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Abstract

Spatially resolved transcriptomics (SRT) technologies measure gene expression at known locations
in a tissue slice, enabling the identification of spatially varying genes or cell types. Current approaches
for these tasks assume either that gene expression varies continuously across a tissue or that a slice con-
tains a small number of regions with distinct cellular composition. We propose a model for SRT data that
includes both continuous and discrete spatial variation in expression, and an algorithm, Belayer, to esti-
mate the parameters of this model from layered tissues. Belayer models gene expression as a piecewise
linear function of the relative depth of a tissue layer with possible discontinuities at layer boundaries.
We use conformal maps to model relative depth and derive a dynamic programming algorithm to infer
layer boundaries and gene expression functions. Belayer accurately identifies tissue layers and infers
biologically meaningful spatially varying genes in SRT data from brain and skin tissue samples.
Keywords: spatially resolved transcriptomics, spatial variation, gene expression, layered tissues, seg-
mented regression, conformal maps
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1 Introduction

Spatially resolved transcriptomics (SRT) technologies simultaneously measure both gene expression and
spatial location of cells in a two-dimensional tissue slice [12, 72, 75]. Examples of SRT technologies
include in-situ hybridization (ISH) techniques such as MERFISH [22] and seqFISH+ [33], which are based
on imaging fluorescence probes, and sequencing techniques such as Slide-seq [76], Slide-seqV2 [80] and the
10X Genomics Visium spatial transcriptomics platform [1, 79], which sequence barcoded mRNA molecules
whose barcodes record both the spatial locations of the molecules and unique molecular identifiers (UMI)
for the mRNA molecule. SRT technologies have enabled a wide range of biological analyses, including
analyses on the spatial organization of different tissues [62, 11, 59, 15,43, 32, 8, 19, 65, 30, 81, 48, 18] and
inter-cellular communication [95, 20, 28, 54].

Computational analysis of SRT data presents multiple challenges. First, most SRT technologies pro-
duce high-dimensional data; for example, sequencing-based technologies such as Slide-Seq [76] and spatial
transcriptomics [79] measure the expression of 10,000 to 20,000 human genes across thousands or tens of
thousands of spatial locations. Second, gene expression measurements from many current SRT technolo-
gies are highly sparse, with many genes not measured even if they are expressed. For example, current
sequencing-based SRT technologies have very low UMI counts per spot; e.g., in the 10X Genomics Visium
platform [1] each spot has a median of about 5,000 UMI counts, while Slide-seqV2 [80] reports median
UMI counts of approximately 500. Finally, jointly modeling both gene expression and the spatial location
of cells in a tissue requires an appropriate model of spatial variation in gene expression, and is thus more
involved than applying existing models developed for bulk or single-cell gene expression data.

Most current computational models for analyzing spatial variation in gene expression in SRT data make
one of two distinct modeling assumptions. The first modeling assumption is that gene expression is deter-
mined by discrete cell types; specifically, there are a small number of clusters with distinct cell type compo-
sitions, and gene expression at a spot depends only on the cluster label, i.e. the cell type composition present
at the spot. This modeling assumption is made by methods for identifying cell type clusters [99, 28, 74].
These methods implicitly address data sparsity by sharing information across nearby spots, e.g., through
the use of models such as hidden Markov random fields (HMRFs). Under this modeling assumption, large
differences in gene expression between clusters are allowed, which corresponds to discrete shifts in cell type
composition within a tissue slice. However, methods that make this modeling assumption also assume that
gene expression is constant within each cluster, and thus do not account for continuous spatial variation of
gene expression within a cluster.

The second modeling assumption is that gene expression varies continuously across a tissue slice. This
assumption is usually made by methods that identify spatially varying genes [83, 82, 29, 100] or that con-
struct low-dimensional representations of measured cells [89, 86, 23]. For example, SpatialDE [83] and
SPARK [82] model gene expression with a Gaussian Process in which the covariance of expression between
a pair of spots decreases as their spatial distance increases. This modeling assumption is justified by the
biological observation that gene expression is affected by spatial cellular environments and inter-cellular
communication [53, 10, 37]. However, most methods that make this modeling assumption do not account
for large discrete changes in cell type composition across the tissue and the consequent discontinuous change
in expression. One exception are factor analysis approaches, such as [89, 86, 90, 23], which model gene ex-
pression as a discrete sum of continuous factors estimated from the data. These approaches can in principle
model discontinuous changes in gene expression if the factors have disjoint support. However in practice
these methods do not explicitly model such discontinuities. Moreover the factors learned by these methods
are sometimes difficult to interpret as they are not guaranteed to correspond to distinct cell types.

We introduce a method called Belayer for analyzing SRT data using a global model of tissue organization
and gene expression that combines both discrete and continuous spatial variation. Specifically, we define
layered tissues, a global model of tissue organization for tissues that consist of consecutive layers of cell
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types. Layered tissues are common in many organs, e.g., human skin consists of three layers [49], the
cerebral cortex consists of six layers [61], and the retina has ten distinct layers of neurons [60]. In the
simplest case, a layered tissue has a one-dimensional spatial structure, and we model the expression of
a gene as a piecewise continuous function of the depth of the tissue layers. Piecewise functions allow
for discontinuities in expression where there are sharp changes in cell type composition in space, such
as between tissue layers, while continuous functions model gradients of gene expression within a tissue
layer, e.g. [66, 39]. To reduce overfitting with sparse SRT data, we specifically model gene expression
using piecewise linear functions, which are specified by a small number of parameters. The inference of
piecewise linear gene expression functions in 1D is related to changepoint detection [7] and segmented
regression [2, 14, 93], well-studied problems in time-series analysis whose maximum likelihood solutions
can be computed using dynamic programming. We extend the classical dynamic programming algorithm for
segmented regression to jointly infer piecewise linear gene expression functions for all genes simultaneously.
We also demonstrate that dimensionality reduction using generalized PCA (GLM-PCA) [87] preserves the
one-dimensional structure of a layered tissue, thus formalizing the ad hoc dimensionality reduction steps
often made when analyzing SRT data. Next, we generalize this approach to two-dimensional layered tissues
by using tools from complex analysis, namely conformal maps — complex analytic functions that locally
preserve angles between curves [68] — to transform a general 2D layered tissue into a layered tissue with
a one-dimensional structure. We extend our dynamic programming algorithm to more general 2D layered
tissues. For tissues whose layer boundaries are lines, our DP algorithm is similar to the classical Nussinov
algorithm for RNA secondary structure [69].

We implement our algorithms in a method called Belayer and we apply Belayer to simulated SRT data
and to three real SRT datasets, including 10X Visium data from the human dorsolateral prefrontal cortex
[62] and a mouse skin wound [34] and Slide-SeqV?2 data from the mouse somatosensory cortex [80]. We
demonstrate that Belayer achieves higher accuracy in clustering tissue layers compared to state-of-the-art
SRT clustering methods. Moreover, we also demonstrate that the piecewise linear gene expression functions
learned by Belayer enable the identification of spatially varying genes, and have higher accuracy in identi-
fying tissue-specific marker genes compared to commonly-used methods for the identification of spatially
varying genes.

2 Results

2.1 Belayer Algorithm

We introduce Belayer, an algorithm for inferring spatial patterns of gene expression in spatially resolved
transcriptomics (SRT) data from layered tissue slices. Belayer has three defining characteristics (Figure 1).
(1) The expression of each gene is modeled as a piecewise linear function of the relative depth within each
tissue layer. (2) Conformal maps, a tool from complex analysis, are used to transform the geometry of each
tissue layer to that of a vertical strip and obtain the relative depth of curved tissue layers. (3) A dynamic
programming algorithm learns tissue layers and piecewise linear gene expression functions. We describe
these characteristics in more detail below.

Belayer models the expression of each gene as a piecewise linear function of the spatial location. Specif-
ically, suppose a two-dimensional tissue slice T consists of L layers Ry, ..., Ry with a boundary curve I'y
between each pair (R, Ry11) of adjacent layers. In the simplest case, the tissue slice 7" has “axis-aligned”
layer boundaries I'y, that is layer boundaries I'y that are parallel to the y-axis (Figure 7B). In this case, we
model the normalized expression f,(x,y) of each gene g = 1,...,G at spatial location (x,y) € T as a
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Figure 1: (Left) The input to Belayer is spatially resolved transcriptomics data from a layered tissue slice,
and optionally approximate layer boundaries for the tissue slice. (Middle) Belayer uses conformal maps
® = (Py,...,Pr) to transform the geometry of each tissue layer to that of a vertical strip. Belayer then
models the expression of each gene in the transformed geometry as a piecewise linear function of the relative
depth of the tissue layers. (Right) The outputs of Belayer are (1) the tissue layers, and (2) the piecewise
linear gene expression functions. The latter can be used to identify spatially varying genes, such as those
with large layer-specific slopes (expression gradients).
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where a4 ¢ and 3, ; are the y-intercept and slope, respectively, of the expression of gene g in layer I?y. The
linear functions a4 ¢ + B3, - * model smooth gradients of expression within each layer R,, while the pieces
L(z,y)er, allow for discontinuities in expression at the layer boundaries I';. For tissues with axis-aligned
layer boundaries I'y, the z-coordinate is the depth of position (z, y) in tissue layer R, (Figure 7B).

For a tissue slice 7" with arbitrary layer boundaries I'y, we generalize our model so that the expression
fq(z,y) of gene g is a piecewise linear function of a quantity that we call the relative depth ®¢(z,y) of
position (x,y) in layer Ry:

L
fo(®(z,y)) = Z (age+ By ®o(z,y)) - L(ay)er,- 2
=

We model the relative depth ®,(x, y) in each layer R, with a conformal map. Conformal maps are functions
from the complex plane to the complex plane that locally preserve angles between curves. Conformal
maps are often used in engineering and physics applications to solve differential equations with complicated
boundary conditions by transforming the domain of the differential equation to a simpler geometric structure
[68, 5].

Given an N x G transcript count matrix A = [a; 4], where a; 4 is the count of gene g in spot 4, and
spatial coordinate matrix S = [si] where s; = (z;,y;) are the coordinates of spot i, Belayer aims to estimate
layers Rg, conformal maps (I)g, and piecewise linear functions fg(:c y) that maximize the likelihood of the
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Figure 2: (A) (Top) Spatially resolved transcriptomics data from a layered tissue slice with non-zero UMIs
indicated in darker color. (Bottom) Visualization of 1D expression values obtained from binning and nor-
malization of UMI counts from 2D spots (x,y) with similar relative depths ®,(x,y). (B) The real part
u = Re ®, of a conformal map ®, maps a curved layer to a vertical strip aligned by x-coordinate. u is a
harmonic function that solves the heat equation Au = 0. The relative depth d; is the heat at spot i when the
heat « = 0 is fixed at on one boundary and the heat © = 1 is fixed on the other boundary of the region. The
color shows contours of the heat u in the layered tissue and the vertical strip.
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The layers ﬁg estimated by Belayer correspond to anatomical structures or other spatial partitions of the
tissue slice 7" with distinct gene expression patterns. The estimated piecewise linear functions fg( (z,v))
describe the spatial expression patterns of each gene g, and can be used to identify genes with potentially
interesting spatial expression patterns, including genes with large (absolute) layer—spemﬁc slopes |B4,¢| or
genes g with large discontinuities at the boundaries F@ of the estimated layers Rg In order to easily visu-
alize these spatial expression patterns, we combine expression values a; 4 for a gene g from spots (z;, y;)
with similar relative depths d; = (/I;g(l’i, v;) into a single “binned” expression value a; , (Figure 2A). This
binning procedure approximately preserves the slopes 3, ¢ and y-intercepts o ¢ of the piecewise linear gene
expression functions f,(z,y). See Methods for more details.

In general, for arbitrarily shaped layer boundaries I'y, computing the maximum likelihood in (3) is
challenging. We provide dynamic programming algorithms to solve two special cases of this problem which
provide useful approximations on real data. First, given approximate layer boundaries fg of the tissue slice
T, such as from histological images or prior anatomical knowledge, we estimate the real part Re &, of
the conformal maps ®, by solving the heat equation (Figure 2B) with boundary conditions specified by the
approximate layer boundaries I'y. We then derive a dynamic programming algorithm for solving (3) given
the estimated real parts Re EI;( of the conformal maps ®,. Second, when the layer boundaries I'y are lines,
we derive another dynamic programming algorithm to compute (3) in combination with solving multiple
instances of the heat equation with different boundary conditions. Our algorithm is inspired by the classical
dynamic programming algorithm for segmented regression [2, 14, 93] and Nussinov’s algorithm for RNA
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Figure 3: Comparison of Belayer, BayesSpace, stLearn, and SCANPY in identifying annotated layers in
spatially resolved transcriptomics data from the dorsolateral prefrontal cortex (DLPFC) of three donors. (A)
ARI for each method compared to manually annotated layers from each sample from Donor 1. (B), (C)
Same as (A) for Donors 2 and 3. Since the tissue slices from these donors are not axis-aligned, Belayer
finds conformal maps (Figure 2) to transform these tissue slices to axis-aligned tissue slices. (D) The layers
identified by Belayer and the manually annotated layers for (axis-aligned) sample 151508 from Donor 1 and
(E) sample 151673 from Donor 3. Layers identified by Belayer are labeled and colored according to the
maximally overlapping layer from the manual annotation.

folding [69]. We also derive a more efficient algorithm for the special case when the layer boundaries I'; are
parallel lines, in which case it is not necessary to solve the heat equation. See Methods for more details on
these algorithms as well as our model selection procedure for choosing the number L of layers.

2.2 Evaluation on simulated data

We evaluated Belayer on two sets of simulated SRT data. In the first simulation, we generated SRT data
(A, S) from a layered tissue slice 7" according to our piecewise linear model (2). In the second simulation,
we used the Splatter package [96] to generate realistic single-cell SRT data from a layered tissue slice. In
both simulations, we found (Figure S5A and Figure S6) that Belayer had higher accuracy in identifying
the tissue layers compared to two other existing methods for analysis of SRT data, BayesSpace [99] and
SpaGCN [40], and compared to analysis with SCANPY [92] which does not use spatial information. In the
first simulation, where we have knowledge of the true piecewise linear gene expression functions fg(z,y),
we also observed (Figure S5B) that Belayer accurately estimated the parameters o ¢, 8, of each piece-
wise linear gene expression function fy(x,y). The latter evaluation demonstrates the accuracy of using
the parameters estimated by Belayer in downstream tasks such as identifying spatially varying genes. See
Methods for details on both simulations.
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Figure 4: (A) Precision-recall curves for identifying marker genes in DLPFC sample 151508 using five
different methods. “Belayer: Max slope” corresponds to ranking genes by maxy—q . r, \B\g,l\ and “Belayer:
Layer 3 slope” corresponds to ranking genes by |§g73|. (B) Expression functions f,(x) learned by Belayer
for genes NEFH and HPCALI that have large slopes |3, 3| in the third layer.

2.3 Dorsolateral Prefrontal Cortex

Next, we evaluated Belayer on spatially resolved transcriptomics data from the human dorsolateral prefrontal
cortex (DLPFC) obtained using the 10X Visium technology [62]. This dataset consists of 12 DLPFC tissue
slices from three donors. Each slice was manually annotated [62] into six layers and white matter (WM). A
list of 128 marker genes for the DLPFC was obtained from [62] and previous analyses [63, 97].

2.3.1 Cortical layer identification

We first analyzed the tissue layers identified by running Belayer on the DLPFC tissue slices. For the four
tissue slices from Donor 1, the manually annotated layer boundaries are approximately lines. Thus, we
ran Belayer with linear layer boundaries. We compared Belayer against BayesSpace [99], stLearn [74],
SCANPY [92], and SpaGCN [40] on these four tissue slices. We ran each method with the same number L
of layers as Belayer (see Methods for details on our model selection procedure). We evaluated each method
by computing the ARI between the manually annotated layer labels and the layers identified by the method.
Note that in some samples, the manually annotated labels correspond to two layers separated in space. We
counted these as separate layers and accordingly separated any clusters of BayesSpace, stLearn, or SpaGCN
that are separated in space when computing ARIs. We found (Figure 3A) that Belayer has noticeably higher
ARI compared to BayesSpace, stLearn, SCANPY, and SpaGCN. Our results demonstrate that Belayer learns
more biologically relevant clusters by leveraging the layered structure of the tissue. In the Appendix, we also
show that Belayer outperforms these methods using other evaluation metrics (Figure S9), and that Belayer
outperforms BayesSpace when BayesSpace uses its own procedure for selecting the number L of layers
(Table S1).

Next we compared the methods on the 8§ DLPFC slices from Donors 2 and 3. The manually annotated
layer boundaries of these slices are not linear. Thus, we ran Belayer with approximate layer boundaries,
where we used the manually annotated layer boundaries to construct the conformal maps ®,. We found that
Belayer outperformed the other methods in the identification of layers (Figure 3B-C), suggesting that our
piecewise linear assumption on the expression functions is appropriate. However, we emphasize that this
comparison is overly generous to Belayer since Belayer uses information from the manually annotated layer
boundaries to construct the conformal maps.
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2.3.2 Identifying spatially varying genes

We also compared the genes with layer-specific expression patterns inferred by Belayer to the spatially
varying genes identified by other methods. We derived a list of such layer-specific genes for DLPFC tissue
slice sample “151508” (shown in Figure 3D) from the expression functions fg estimated by Belayer as
follows. After excluding genes with low UMI counts (genes where more than 85% of spots had no UMIs),
we ranked genes according to their largest layer-specific slope maxy—1._ | Bg,d across the L = 6 layers
}Aﬁ, ceey R 1, identified by Belayer. In this way, we assign high ranks to genes with large expression gradients,
as gene expression gradients are known to be associated with important biological functions in the brain
[42, 51, 26]. We compared the overlap in rankings between these genes and known cortical marker genes
from [62, 63, 97], and performed the same comparison for ranked lists of spatially varying genes from
SpatialDE [83], SPARK [82], and HotSpot [27], three methods for identifying spatially varying genes in
spatially resolved transcriptomics data. We found that Belayer achieved higher AUPRC (0.032) compared
to ranking genes according to the p-values of spatial variation computed by SpatialDE (0.017), SPARK
(0.029), and HotSpot (0.029) (Figure 4A). We emphasize that all methods have low AUPRC due to the many
inherent challenges of marker gene identification in SRT data. These challenges include (1) the sparsity of
SRT data, (2) that the list of known marker genes are curated from multiple samples and datasets while a
specific SRT sample may have variation from the “consensus”, and (3) that the list of marker genes is an
incomplete representation of all genes that distinguish cortical layers.

We also observed that some layers are more predictive of marker genes than others. For example,
ranking genes by the magnitude of their slope |Bg73| in the third layer identified by Belayer resulted in a
much larger AUPRC (0.116) compared to scoring genes by their maximum slope maxy—p ..., |B\gjg| across
all layers (Figure 4A). The genes g with large slope |§g73| in the third layer are also biologically interesting,
and we highlight two specific genes in Figure 4B. NEFM — the gene with the largest slope | Bg73| in the
third layer — is a known cortical marker gene and is also a biomarker for neuronal damage [45]. On the
other hand, HPCALI — the gene with the fourth largest slope |3, 3| in the third layer — is not an annotated
cortical marker gene but is reported to be involved in neuronal signalling [98, 91]. Our results demonstrate
that incorporating layer-specific variation is important for identifying spatially varying genes, and suggest
that the slopes ]@7 ¢| identified by Belayer are a useful criteria for identifying cortical marker genes.

We also note that the third cortical layer identified by Belayer is a combination of two manually anno-
tated layers. Ranking genes g by their estimated slope in either one of the two manually annotated layers
has smaller AUPRC compared to ranking genes by their slope in the third layer identified by Belayer. This
suggests that while the layers identified by Belayer do not exactly match the manually annotated layers, they
potentially correspond to other biologically relevant partitions of the tissue.

2.4 Mouse skin dataset during wound healing

Next, we analyzed SRT data from a mouse skin wound obtained using the 10X Visium technology [34].
Foster et al. [34] manually annotated the spots in this dataset into one of the three layers of skin: epidermis,
dermis, and hypodermis. We use the sample corresponding to postoperative day 14 which contains the
largest number of spots.

We evaluated Belayer’s ability to identify the 3 manually annotated layers of the skin. We used the left
and right tissue boundaries as two approximate layer boundaries to estimate the conformal maps ® (Figure
S13A) and ran Belayer with L = 3 layers as determined by the model selection precedure (Figure S7). We
compared the L = 3 layers estimated by Belayer with the L = 3 clusters of BayesSpace, stLearn, SCANPY,
and SpaGCN. We observe (Figure 5A) that stLearn and Belayer achieve a higher ARI compared to other
methods. Moreover, while stLearn obtains a slightly higher ARI than Belayer ARI = 0.564 for stLearn,
ARI = 0.520 for Belayer), stLearn predicts a discontinuous epidermal layer, which is inconsistent with
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Figure 5: (A) Comparison of Belayer, BayesSpace, stLearn, SCANPY, and SpaGCN in identifying skin
layers in a mouse skin Visium sample. (B) Manually annotated layers and layers identified by Belayer and
stLearn. In the legend of manual annotation, “E” indicates epidermis, “D” indicates dermis, and “H” in-
dicates hypodermis. (C) Expression functions learned by Belayer for three genes with large slopes (\B\g,l D
Dashed vertical lines indicate layer boundaries identified by Belayer. Solid lines show the expression func-
tion for the layer where the gene has a large slope.

the manual annotation (Figure 5B). By leveraging the layered geometry of the tissue, Belayer accurately
identifies biologically meaningful skin layers.

We also analyze the genes g that Belayer infers to have large positive or negative slopes |3, | (Fig-
ure 5B). We find that Belayer recapitulates some skin wound marker genes reported in [34]. These include:
Thbs2, a gene involved in mouse cutaneous wound healing [3] that has the 8th most negative slope — [, 2 in
the deg\mis layer (Figure 5C), and Fnl, a marker gene for a fibroblast cluster [34] that has the 11th largest
slope 3,3 in the hypodermis layer.

Belayer also identifies genes related to the wound healing process which were not reported in [34]
(Figure 5C). For example, Retnla has the largest positive slope 3, 3 in the hypodermis layer, and it encodes
a protein that is known to be an effector molecule in the skin wound healing process [46]. Trdn has the
largest positive slope 5972 in the dermis layer, and it encodes an integral transmembrane protein involved in
muscle contraction [70], a healing response for skin wounds.

2.5 Somatosensory Cortex

We evaluated Belayer on SRT data for a single slice of the somatosensory cortex [19] obtained using the
Slide-SeqV2 technology [80]. The somatosensory cortex is a part of the neocortex and consists of six layers
[44]. We obtained a list of 30 marker genes for the somatosensory cortex from [25, 64] that are also measured
in this dataset.

We ran Belayer with two approximate layer boundaries, the top and bottom boundaries of the tissue slice
which were chosen from visual inspection of the RCTD layer annotations [19] (Figure S12). We compared
the L = 5 layers identified by Belayer to the clusters identified by SpaGCN [40], SCANPY, and stLearn. We
evaluated the accuracy of each method according to the cell types annotated by RCTD [19], which integrated
the Slide-SeqV?2 data with a reference scRNA-seq dataset. We do not compare to BayesSpace [99], since the
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Figure 6: (A) Layers identified by RCTD, SpaGCN, and Belayer in a somatosensory cortex Slide-SeqV2
sample. The layers identified by SpaGCN and Belayer are labeled and colored according to the maximally
overlapping layer from the RCTD cell type annotations. (B) Expression function learned by Belayer for
genes g with large slopes |3, 4.

current implementation of this method requires SRT data obtained from the ST or 10X Visium platforms. We
find that compared to SpaGCN, Belayer distinctly identifies the layers of the somatosensory cortex (Figure
6A). We also observe that the layers identified Belayer are more similar to the RCTD cell type annotations
than the clusters identified by SpaGCN, stLearn, and SCANPY (Figure S11A). Moreover, compared to the
RCTD cell type annotations — which are obtained through a reference scRNA-seq dataset with cell type
annotations — we find that the layers identified by Belayer correspond more closely to the distinct layers of
the somatosensory cortex. In particular, Belayer is able to clearly identify the L.2/3 layer (Figure 6A) while
RCTD models this layer as a mixture of different cell types from layers 2 through 6, which is biologically
inconsistent with the layered geometry of the somatosensory cortex [44]. These results demonstrate that
Belayer more accurately learns tissue layers by utilizing a global model of layered tissues.

We also compared the genes with layer-specific expression patterns inferred by Belayer to the spatially
varying genes identified by SpatialDE [83], SPARK [82], and HotSpot [27] following the same procedure as
in Section 2.3.2. We found (Figure S11B) that Belayer achieved higher AUPRC (0.06) compared to ranking
genes by the p-values of spatial variation computed by SpatialDE (0.024) and SPARK (0.049), and had
comparable AUPRC compared to HotSpot (0.061). Moreover, if we rank genes according to the magnitude
of their slope |3, 6| in the layer 2/3 intratelencephalic region estimated by Belayer (“L2/3 IT” in Figure 6A),
then Belayer has larger AUPRC (0.099) compared to SpatialDE, SPARK, and HotSpot. As in Section 2.3.2,
we emphasize that all methods have low AUPRC because of the challenges in identifying marker genes in
SRT data. In particular, the list of marker genes for the somatosensory cortex that we use for evaluation is
most likely incomplete as it contains less than 30 genes, while more than 1,000 genes are estimated to be
involved in neuronal functions in the cerebral cortex [97]. N

We highlight two genes with large layer-specific slope |3, (| that are not in the list of marker genes but
are biologically interesting (Figure 6B). Camk2nl has the fourth-largest layer-specific slope, and is reported

10


https://doi.org/10.1101/2022.02.05.479261
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.05.479261; this version posted July 25, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

to have spatiotemporal patterns of regulation [56]. Cplx2 has the tenth-largest layer-specific slope, and
mutations in this gene are reported to contribute to cognitive dysfunction in schizophrenia [38]. Our results
demonstrate that the spatial patterns identified by Belayer are important in identifying biologically relevant
genes.

3 Discussion

We introduce a new method, Belayer, to analyze spatial variation in gene expression from spatially resolved
transcriptomics (SRT) data from layered tissues. Belayer models the expression of each gene with a piece-
wise linear function of the relative depth of the tissue layers. This piecewise linear model allows for both
discrete changes in expression between layers — e.g., due to changes in cell type compositions — as well
as continuous variation in gene expression within layers — e.g., due to gradients of gene expression. In
the simplest case of an axis-aligned tissue structure, we infer the maximum likelihood expression function
using a dynamic programming algorithm that is related to the classical problems of changepoint detection
[7] and segmented regression [2, 14, 93]. We extend our approach to arbitrary layered tissues using the
theory of conformal maps [68] from complex analysis [4], which are related to harmonic functions — and
more specifically the heat equation — and are often used to solve partial differential equations in engineering
applications. We provide algorithms to solve two important special cases of the general problem for linear
layer boundaries and pre-specified approximate layer boundaries.

We show that Belayer outperforms existing approaches in identifying the tissue layers and spatially vary-
ing genes in both simulated SRT data and three real SRT datasets: 10X Visium data from the human dorso-
lateral prefrontal cortex (DLPFC) [62], Slide-SeqV2 data from the mouse somatosensory cortex [80], and
10X Visium data from a mouse skin wound [34]. Additionally, Belayer discovers genes with layer-specific
and continuous spatial variation in expression that correspond both to known tissue-specific marker genes
and genes with potentially novel tissue-specific functions. These results demonstrate that our piecewise lin-
ear model is a reasonable approach for the identification of tissue layers and the discovery of layer-specific
marker genes.

There are a number of directions for future investigation. The first direction is to further investigate the
expression functions learned by Belayer. For example, the observation that the slopes of the expression func-
tions learned by Belayer recovers known tissue-specific marker genes better than existing methods inspires
further study of the novel genes that are identified by our model, including genes with discontinuities and
changes in slope at layer boundaries. It would also be of interest to relate the slopes of the gene expression
functions to biological quantities such as the cell type proportion at different spots, which could be estimated
using SRT deconvolution methods [19, 78, 9, 47, 31]. Second, it would be desirable to provide an algorithm
to solve (or approximately solve) the maximum likelihood problem in (3) for arbitrary layer boundaries.
One possible approach is to extend the dynamic programming algorithm for lines to a larger class of layer
boundaries. Third, it would helpful to further minimize overfitting by incorporating regularization and rig-
orous statistical testing into our algorithm; e.g., using the Chow test [24] for change-point detection. Such
extensions might also allow for nonlinear piecewise continuous expression functions, assuming the data has
sufficient spatial resolution. The fourth direction is to extend the definition of a layered tissue to account for
more complex tissue geometries such as muscle tissues with concentric or striated layer structures or 3-D
tissues [6]. While the heat equation can be solved over closed domains or in three dimensions, deriving an
appropriate representation of piecewise constant/linear expression functions for more complicated geome-
tries requires further work. In addition, the problem of inferring the layers and the conformal map from
more complicated geometries may not be straightforward. We also note that while some tissues may not
have a layered structure, they may be subdivided into layered regions. For example, the mouse neocortex
contains a layered somatosensory cortex, which are segmented using prior biological knowledge [19]. It
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would be useful to extend our definition of layered tissues towards these “piecewise” layered tissues as well
as to systematically identify these layered tissue regions, perhaps by first coarsely subdividing a tissue using
other SRT analysis methods. Finally, it would be interesting to extend our approach to model other spatially
resolved data, including SRT data obtained from ISH technologies [57, 73] and spatial proteomics [58].
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Methods

4 Layered tissues and expression functions

Modeling spatial patterns of gene expression is complicated by the large variability in the spatial structure
of tissues — e.g. some parts of brain tissues have a layered structure while muscle tissues have a striated
structure [6] — as well as the sparsity of the gene expression profiles produced by current spatially resolved
transcriptomics (SRT) technologies. To avoid overfitting the data, it is helpful to make simplifying assump-
tions about the spatial structure of the tissue slice 7' and/or the spatial patterns of gene expression. Here,
motivated by the layered structure of the skin, brain, eyes, and other organs [6], we focus on layered tissue
slices (Figure 7A) which we define as follows.

Definition 1. An L-layered tissue slice is a region T C R? containing L — 1 non-intersecting smooth curves
I'y,...,T'—1, or layer boundaries, satisfying:

1. each curve 'y has end points on the boundary 0T of T';
2. every point p € T is contained in a region R bounded by 0T and at most two curves I'y and T'p:.

The L — 1 layer boundaries I'y,...,I'r,_ partition the tissue slice 7" into L regions Ry,..., Ry, or
layers. The layers Ry, ..., Ry, of a L-layered tissue slice I" represent biologically distinct regions in the
tissue slice 7. For example, in a tissue slice T from the skin, R;, Ry, R3 may represent the epidermis,
dermis, and hypodermis layers, where each layer consists of unique cell types and has unique functions [49].
Without loss of generality we assume that the layers R, ..., Ry and layer boundaries I'y,...,I';_; are
ordered so that layer R; is bounded by tissue boundary 07" and layer boundary I';, layer Ry is bounded by
layer boundaries I'y_; and I'y for £ = 2,..., L — 1, and layer Ry, is bounded by layer boundary I';,_; and
tissue boundary 07'.

We describe the spatial distribution of the expression of a gene ¢ in a tissue 7' with an expression
function f; : T — R, where f,(x,y) measures the expression of gene g at spatial location (z,y) € 7.
For example, a gene g whose expression is uniform across the tissue has a constant expression function

f¢(x,y) = ¢, while a marker gene g for a specific region R C T could have the expression function
fol@,y) = ¢ Y@yery +¢ - L@yery
More generally, if T is a L-layered tissue slice with layers Ry, ..., Ry, and the expression of gene g in

layer Ry is given by layer-specific expression function f, ¢(x,y), then gene g has the expression function
folz,y) = ZZLZI fo.0(%,y) - 1{(z4)er,}- We assume that the layer-specific expression functions fg ¢(z,y)
are continuous functions, and thus f4(x,y) is a piecewise-continuous function with discontinuities allowed
at the layer boundaries I'y. These discontinuities correspond to differences in expression due to changes in
cell type composition between different layers R, of the tissue 7T'. In the next section, we describe how one
models SRT data using the expression functions f,(z,y).

5 Acxis-aligned layered tissues

We begin by studying the simplest L-layered tissue slice: the axis-aligned L-layered tissue slice, where
each layer boundary I'y is a line © = by parallel to the y-axis (Figure 7B). We assume that the expression of
a gene g at position (x,y) depends only on the layer depth, or the distance from (z,y) to the nearest layer
boundaries x = by. Under this assumption, the layer-specific expression functions f, ¢(x,y) are functions
of only the z-coordinate: f, ¢(z,y) = fy,¢(x). Thus, the expression function f,(x,) also only depends on
the z-coordinate, i.e. f,(z) = ZgL:1 fge(x) - 114, | <a<p,) Where for convenience we define by = —oo and
by, = oo. We call each b, a breakpoint of the expression function f,.
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2 Ry R> Ry Ry |Rs

Figure 7: Layered tissue slices and piecewise linear expression functions. (A) A 5-layered tissue slice 7'
with layers Ry, ..., R5 and layer boundaries I'1,...,['4. (B) An axis-aligned 5-layered tissue slice with
layers R1, ..., Rs and layer boundaries * = b1,...,2 = bs. (C) Expression function f,(z) for gene g
along the x coordinate for the axis-aligned layered tissue slice in (B). For all panels, colors indicate layers
and black lines indicate layer boundaries.

The simplest model for f,(x) is a piecewise constant function, which corresponds to each gene g having
a constant expression in each layer R,. Such a piecewise constant model is implicit in methods that assume
constant expression in contiguous regions of cell types; e.g. methods that use hidden Markov random
field (HMRF) models [99, 94, 28, 85]. We generalize these approaches by modeling continuous variation
in expression within a layer; e.g. due to gradients of gene expression [66, 39, 17, 21]. Since current
SRT technologies have limited dynamic range and spatial resolution, inference of complicated expression
functions may be prone to overfitting. Thus, we use the simplest form of continuous, non-constant spatial
variation within each layer and model each layer-wise expression function f, ¢(x) as a linear function.
Then each expression function f,(z) is a piecewise linear function (Figure 7C) with shared breakpoints

bi,...,br_1 across all genes corresponding to the axis-aligned layer boundaries I'y, ..., 'y 1, i.e.
L
fo(@) = By + ag) - Lip,_, <asin} 4)
(=1
where /3, ¢ and o ¢ are the slope and y-intercept, respectively, of gene g in layer R,. We define L(b1,...,br—1)
to be the set of piecewise linear functions f(z) with breakpoints by, ..., br,_1, and we define L to be the set

of linear functions f(z).

We contrast our model for the expression functions f, with another commonly used model for expression
functions, Gaussian Processes (GPs) [83, 82, 86, 55]. In this approach each expression function f, (z,y) ~
gpP (0, k(s,s' )) is an independent sample from a GP with mean function 0 and covariance function k(s, s’)
between spatial locations s = (z,y) and ' = (2/,y’). The covariance functions k(s,s’) used by existing
methods, including SpatialDE [83] and SPARK [82], generate continuous functions and thus do not model
piecewise continuous expression functions f,(z). We show in the Appendix that it is possible to model
piecewise linear functions with GPs using a one-dimensional blockwise covariance function; however, to
our knowledge such covariance functions have not been used to model SRT data.

5.1 Acxis-Aligned L-Layered Problem

We aim to infer the layer boundaries = = b, and expression functions f,(x) that maximize the likelihood of
the observed SRT data. We represent SRT data as an expression matrix A = [a; 4] € RV*¢ and a spatial
location matrix S € R?*" with column s; = (z;, ;) indicating the spatial location of spot i. We define the
Axis-Aligned L-Layered Problem as the the following maximum likelihood estimation problem.
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Axis-Aligned L-Layered Problem. Given SRT data (A,S) and a number L of layers, find layer bound-
aries © = by, ..., = by_1 and piecewise linear expression functions fi, ..., fc € L(b1,...,bp_1) that
maximize the log-likelihood of the data:

G N
arg max Z (Z log P(aiq | fg(ml))> . (5)

bl<b2<~~~<bL71 g=1 i=1
Jiye fa€L(b1,..,bL 1)

When there is L = 1 layer, each expression function f,(z) is a linear function, and thus the maximum
log-likelihood (5) in the Axis-Aligned L-Layered Problem reduces to

G N G N
[, max_ > (Z log P(aig | fg(xi))> = ;?glg;g (; log P(aig | fg(xi))> : (6)

g=1 \i=1

The maximization on the right-hand side of (6) is a regression problem of finding the linear function f,
that best fits the observed data. Thus, (6) is solved by computing a separate regression for each gene
g=1,...,G.

More generally, when each expression function f,(z) = ZeL:1 foe(x) - Lgp, | <a<p,) is an L-piecewise
linear function with known breakpoints b1, ...,br_1, then the maximum log-likelihood (5) in the Axis-
Aligned L-Layered Problem reduces to

G N G L
AE I > LS CRE S wol P o ]
g= 1= Z.bg_1<$z§bz
(7

Then, each expression function f, is computed by solving L separate regression problems, one regression
problem for each pair x = b,—1,x = by of consecutive layer boundaries. On the other hand, when the

breakpoints by, ...,br—1 of the piecewise linear expression functions f, are unknown, one will have to
compute a regression over all pairs of possible layer boundaries for each gene g, as we describe in the next
section.

We emphasize that the regression approach described above can be used with different probability dis-
tributions P (a; g | fy(z;)) for the observed counts a; 4. In particular, following [87, 77, 71] we model

UMI counts a; , with a Poisson distribution a; 4 4 poisson (Ci - exp ( fg(aci))> where C; is the total

UMI count at spot 7. Using the Poisson model we solve the regression problems in (7) with Poisson re-
gression. Another alternative is to model normalized expression values a; 4, with a Gaussian distribution

iid. . . . .
A g RN fq(zs), 02) where o is a shared variance parameter. Under the Gaussian model, the regression
problems in (7) are linear regressions.

Visualization and binning of SRT data. To simplify the visualization of SRT data (A, S) from an axis-
aligned tissue slice, we combine expression values for a gene from spots with the same z-coordinate into
a single “binned” expression value (Figure 2A). Specifically, for each gene g we construct a binned ex-
pression value a; , that estimates the gene expression for all spots with the same z-coordinate ;. For
the Poisson model the binned expression a;, = Zi:xi:@ a;,qg is the sum of the UMI counts a; 4 at spots
si = (w,y;) with z-coordinate z; = z;, while for the Gaussian model the binned expression a;, =
Wi@}‘ > iii=3; Gig is the average expression. We show in the Appendix that binning the data does not
affect inference of the expression functions fi, ..., fg in the Axis-Aligned L-Layered Problem, as the ex-
pression functions obtained by maximizing the log-likelihood (5) with the binned expression [a; 4] are equal
to the expression functions obtained by maximizing (5) with the original expression [a; ¢].
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In the applications presented below, it is often the case that there are spots s; = (z;,y;) with approxi-
mately equal x-coordinates x;. Thus, we extend the binning approach to construct binned expression a; 4
from spots s; = (z;,y;) with z-coordinates z; ~ z;. Further, for UMI count data we plot the normalized
binned expression log(a; 4/ 61) where C; is the sum of the total UMI counts C; for all spots ¢ in bin j
(Figure 2A). These normalized counts have the same scale as the expression functions f,. See the Appendix
for more details.

5.2 A dynamic programming algorithm for the Axis-Aligned L-Layered Problem

When there is only one gene, i.e. G = 1, then the Axis-Aligned L-Layered Problem is also known as
segmented regression. Segmented regression is a classical problem in statistics and time-series analysis and
has a well-known dynamic programming (DP) solution [13, 2, 14, 93]. Here, we present a DP algorithm
for the Axis-Aligned L-Layered Problem that extends the classical DP algorithm for segmented regression
[2, 14, 93] to any number G of genes.

Briefly, the DP algorithm is as follows. Let M,, ; be the maximum log-likelihood of the first n datapoints
fit to £-piecewise linear expression functions f1, ..., fg, i.e.

G n
My = by <by by Z (Zlogp(aiyg | fg(xi))) g ®)

=1 =1
FroofGEL(DLbe1) 7

where we assume without loss of generality that the spots are ordered by z-coordinate so that 1 < xg <
o< .

The best piecewise linear fit for the first n datapoints with ¢ pieces corresponds to: (1) the best piecewise
linear fit for the first n’ datapoints with £ — 1 pieces and (2) the best linear function fit for the remaining
n — n' datapoints, for some n’ < n. This yields the following recurrence:

G n
My = max My -1+ Z (&nz&c Z log P(aig | fg(xi))> , )
s g=1 I =

where the inner maximization is solved using regression.

The DP algorithm consists of using the recursion (9) to fill in a DP table column-by-column followed by
a pass backwards through the table to identify the L-piecewise linear expression functions f1, ..., fg and
breakpoints by, . . ., by,_1. The run-time of the DP algorithm is upper-bounded as O(LN?G- P,), where P, is
the runtime to solve the inner maximization in (9) for a single gene g. For the case where the gene expression
values a; 4 follow the Gaussian model, the run-time can be shortened to O(LN 2@) by using linear algebra
techniques from [2]. When N is large, it is also possible to reduce the run-time of the dynamic programming
algorithm — at the expense of spatial resolution — by restricting the coordinates n’, n in the recurrence (9)
to a subsequence of the /N data points. In practice, in our analyses, we observe marginal loss in spatial
resolution when restricting to subsequences of size 150 or larger.

6 Modeling L-layered tissues with conformal maps

For an arbitrary L-layered tissue slice with layer boundaries I'y,...I';_;, we similarly assume that the
expression of a gene g depends only on the layer depth, i.e., the distance to the layer boundaries I'y,. However,
because the layer boundaries I'; are not necessarily axis-aligned, the depth cannot be immediately computed.
An elegant solution is obtained by using a conformal map, a tool from complex analysis [4]. A conformal
map ¢ : C — C is a complex function that locally preserves angles; equivalently, ¢ is conformal if it
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is analytic and has non-zero derivative everywhere. Note that the inverse ®~! of a conformal map ® is
also conformal. Conformal maps are used to solve differential equations in the plane R? with complicated
boundary conditions —e.g. heat flow in a plate or airflow around a wing — by identifying R? with the complex
plane C [68].

Here, we use conformal maps to transform a layered tissue slice 7" into an axis-aligned layered tissue
slice T". Ideally, we would derive a conformal map ® : T — 7" that transforms tissue slice T to axis-
aligned tissue slice T”, with the constraints that ® maps each layer boundary 'y in T to the corresponding
layer boundary = = by in axis-aligned tissue slice 7”. Unfortunately, constructing a conformal map satisfy-
ing these additional contraints is challenging, as the standard constructions of conformal maps only allow
constraints on the boundary of 7" [68]. In general, it is unclear whether a conformal map satisfying additional
constraints on non-boundary curves always exists.

As an alternative, we derive L conformal maps ®, : R, — RZ for{ =1,..., L, where ®, transforms
layer Ry of tissue slice 7" to the corresponding layer R of axis-aligned tissue slice 7”. We require that each
conformal map ®, maps the layer boundaries I'y_;, Iy of layer R, to the corresponding layer boundaries
x = by_1,x = by of layer R, respectively, which is equivalent to the following constraints on the conformal
map Py:

Re <I>g(1“g_1) = bg_l and Re (I)g(rg) = bg, (10)

where Re denotes the real part of a complex number. We define C7(by—1, by) as the set of conformal maps
®, that satisfy (10). Notice that (10) are constraints on the boundary of each layer Ry, and thus such maps
are guaranteed to exist. Then, the map ® : T — T’ from tissue slice T to axis-aligned tissue slice 7" is
given by the piecewise sum of the L conformal maps @4, ..., Py, thatis

M=

@(l’,y) = q)f(x7y) ' 1(I,y)€R5' (11)

(=1

By the symmetry principle [68], if the limits of ®, and ®,,; at I'; are the same and are continuous for all
¢, then @ is a conformal map. However, it is unknown whether these equality and continuity conditions are
guaranteed to hold for arbitrary layer boundaries I'y,...,I'y.

Analogous to the axis-aligned setting, we call the real part Re ®y(z, y) of the conformal map ®(x,y)
the relative depth of position (x,y) in layer R;. We model the expression of gene ¢ in axis-aligned tissue
slice 7" using a piecewise linear function f,(x) as in Section 5. Then, our goal is to find conformal maps
®q,..., P and piecewise linear functions f;(z) such that the measured gene expression A at spots S in
the tissue slice 7" are best fit by piecewise linear functions fy(x) in the corresponding axis-aligned tissue 7"
We define the L-Layered Problem as the following maximum likelihood estimation problem.

L-Layered Problem. Given SRT data (A, S), layered tissue slice T C C, and a number L of pieces, find

an axis-aligned tissue slice T' with layers x = by, ...,z = by,_1, conformal maps ®y € Cr(by_1,by), and
L-piecewise linear expression functions fi,..., fa € L(b1,...,br—1) that maximize the log-likelihood of
the data:

G N
arg max Z <Z logP(ai,g | fg (@(xz,yl))>) . (12)

b1 <ba<--<bp_1 g=1 \i=1
©0€Cr (be—1,be) for £=1,...,L
fiy fa€L(br, b —1)

The L-Layered Problem generalizes the assumption in the Axis-Aligned L-Layered Problem that the
expression function fy(x,y) of a gene g at position (z,y) depends only on the distance from the layer
boundaries « = by_; and x = by; in this more general formulation, the expression function f4(x,y) of gene
g is constant along contours that “interpolate” between adjacent layer boundaries I'y_; and I'y (Figure 2B).
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In general, solving the L-Layered Problem without additional constraints on the conformal maps ®1, ..., Py,
is challenging. Below, we give algorithms for solving two special cases of L-Layered Problem which pro-
vide useful approximations on real data: (1) when the layer boundaries I'y,...,I';_1 are known and (2)
when the layer boundaries I'y, ..., 'y are lines.

6.1 Approximate layer boundaries ', are given

Suppose we are given prior information about the spatial organization of a tissue slice 71" in the form of
approximate layer boundaries fg. While these approximate layer boundaries may not directly correspond
to the true layer boundaries I'y, they can nevertheless be used to compute conformal maps ®,. From these
conformal maps, we can then estimate piecewise linear expression functions fi,..., fg, but without re-
quiring that the breakpoints b, of the piecewise linear functions f, occur at the mapped approximate layer
boundaries ®4(I";). In this way, we can incorporate prior information about tissue geometry (e.g. from prior
knowledge of the tissue structure or from H&E images) without requiring that the expression functions
conform exactly to this prior information. B B

Specifically, suppose we are given approximate layer boundaries 'y, ..., T'z/_1, where L’ is not neces-
sarily equal to the desired number L of layer boundaries. We constrain ¢ each conformal map ®, so that the
layer boundaries Fg 1 and Fg are mapped to lines x = bg 1and z = bg, respectively, for some choice of

real numbers bl, .. bL/ 1- These constraints on the conformal maps ®, are equivalent to the constraints
Re (I)g(rg 1) = bg 1 and Re (I)g(rg) = bg forall £ =1,..., L', which is in turn equivalent to the constraint
by € Cx (bg,l, b@), where T is tissue slice T equipped w1th the approximate layer boundaries I'y, ..., I';/ 4

~ as the

and approximate layers Ry, . .., Rz/_1. We define the conformal map ® = ZEL;I Dy(x,y) - L yeh,

piecewise sum of the L’ conformal maps ®,. B B B B
Thus, given approximate layer boundaries I'y, ..., I'z/_1 and lines z = by, ...,x = by/_1, we solve the
following optimization problem which we call the L-Layered Problem with Approximate Layer Boundaries:

G N
arg max Z <ZlogP<ai’g | fg(¢>(xi,yi))>> . (13)
i=1

b1<bo<--<br 1
@gecf@g,l@;) for /=1,...,L'
f17"'7fG€‘C(b17"~7bL—1)

The conformal maps ®; in (13) can be solved for separately from the breakpoints by and expression
functions f, by using the observation that the constraint ®, € Cj:(bg_l, be) uniquely defines the real part of

the conformal map ®,. This is because, in the constraints Re @g(fg,l) = gg,l and Re @g(fg) = gg, the
real part Re @, of each conformal map @, is a harmonic function, and thus can be written as the solution
to the heat equation with specified boundary conditions. That is, if one fixes curve I';_; to have constant
temperature by_1 and I, to have constant temperature by, then Re ®4(x, y) is the temperature at point (x, y)
and has a unique solution (Figure 2B). In practice, because there is no closed-form solution to the continuous
heat equation for arbitrarily shaped boundaries, we solve the heat equation on a discretized tissue slice using
a random walk-based approach [50, 36]. See the Appendix for more details.
After computing the conformal maps @1, ..., ®;, the optimization problem in (13) reduces to

G N
arg max Z (Z logP<aZ-7g | fg(é(mi,yi)») . (14)

b1<ba<--<br_1 — i—
g=1 \1i=1
J1ye fa€L(b1,. b —1)

This is an instance of the Axis-Aligned L-Layered Problem with transcript counts a; 4 and transformed spots
®(s;). Thus, we solve (14) by using the dynamic programming algorithm for the Axis-Aligned L-Layered
Problem (Section 5.2).
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We note that in general, there are multiple ways to specify lines z = 31, e, T = ng_l in the L-Layered
Problem with Approximate Layer Boundaries. Two reasonable choices include: (1) defining b1, ...,br/—1
such that the difference b, — by_1 between consecutive lines is proportional to the physical distance between
layer boundaries I'y and I'y_1, or (2) setting by = £ for ¢ = 1,. .. ,ZN'/ . We note that while thﬁ: optimization
objective (13) is invariant under multiplicative scaling of the lines by, the estimated slopes 3, ¢ will differ.
In the first choice, the estimated layer-specific slopes 3, ¢ correspond to physical gradients of expression
and are comparable both across genes g within each layer and across layers, while in the second choice
the slopes are only comparable across genes g in the same layer 1. In this work, we follow (1) and set
by —bg—1 = d(IT'¢,T'y—1) where d(I'y, I'y_1) is the partial Hausdorff distance, a standard distance measure in
computer vision [41].

6.2 Layer boundaries [, are lines

The second special case of the L-Layered Problem is when the layer boundaries I'y,...,I';_ are lines.
Let Q(T) be the set of lines I" with endpoints on the boundary 07 of the tissue 7. In this case, given
lines x = by, ...,x = by_1, the L-Layered Problem reduces to solving the following optimization problem
which we call the Linear L-Layered Problem:

L

arg max Zc(Rg), (15)

Py T €Q(T) =1

G

where ¢(Ry) = max lo P(ai Dy(x;,v:)) ). 16

(B =, o, o 2 SleeP(ay | fo( u)) (16)
DoeCr(be1,by)  B@i)ER 9=

We derive a dynamic programming algorithm to solve (15) for any convex tissue slice 7" and any function
c(R) that maps subsets R C T of the tissue to R. We note that the specific function ¢(R) in (16) can be
computed by solving the heat equation as described in Section 6.1. Our dynamic programming algorithm
generalizes the dynamic programming algorithm for the Axis-Aligned L-Layered Problem from Section
5.2.

Briefly, the dynamic programming algorithm for solving (15) is as follows. Without loss of generality,
let S1, . .+, SNyguuauy D€ the spots on the boundary JT of the tissue T in clockwise order. For convenience,
we define [n, m] to be the sequence (n + 1,...,m — 1) of indices when m > n, and the sequence (n +
1,..., Nooundary, 1, ..., m — 1) when n > m. We define T}, ,, C T to be the region of the tissue 7" that is
formed by drawing a line I" between spots s,, and s,,, and has boundary spots {s; }ic(n,m-

Let M, ,, ¢ be the best fit with £ nested layers (i.e. with £ — 1 linear layer boundaries) in the region 75, ,,,,
that is

l
M, = max c(Ryr). 17
nm,¢ nested I'1,....I'y—1 €Q(Tn,m) ;_1 ( ¢ ) an

Then, the best fit with ¢ layers in the region 7}, ,,, can be decomposed to the sum of: (1) the best fit
with ¢ — 1 layers in the region 7,/ ,,,y and (2) the fit ¢(T}, s, \ T3/ iy ) for the region T3, 1, \ Ty 1y, fOr some
n',m’ € [n, m[. Thus, we have the following recurrence relationship:

Mmoo = max (Myy i o—1 + (T \ Tor o)) - (18)
n',m
s.t. [n/,m/]C[n,m)]
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After computing the values M, ,,, ; forall 1 < n,m < Npoundary and £ =1, ..., L — 1, the optimal value
of (15) is then derived as
L
Ry) = M, _ M, . 19
Fl,...,FHLl?i{eQ(T) gz; ) g;éary}z( (Mo, -1+ Min,n1) (19

The dynamic programming algorithm consists of using the recursion (18) to fill in a table, followed by
computing (19) to identify the best fit with L — 1 linear layer boundaries for the entire tissue 7. See Figure
S4 and the Appendix for more details.

6.2.1 Layer boundaries ['; are parallel lines

We also derive a more computationally efficient algorithm for the case when the layer boundaries I'y, ..., '
are parallel lines. In this case, each conformal map ®, is a rotation map Py : R? — R? with the same angle
0, where Py(x,y) rotates points (x,y) about the origin by angle 6 € [0, 7). Then, the L-Layered Problem
reduces to the following optimization problem which we call the 6-Rotated L-Layered Problem:

G N

arg max ZZlogP(ai,g | fq (Pg(:z:i,yi))) (20)
QG[O,W) g=1 i=1
b1<b2<~~~<bL71

(f1,esfa)EL(b1,-sbr—1)

For a fixed angle 6, the optimization problem in (20) reduces to the Axis-Aligned L-Layered Problem
with expression matrix A and rotated spots Py(z;, y;). Thus, we solve the #-Rotated L-Layered Problem by
performing a parameter sweep over angles 6 € [0, 7) and finding the value of € that maximizes the objective
of (20).

7 Improving run-time with dimensionality reduction

The algorithms described above for solving different versions of the L-Layered Problem solve a separate
regression problem for each gene. This can result in large run-times when the number of genes G is large,
particularly when using a Poisson model for the UMI counts a; 4. This is because Poisson regression does
not have a closed-form solution and requires solving a convex optimization problem, which is generally
slower to solve than linear regression.

To reduce the run-time for SRT data (A, S), we use generalized principal components analysis (GLM-
PCA) [87] to produce a low-dimensional representation U of the expression matrix A, and then run the
algorithms presented above on the top-2L generalized principal components uy, . .., us;, € R using the
Gaussian model. This results in large reductions in run-time: for example, for the Axis-Aligned L-Layered
Problem, we reduce the run-time of our DP algorithm from O(LN2G - P,) under the Poisson model to
O(LN? - 2L) = O(N?L?), corresponding to the run-time for DP with the Gaussian model and G = 2L
genes. After computing the breakpoints b1, ..., by, we then estimate the expression functions f, for each
gene g by computing L separate Poisson regressions as described in Section 5.1, for which the run-time is
only O(LGP,). In practice, on the DLPFC Donor I data we observe a 100x reduction in run-time when
solving the Axis-Aligned L-Layered Problem with GLM-PCA-reduced data matrix U, as opposed to the
original data matrix A, with nearly identical performance in layer identification.

Our use of GLM-PCA is motivated by the observation that for SRT data (A, S) following the Poisson

model with piecewise linear expression functions f, and breakpoints b1, ...,br_1, the top-2L general-
ized principal components u1, . . . , usy, of the expression matrix A are approximately piecewise linear with
breakpoints by, ...,br_1. See the Appendix for more details.
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8 Simulation details

For the first simulation, we simulated SRT data (A, S) from a rectangular tissue slice 7' with parallel layer
boundaries lines I'y, ..., I'r_ that are rotated by an angle § = 40° from the x-axis. The observed spots S
are equally spaced in the tissue slice 7" and form a 50 x 40 grid. We generated piecewise linear expression
functions f,(x,y) for G = 1000 genes with slopes 3, and y-intercepts o ¢ chosen uniformly at random
from [—0.1,0.1]. We generated transcript counts a; 4 using the Poisson model with added Gaussian noise
iid. 9

e ~ N(0,0%):

a;,q ~ Poisson(C; - exp(fy(Po(zi, yi)) + €) (21)

where C; was chosen so that each spot had total UMI count of approximately 2000. We ran Belayer to
solve the §-Rotated L-Layered Problem (Section 6.2.1), and compared Belayer to three other approaches:
BayesSpace [99], SpaGCN [40], and the SCANPY [92] implementation of leiden clustering algorithm [88].
(We do not compare against stLearn [74] as an H&E image provides crucial information in its spatial cluster
step, which smooths gene expression across space by weighted averaging where the weights are derived
from H&E image.) We assume all methods know the true number L of layers. We assessed the performance
of each method by computing the Adjusted Rand Index (ARI) between the L layers/clusters estimated by
each method and the true layers.

For the second simulation, we evaluated Belayer on simulated SRT data (A, S) from a rectangular tissue
slice 7" similar to the tissue slice described above, except 6 is uniformly randomly chosen from [—7, %], and
the spots form a 70 x 50 grid. We generated transcript counts a; , using Splatter [96] with G = 1000
genes such that: the expression function f4(x,y) is approximately piecewise linear in each layer for each
gene g (using the trajectory simulation feature of Splatter and placing cells in each spot by the pseudotime
of each trajectory), the median UMI count per spot is around 1100, and the probability that a gene has a
different linear expression function across layers, which we call DE probability, is set to a fixed value using
the differential expression probability parameter in Splatter. We generated 5 simulated SRT datasets (A, S)
for each value of L = 4...,8 and each value of DE probability in {0.1,0,2,0.3,0.4,0.5}. The details for
running Belayer and comparing to other methods are the same as the first simulation.

9 Data processing and parameter selection

For Belayer, we choose the number L of layers by identifying the elbow in the consecutive differences of
the negative log-likelihood. See Figure S7 for an example for DLPFC sample 151508 and the skin wound
dataset.

We use the following data processing and parameter settings for running other SRT methods.

BayesSpace: We use function spatialPreprocess implemented in BayesSpace for data pre-
processing. This function normalizes the count matrix, selects a given number of highly variable genes,
and computes a given number of principle components using PCA. We compute BayesSpace clustering re-
sults with both 2000 highly variable genes for real SRT datasets, and use all genes for simulated data. We
follow the instructions in BayesSpace paper and set the number of PCs to be 15 for DLPFC dataset, and we
use 2L PCs for simulated data and other SRT datasets. The number of clusters is either set to be the same
as L chosen by Belayer or selected by its model selection function gTune in real SRT datasets, and set to
be the true number of clusters in simulated data.

SCANPY: We follow the SCANPY tutorial to pre-process DLPFC and simulated data. The UMI count
matrix is normalized to a target sum of 10° per spot for the DLPFC data and 102 per spot for the simulated
data, and then transformed by loglp. We use all genes to compute PCs using SCANPY with the default
number of PCs. We then use SCANPY to construct a neighborhood graph with various number of neighbors,
and apply leiden algorithm in SCANPY to the neighborhood graph for clustering with various resolution
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parameter. Since SCANPY does not have its own model selection function, we vary the number of neighbors
parameter within the range of 10 and 50 and vary the resolution parameter within the range of 0.1 and 1.5
until the number of clusters matches the number L of layers chosen by Belayer.

stLearn: We follow the stSME clustering tutorial of stLearn to cluster DLPFC, mouse somatosensory,
and mouse skin data. Briefly, stSME clustering of stLearn first combines spatial location and morphology
from image to normalize gene expression, and then applies PCA and KMeans clustering to the normalized
gene expression. Slide-SeqV2 does not generate H&E images, and stLearn uses only spatial location for
gene expression normalization and further clustering.

SpaGCN: We follow the SpaGCN tutorial for applying SpaGCN to 10X Visium and Slide-Seq data.
As suggested by the SpaGCN tutorial and manuscript, we use parameter p = 0.5 for 10X Visium data and
p = 1 for Slide-SeqV?2 data.

HotSpot: We run HotSpot with the default settings (as suggested by the Github repository): setting the
null model to be the depth-adjusted negative binomial model and setting the number of neighbors in the
k-NN graph to be 30. We rank genes by their estimated FDRs.

SpatialDE: We follow the instructions of SpatialDE github for normalizing SRT data and running Spa-
tialDE. We use the variance stabilizing normalization implemented in NaiveDE. stabilize for normal-
izing UMI count matrix, and then regress out the log of total UMI count per spot by NaiveDE. regress_out.
SpatialDE is then applied to compute the p-value and g-value for each gene being a spatially varying gene.

SPARK: SPARK uses a Poisson distribution to model the count data, and thus normalization is not
needed. We apply SPARK to the UMI count data directly, and set the gene-filtering parameter in SPARK to
filter out genes that are expressed in less than 10% of spots or have less than 10 UMI counts in total.

10 Code and Data Availability

Belayer is available at github.com/raphael-group/belayer. The DLPFC dataset is available at http://spatial.
libd.org/spatialLIBD/. The mouse skin wound dataset can be accessed from GEO with accession GSE178758.
The full size Slide-SeqV2 mouse cortex dataset is available at https://singlecell.broadinstitute.org/single_
cell/study/SCP815/highly-sensitive-spatial-transcriptomics-at-near-cellular-resolution- with-slide-seqv2, and
the code to extract the mouse somatosensory cortex is located ast https://github.com/dmcable/spacexr/blob/
master/AnalysisPaper/SuppFigures/supp_part2.Rmd in the section “Somatosensory Cortex Cortical Cell Types”.
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Supplemental Information

A Relationship to Gaussian Process Models

Piecewise linear functions can be modeled using a Gaussian process (GP) having a one-dimensional linear
covariance function k(s, s) of the form

k(s )) = 0%7 za' + Uae, if x’.e (bg, bey1) for some £ € {0,...,L} 22)
0 otherwise,
for breakpoints oo = by < by < --- < b,_1 < by, = oo, where z and 2’ are the z-coordinates of spots

s = (z,y) and s = (2/,4y'), respectively. Note that the linear covariance function is different from the

widely used squared exponential covariance function, which is defined as k(s, s’) exp{—Hsjif/”%}.
Sampling an expression function fy(z) from the distribution GP (0, k(s,s’)) with covariance func-
tion (22) generates a piecewise linear model of the form (4) with Gaussian priors 34, ~ N (0, U%,e) and
age ~ N (0, ai ;) on the slope 3, ¢ and y-intercept o ¢, respectively, of the gene expression in layer /.
Using Gaussian Process (GP) prior fq(x) ~ GP(0,k(s,s’)), we define the following maximum a pos-
teriori (MAP) version of the Axis-Aligned L-Layered Problem.

Axis-Aligned L-Layered Problem (MAP Version). Given SRT data (A,S) and a number L of layers,
find layer boundaries x = by,...,x = bp_1 and piecewise linear expression functions fi,...,fq €
L(b1,...,br_1) that maximize the posterior distribution of the data under the prior fq(x) ~ GP (0, k(s,s"))
for covariance function k(s,s') in (22):

G N
arg max Z (Z (10gP(alg | fq(x )) +logP(fg(:vl) | by, ... ,bL—l))> (23)

b1<b2<"'<bL,1 g=1 i=1
Jiyes fg€L(b1,..,bL 1)

G G L 2 2
= arg max Z(ZlogP g | fo(zi) ) ZZ( g 9 > (24)

b1<bz<--<bp—1 g=1 \i=1 g=1 (=1 75, UCV,@
fiye fG€L(b1,....bp—1)

B Dimensionality reduction using GLM-PCA

Let (A,S) be SRT data generated from an axis-aligned tissue slice 7" with breakpoints b1, ...,br,_; and
L-piecewise expression functions f,(x). Define the mean expression matrix F = [fy(x;)] € RV*Y as the
matrix of expression functions f,(z) evaluated at spatial locations = = x;. Given integer K > 0, GLM-PCA
aims to find matrices U, V such that F ~ UV, i.e. UV is arank-K approximation of the mean expression
matrix F. The columns u; of U are the generalized principal components of A.

In the Proposition below, we show that F' has rank 2L by constructing an explicit rank decomposition
F = UV where the columns u; of U are piecewise linear. We note that our rank decomposition in Proposi-
tion 2 does not correspond to the matrices U, V found by GLM-PCA; nevertheless, we empirically observe
that the top-2L generalized principal components of A are approximately piecewise linear (Figure S1).

Proposition 2. Let (A, S) be SRT data generated from an axis-aligned L-layered tissue slice T with layer

boundaries * = by,...,x = b1 and expression functions fy(x). Let F = [fy(z;)] € RN*C be the
mean expression matrix. Then F has a decomposition of the form F = UV for matrices U € RN*2L qnd
V € R2LXG ywhere the columns u; € RY of U are piecewise linear with breakpoints by, . .., by _1.
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Proof. Without loss of generality assume that the spots are ordered by increasing z-coordinate, i.e. x1 <

r9 < -+ < xn. We define vectors uy, uo, ..., usr, € R such that
U20—1,5 = Xy ° 1{bz_1<xj<bg} (25)
20,5 = ]‘{b£71<wi<bl} (26)
forall¢{=1,...,Landi = 1,..., N We similarly define vectors vy, ...,va;, € R” as
V2¢—-1,9 = /Bg,Z (27)
V2,9 = Qg (28)

forall{=1,...,Landg=1,...,G.
We define matrices U € RV *2L and V € R2L%C with columns ug, . . ., uar, € RN androws vy, ..., va, €
R, respectively. Then

L

(UV)ig=> Uin1Var1g+ UieVarg = (Bgazi + 0g) L, <wy<tyy = Fig: (29)
=1

as desired. O

Generalized Principal Generalized Principal Generalized Principal Generalized Principal Generalized Principal
Component 1 Component 2 Component 3 Component 4 Component 5

5 ad

10

101

— . ; ; . 4 —10% . ; : — ; ; — ;
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
x-coordinate x-coordinate Xx-coordinate x-coordinate Xx-coordinate
Generalized Principal Generalized Principal Generalized Principal Generalized Principal Generalized Principal

Component 6 50 Component 7 Component 8 Component 9 Component 10
. . . . 4 . ] .
259 4
0.0
-2.51
: —5.01 R —44 : :
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x-coordinate x-coordinate x-coordinate x-coordinate x-coordinate

Figure S1: Top 2L generalized principal components for simulated SRT data (A, S) generated from an
axis-aligned L-layered tissue slice 7" with L = 5 layers.

C Improving visualization by binning spots

In our visualizations, we bin the expression values a; 4 of spots s; = (2, y;) with similar z-coordinates x;.
Specifically, we divide the range [min; z;, max; ;] of x-coordinates into Nyjnneq €qual-width bins, where
Bj; C [N]is the set of spots s; = (x;,;) in bin j and Z; is the center of bin j. We then construct “binned
expressions” a; , for each gene g and bin j, where a; 4 is the maximum likelihood estimate of the expression
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at z-coordinate 7;, given the expressions {a; 4 }icp; of spots in bin j and under the assumption these spots
have z-coordinate equal to z;. If the expressions a; 4 follow the Poisson expression model, then the binned
expression a; g = Zi:sie B, Gig is the total expression of all spots in bin j, while if the expressions follow the
Gaussian expression model, then the binned expression a; , = ﬁ Disic B, Uig 1s the average expression
of all spots in bin j (see e.g. Chapter 36 of [16]).

The binned expressions [a; 4] follow the same expression model and have approximately the same ex-
pression functions as the original expressions [a; 4], with the expression functions being equal for a suffi-
ciently large number Nypinneq Of bins [16]. Moreover, it is easier to visualize the piecewise linear expression
functions f,(z) in the binned expressions [a; 4] versus the unbinned expressions [a; 4] (Figure S2).
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Figure S2: (Left) Visualization of z-coordinate versus normalized expression values from an axis-aligned
layered tissue slice. (Right) Left plot with expressions binned across spots (z, y) with similar z-coordinates.

D Solving the L-Layered Problem with Approximate Layer Boundaries

D.1 Solving heat equation on a discretized tissue slices with boundary conditions

As described in Section 6.1, we estimate the real part u = Re ®; of each conformal map ®,(z,y) = u + v
by solving the following heat equation:

Vu=0
u(z,y) = gg,l forall (z,y) € T'y_1, 30)
w(z,y) = by forall (z,y) € Ty.
We solve (30) using the finite difference method [84], which estimates the values u(x, y) at grid points

on either a regular square grid [84] or a regular hexagonal grid [52]. For our analyses, the two datasets
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Ry

b 1 b2 bg b4

X

Figure S3: A conformal map ® maps a 5-layered tissue slice to an axis-aligned tissue slice. Color indicates
layers. The gray lines of the right panel in the second and third layer are grid lines parallel to z and y
coordinate, their corresponding lines before mapping ® are also known in gray lines. A special case when
® is a rotation is shown in the lower panel.

obtained using the 10X Visium platform have spots that form a regular hexagonal grid. For the Slide-SeqV?2
dataset, we overlay a regular square grid on the tissue and approximate the harmonic function value of each
spot by that of its nearest grid point. We address the special cases of £ = 1, L at the end of this section.

We now briefly describe the finite difference method we implement to solve (30). Abusing notation, let
$1, 82, ..., SN be the grid points (from either a square grid or a hexagonal grid). Let By_; be the grid points
closest to/lying on the layer boundary I'y_;. We define By similarly. Let u = (u(s1), u(s2),...,u(sy)) be
the vector of the function u(z, y) evaluated at grid points s;, let up,_,, up, be the subset of u corresponding
to u(z,y) evaluated at points in By_1, By, respectively. Let us be the function u(z, y) evaluated at points
notin By_1, By, i.e. the interior points. Let E; be the set of grid points adjacent to s;. In a regular hexagonal
grid case, | E;| = 6, while in a regular square grid case, | E;| = 4. We partition the vector u into two subsets:
the spots up

We discretize (30) into a system of linear equations of the form

1
u; = > (31)
JEE;
forall: =1,..., N, where we constrain ug, ,,up, as
up, , = b (32)
up, = by. (33)

This linear system can be rewritten in matrix form as Lu = 0, where L is the Laplacian matrix of the
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grid, i.e.
|Eil it =1
L@j = -1 if j € E;
0 otherwise.

We also partition the Laplacian matrix L as L = <LB D ) , where B = By_1 U B,. Then, the solution

DT L,
to the discretized heat equation (31) is given by

u; = —LI_IDTUB,

where up is constrained by (32), (33).

For the first layer R; and the last layer Ry, these regions are bounded by a layer boundary I'; on one
side and a tissue boundary 97 on all other sides. Moreover, the tissue boundaries are generated by tissue
cutting and preparation in experiments and they may not be parallel to layer boundaries. Therefore, tissue
boundaries are not informative of relative layer depth, and we do not solve the heat equation (30) with two
boundaries condition We instead define the layer depth by heat diffusion from the one layer boundary, for
which the temperature is fixed. As before, we denote the spots on the layer boundary by B and interior spots
or the ones on tissue boundaries as I, and we partition the temperature u of spots by ug and uy. Let W be
the weighted adjacency matrix defined by

(J € Ni)
0 (otherwise)

for: € I and

{1 (j =)

Wi; = .

0 (otherwise)

for 7+ € B. Without loss of generality, we assume that spots in B are placed on the top left of W. The
up
0
of diffusion steps to define relative layer depth. The number of diffusion steps ¢ is chosen as the smallest
number of steps such that minu; = d minug. That is, all spots have a nonzero temperature (d is chosen
to be 0.01) but far from reaching steady state. Note that the following regression is invariant by any affine
transformation of u. We choose an affine transformation such that the largest difference of temperature
max u — min u is the partial Hausdorff distance.

temperature of spots in I after ¢ step diffusion is W* . We use the diffusion after a fixed number

E Dynamic programming algorithm for Linear L-Layered Problem

We derive a DP algorithm for solving an optimization of the form (15) for any function c(R) that maps
subsets R C T of the tissue to R. We present the algorithm for the case where the tissue slice 7' is a circle,
but we note that the DP algorithm is directly applicable to any convex shape 7.

Circle Problem Statement

We are given a circle 7" with b = Npoundary fixed points around its circumference J7" and an objective
function c(R). We define Q(T') to be the set of lines I' with endpoints on the boundary 07" of the tissue
T'. Without loss of generality, let the points on 07" be labeled clockwise sy, . .., s in clockwise order. We

34


https://doi.org/10.1101/2022.02.05.479261
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.05.479261; this version posted July 25, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

expect b = O(v/N), where N is the total number of points in the interior of 7. Note that all arithmetic
regarding points in 7" will be done mod b, unless otherwise stated. Let M}, be the best fit with L layers
(i.e., with L — 1 linear layer boundaries) in 7. Then our goal is to find:

My = arg max Z C(R)a (15)
L1, PL-1€Q(T) =y

Circular Segment Dynamic Program

For convenience, we define [n, m] to be the sequence (n + 1,...,m — 1) of indices when m > n, and the
sequence (n + 1,... s Nooundary, 1, ..., m — 1) when n > m. We define the circular segment 75, ,, C T
to be the region of the tissue 7T that is formed by drawing a line I' between spots s,, and s, and has
boundary spots {s;}ic[nm- Call layer boundaries I' = T'y,...,I';_1 nested if for any two lines v and

Xy in I' defined such that if x is the closest clockwise point to u in {x,y, v}, it is the case that y is the
closest counterclockwise point to v in {z, y, u}. Note that nestedness is a stronger condition than the layer
boundaries I' not intersecting; see Figure S4A for an example of layer boundaries that are non-intersecting
but are also not nested.

First, we consider the computation of the following related quantity (Figure S4B). Let M, ,,, o be the
optimal nested layer boundaries with £ layers in the region 75, ,,,, i.e.

l
M, = a R). 17
nm, nested Fl,.‘%eieQ(Tn,m) g’z—:l C( ) an

We first give a dynamic programming algorithm for computing M, ,,, » in O(b* - ¢) time. We will later
leverage this algorithm in order to compute M7,.

The best fit with ¢ layers in the region T, ,,, can be decomposed as the sum of: (1) the best fit with
¢ — 1 layers in the region T}, ,,y and (2) the fit (T}, \ Ty ) for the region T}, ,, \ Ty, for some
n’,m’ € [n, m]. Thus, we have the following recurrence relationship:

Mn,m,ﬁ = maXx (Mn’,m’,€—1 + C(Tn,m \ Tn’,m’)) (18)

n',m’

s.t. [n/,m/]C[n,m]

Our base cases are:

Mn,m,l = C(Tn,m)a
My me=—00oVn,mst.m—n<2(+1

The first base case says if we have a circular segment 7T}, ,,, with 1 layer (i.e. 0 layer boundaries), then
that layer must include the entire circular segment. The second base case says that if there are not enough
possible endpoints between n and m to place £ lines, then there is no possible solution. To see why, note that
the endpoints of any layer boundary in 7}, ,, mustbe in V' = [n 4 1, m — 1] and thus |V| = m —n — 1. For
M, 1 ¢, we must add £ lines using the endpoints in V, each with 2 endpoints. m —n < 20 +1 = % <l
which implies there are not enough possible endpoints to add £ lines. By the pigeonhole principle, there is
no possible solution for M, ,,, ¢.

Our recurrence (18) finds the ¢ best nested layer boundaries contained within 75, ,,,. If the outermost layer
boundary (i.e. the layer boundary closest to 7, m) has endpoints n’, m/, then we must place an additional
¢ — 1 layer boundaries within T,/ ,,,», otherwise the layer boundaries would not be nested. The optimal value
of the objective function in (18) is then the optimal value of placing ¢ — 1 lines within T, ,,» added to the

35


https://doi.org/10.1101/2022.02.05.479261
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.05.479261; this version posted July 25, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

M@, m, I- 1)

(A) (B)

M(n. m, I) = max
n', m’
n m n

¢(T{n, m} \ T{n'm’})

m

Figure S4: (A) Example of non-nested layer boundaries. (B) Visualization of recurrence for dynamic pro-
gramming algorithm for linear layer boundaries.

value of the objective function for the region 7T}, ., \ T}/ 5. We check all possible values of n’, m’ and save
the maximal value. See Figure S4B for a visualization of the recurrence (18).

Finding the First Layer Boundary

We find the optimal layer boundaries for the circle T' by adding the value of the optimal nested layers for
circular segment 75, ,,, with the value of its complementary region 71}, ,, for all n, m and taking the maximal
result:

L
M SR e (e M)
Note that the optimal set of layer boundaries has some layer boundary =y such that all other layer
boundaries have endpoints in [z,y]|. Because we are maximizing over all starting values of n, m, we are
guaranteed to use x, y as the starting value at some point during the maximization of (19).
The above maximization (19) computes M, in O(b?) time, assuming a constant-time lookup for My
Furthermore, we construct a lookup table for all values of M, ,, s forn,m =1,...,band ¢ =1,..., L in
time O(b* - L) using the following algorithm:

Algorithm 1: Creating lookup table for all M, ,, ¢
Input: {s1,...,sp}, L, ¢(R)
Output: M, ,, oV n,mand { < L
for { < Oto L do
forn< 0tob—1do
form < 0tob—1do

if n # m then
| Compute M, ,, » using recurrence in (18)

end
end

end

end

Note that for any ¢ € {1,..., L}, the values of M,, ,, ¢ for all n, m, and ¢ < ¢ will be populated in the
lookup table before they are referenced by Algorithm 1 to compute M, ,,, ¢. In Algorithm 1, n and m each
contribute a factor of b to the run-time. The inner maximization in the recurrence contributes a factor of b2,
and iterating over £ = 1,..., L contributes a factor of L, so that Algorithm 1 has a run-time of O(b* - L).
Therefore, the overall run-time to find My, = O(b* - L) + O(b?) = O(b* - L). We note that this approach
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is easily adapted to any convex shape 7' by adding the constraint that no layer boundary can have endpoints
on the same edge of the shape.

In practice, for the DLPFC analysis (Figure 3), computing c¢(7},, \ Ty ) takes approximately 20
hours on a 100-node cluster while computing M,, ,,, , and M, takes approximately 5L minutes in total. The
bottleneck in computing ¢(7}, m, \ T/ ) is solving large linear systems in the heat equation. Improving the
computation time is one future direction for improving Belayer.

F Additional approaches for marker gene identification

We additionally evaluated (Figure S10) five other approaches for ranking genes in marker gene identification.
We describe these ranking approaches below.

* Ranking genes by their Moran’s I score, a standard measure of spatial autocorrelation [67]
* Ranking genes by their Geary’s C score, another standard measure of spatial autocorrelation [35]

* Ranking genes by their likelihood ratio test (LRT) p-value, where we compare the maximum log-
likelihood (12) with a piecewise constant expression function f, to the maximum log-likelihood (12)
with a piecewise linear expression function f.

* Ranking genes by their LRT p-value as above but restricted to Belayer Layer 3 (Figure 3D)

* Ranking genes by the sum ZEL:1 | Bg’d of their (absolute) layer-specific slopes across the L layers
identified by Belayer.

* Ranking genes by the maximum difference max |]/C;7g+1(q)g+1(rg)) - E75+1((I)g(rg))| between

=1l,...

layer-specific expression functions fg,g) at layer boundaries I'y across the L layers identified by
Belayer.
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Figure S5: Comparison of Belayer, BayesSpace, SCANPY, and SpaGCN in identifying spatially distinct
cell clusters in the first simulation. Performance of each method is evaluated according to the Adjusted
Rand Index (ARI) and shown for different values of the number L of layers and standard deviation o of the
added Gaussian noise. Error bars indicate variation from 5 randomly simulated datasets for each parameter
setting.
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Figure S6: Comparison of Belayer, BayesSpace, and SCANPY in identifying spatially distinct cell clusters
in the second simulation. Performance of each method is evaluated according to the Adjusted Rand Index
(ARI) and shown for different values of the number L of layers and differential expression (DE) probability.
Error bars indicate variation from 5 randomly simulated datasets for each parameter setting.
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Figure S7: Number L of layers vs. difference in negative log-likelihood at L layers and L — 1 layers
for DLPFC sample 151508 (left) and the mouse skin wound dataset (right). Vertical dashed line indicates
manually annotated elbow.
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Figure S8: Comparison of Belayer (solving the Linear L-Layered Problem), Belayer (solving the -Rotated
L-Layered Problem) and other methods in identifying annotated layers in SRT data from the DLPFC of
Donor 1 as in Figure 3.

Donor 1 Donor 2 Donor 3
151507 151508 | 151669 151670 151671 151672 | 151673 151674 151675 151676
Belayer ARI 061 0621 |035 061 0707 059 |0653 0669 0.697 0551
(Belayer model selection)
BayesSpace ARI
. 0.507 0.48 0.322 0.363 0.403 0.505 0.364 0.338 0.329 0.459
(Belayer model selection)
BayesSpace ARI

0.482 0.472 0.257 0.230 0.398 0.484 0.528 0.322 0.425 0.406

(BayesSpace model selection)

Table S1: Comparisons of Belayer, BayesSpace with Belayer’s model selection, and BayesSpace with its
own model selection in identifying cortical layers of DLPFC data. Two samples in Donor 1 are excluded
from this table because both model selections choose the same number of layers. The first two rows match
the ARIs in Figure 3A.
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Figure S9: Comparison of Belayer and other methods from Figure 3 with different metrics.
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Figure S10: Precision-recall curves for identifying marker genes in DLPFC sample 151508 as in Figure 4A
but with different rankings; see Section F for further explanation.
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Figure S11: (A) Comparison of Belayer and other methods in identifying cortical layers in Slide-SeqV?2
mouse somatosensory dataset. (B)/(C) Precision-recall curves for identifying marker genes in the same
dataset using ten different approaches for ranking genes.

(A) (8) 100

Figure S12: (A) Two parts of the tissue boundary are used to construct a conformal map over the entire tissue
in the mouse somatosensory cortex dataset. Each spot is shown in spatial coordinate. Tissue boundary is
outlined by a black segmented line; the blue and red points indicate the two involved parts respectively. (B)
The real part of the conformal map is equivalent to the solution of heat equation whose values are shown by
the colormap.
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Figure S13: (A) Two parts of the tissue boundary are used to construct a conformal map over the entire
tissue (left) in the skin wound dataset. Each spot is shown in spatial coordinate. Tissue boundary is outlined
by a black segmented line; the blue and red points indicate the two involved parts respectively. The real part
of the conformal map is equivalent to the solution of heat equation whose values are shown by the colormap
(right). (B) Clusters identified by three other methods, BayesSpace, SCANPY, and SpaGCN. Clusters are
labeled and colored by the maximal overlap with annotated skin layers.
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Figure S14: Alternative model selection procedures for choosing the number L of layers.
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