β(β − 1), and obey the orthogonality condition

1

2πi

∮
x=0

xβ−β
′−1Fβ;a(x)F1−β′;a(x) = δβ,β′ (C.15)

with β − β′ ∈ Z and a counterclockwise contour encircling the origin. At u � 1, the

conformal blocks take the form:

gτn,`(u� 1, v) ≈ gcoll
n,` (v) = x`F∆Φ+∆Ψ

2
+n+`;

∆Φ−∆Ψ
2

(x) (C.16)

where x = 1− v.

With this in hand we proceed as in section 4.1.2. The leading log u term of δF at small

u is

δF [ΦΨ](u, v)
∣∣∣
log u
≈ u

∆Φ+∆Ψ
2

2

∑
`

a
(0)
` δγ`x

`F∆Φ+∆Ψ
2

+`;
∆Φ−∆Ψ

2

(x) (C.17)

Applying the orthogonality condition (C.15) allows us to write down the following gener-

alization of (4.17):

δγ` =
1

πia
(0)
`

∮
x=0

x−1−`F
1−∆Φ+∆Ψ

2
−`; ∆Φ−∆Ψ

2

(x)

[
δF [ΦΨ](u, 1− x)

∣∣
u

∆Φ+∆Ψ
2 log u

]
. (C.18)

From the explicit form of the four-point function (3.31), the relevant piece is

δF(u,v)
∣∣∣
u

∆Φ+∆Ψ
2 logu

=
aUV

ΦΨOΓ(∆)Γ
(
d−∆+∆Φ−∆Ψ

2

)
Γ
(
d−∆−∆Φ+∆Ψ

2

)
Γ
(
d
2

)
Γ
(
d
2−∆

)
Γ
(

∆+∆Φ−∆Ψ
2

)
Γ
(

∆−∆Φ+∆Ψ
2

) (C.19)

×v
d−∆−∆Φ−∆Ψ

2 2F1

(
d−∆+∆Φ−∆Ψ

2
,
d−∆−∆Φ+∆Ψ

2
,
d

2
,1−v

)
.

Upon plugging this into (C.18) and extracting the residue, we arrive at (4.30), and the

final formulas (4.32), (4.33).
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D Conformal perturbation theory for the “O(N)× O(2)” model in

d = 4− ε

In this appendix we briefly review the framework of conformal perturbation theory to

calculate the anomalous dimensions of the Φ and ΦΦ∗ fields in the O(N) × O(2) model

in d = 4 − ε. We may view the action as a sum of free theory of 2N scalar fields and a

perturbation by an operator O2:

S = S0 + λ

∫
ddx O2(x) (D.1)

where O(x) = φ̄iφi is the singlet operator with tree-level dimension ∆0 = d − 2, and

S0 =
∫
ddx∂µφ

i∂µφ̄i.

We will need to first study the two-point function of Φ = φiφi and Φ∗ = φ̄iφ̄i to the

first order in perturbation theory:

〈Φ(x)Φ∗(y)〉λ = 〈Φ(x)Φ∗(y)〉0 − λ
∫
ddz〈Φ(x)Φ∗(y)O2(z)〉0

=
C2

|x− y|2∆0
− λC3

∫
ddz

1

|y − z|2∆0 |x− z|2∆0
,

(D.2)

where C2 and C3 are two- and three-point function coefficients respectively in the unper-

turbed theory:

〈Φ(x)Φ∗(y)〉0 =
C2

|x− y|2∆0

〈Φ(x)Φ∗(y)O2(z)〉0 =
C3

|x− z|2∆0 |y − z|2∆0

(D.3)

The values of C2 and C3 are obtained by direct Wick contractions in the unperturbed

theory:

C2 = 2NC2
φφ̄

C3 = 4NC4
φφ̄

(D.4)

where Cφφ̄ is defined as:

〈φi(x)φ̄j(y)〉 =
Cφφ̄δ

ij

|x− y|2∆φ
, Cφφ̄ =

1

2π2
(D.5)

where the 2 in the denominator follows from our definition of the φ field: φi = ϕi,1 + iϕi,2

where ϕi,a, i = 1, . . . , N , a = 1, 2 are real scalar fields with canonical normalization.

Using the integral∫
ddz

1

|x− z|2α|y − z|2β
=

π
d
2

|x− y|2(α+β− d
2

)

Γ
(
d
2 − α

)
Γ
(
d
2 − β

)
Γ
(
α+ β − d

2

)
Γ(α)Γ(β)Γ(d− α− β)

(D.6)
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we find, after plugging d = 4− ε and ∆0 = 2− ε into (D.2) to the leading order in ε,

〈Φ(x)Φ∗(y)〉λ =
C2

|x− y|2∆0
− λ C3

|x− y|2∆0

4π2|x− y|ε

ε

=
C2

|x− y|2∆0
− λ C3

|x− y|2∆0
4π2

(
1

ε
+ log |x− y|+O(ε)

) (D.7)

We may now exploit the fact that we are only interested in the anomalous dimension at

the conformal fixed point of the O(2N) model, λ∗ = π2ε
N+4 [74], such that the full two-point

function in the interacting theory has to be power-law:

〈Φ(x)Φ∗(y)〉λ =
C2(λ)

|x− y|2(∆0+γ(λ))
=

C2

|x− y|2∆0
− C2

|x− y|2∆o
2γ log |x− y|+ . . . (D.8)

where γ(λ) = ∆−∆0 = 2γφ + γΦ and . . . stands for terms which either do not have logs or

are higher order in λ. Then we may identify the logarithmic terms to find γ(λ) to lowest

order:18

γΦ =
2π2C3

C2
λ∗ =

ε

N + 4
(D.9)

Notice that γφ is of order ε2, as well known, and doesn’t contribute at lowest order. Then

the final result can be matched to the well-known anomalous dimension of the symmetric

traceless tensor of the O(2N) model [46, 74].

A similar calculation for the ΦΦ∗ operator may be carried out repeating the same steps

as above, where C̃2 and C̃3 are now defined through:

〈ΦΦ∗(x)ΦΦ∗(y)〉0 =
C̃2

|x− y|4∆0

〈ΦΦ∗(x)ΦΦ∗(y)O2(z)〉0 =
C̃3

|x− y|2∆0 |x− z|2∆0 |y − z|2∆0
.

(D.10)

The z-dependence of the three-point function is the same as in the previous calculation,

and so will be the value of the integral. To extract γΦΦ∗ we also recall the definition of the

anomalous dimension for a composite operator:

∆ΦΦ∗ = 2∆0 + 4γφ + 2γΦ + γΦΦ∗ . (D.11)

Here again, γφ will not matter, being of order O(ε2). Expanding the exact two-point

function and calculating C̃2 and C̃3, we get:

C̃2 = 4N2C4
φφ̄

C̃3 = 16N(3N + 2)C6
φφ̄

(D.12)

and

γΦΦ∗ + 2γΦ =
2π2C̃3

C̃2

λ∗ =
2ε

N + 4

3N + 2

N
(D.13)

from which we get

γΦΦ∗ =
4ε

N + 4

N + 1

N
(D.14)

in agreement with (5.17).

18A more accurate argument introducing the multiplicative renormalization of Φ would lead to the same

result.
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