
1

Learning to Decode Protograph LDPC Codes
Jincheng Dai, Member, IEEE, Kailin Tan, Student Member, IEEE, Zhongwei Si, Member, IEEE,

Kai Niu, Member, IEEE, Mingzhe Chen, Member, IEEE, H. Vincent Poor, Life Fellow, IEEE, and
Shuguang Cui, Fellow, IEEE

Abstract—The recent development of deep learning methods
provides a new approach to optimize the belief propagation (BP)
decoding of linear codes. However, the limitation of existing
works is that the scale of neural networks increases rapidly with
the codelength, thus they can only support short to moderate
codelengths. From the point view of practicality, we propose a
high-performance neural min-sum (MS) decoding method that
makes full use of the lifting structure of protograph low-density
parity-check (LDPC) codes. By this means, the size of the
parameter array of each layer in the neural decoder only equals
the number of edge-types for arbitrary codelengths. In particular,
for protograph LDPC codes, the proposed neural MS decoder is
constructed in a special way such that identical parameters are
shared by a bundle of edges derived from the same edge-type. To
reduce the complexity and overcome the vanishing gradient prob-
lem in training the proposed neural MS decoder, an iteration-by-
iteration (i.e., layer-by-layer in neural networks) greedy training
method is proposed. With this, the proposed neural MS decoder
tends to be optimized with faster convergence, which is aligned
with the early termination mechanism widely used in practice.
To further enhance the generalization ability of the proposed
neural MS decoder, a codelength/rate compatible training method
is proposed, which randomly selects samples from a set of codes
lifted from the same base code. As a theoretical performance
evaluation tool, a trajectory-based extrinsic information transfer
(T-EXIT) chart is developed for various decoders. Both T-EXIT
and simulation results show that the optimized MS decoding can
provide faster convergence and up to 1dB gain compared with the
plain MS decoding and its variants with only slightly increased
complexity. In addition, it can even outperform the sum-product
algorithm for some short codes.

Index Terms—Protograph LDPC codes, 5G, neural min-sum

This work was supported in part by the National Natural Science Foundation
of China under Grants 62001049 and 92067202, in part by the China
Post-Doctoral Science Foundation under Grant 2019M660032, in part by
Qualcomm Inc., in part by the U.S. National Science Foundation under
Grant CCF-1908308, in part by the National Key R&D Program of China
under Grant 2018YFB1800800, in part by the Key Area R&D Program of
Guangdong Province under Grant 2018B030338001, in part by Shenzhen
Outstanding Talents Training Fund, and in part by Guangdong Research
Project under Grant 2017ZT07X152. (Corresponding author: Jincheng Dai;
Kai Niu.)

J. Dai, K. Tan, Z. Si, and K. Niu are with the Key Laboratory of
Universal Wireless Communications, Ministry of Education, Beijing Uni-
versity of Posts and Telecommunications, Beijing, 100876 China (e-mail:
daijincheng@bupt.edu.cn; tankailin@bupt.edu.cn; sizhongwei@bupt.edu.cn;
niukai@bupt.edu.cn).

M. Chen is with the Department of Electrical Engineering, Princeton
University, Princeton, NJ, 08544 USA, and also with the Shenzhen Research
Institute of Big Data and Future Network of Intelligence Institute (FNii),
the Chinese University of Hong Kong, Shenzhen, 518172 China (e-mail:
mingzhec@princeton.edu).

H. V. Poor is with the Department of Electrical Engineering, Princeton
University, Princeton, NJ, 08544, USA (e-mail: poor@princeton.edu).

S. Cui is with the Shenzhen Research Institute of Big Data and Future
Network of Intelligence Institute (FNii), the Chinese University of Hong Kong,
Shenzhen, China, 518172 (e-mail: shuguangcui@cuhk.edu.cn).

Color versions of one or more figures in this article are available at xx
Digital Object Identifier xx

decoder, parameter-sharing, iteration-by-iteration training.

I. INTRODUCTION

RECENTLY, low-density parity-check (LDPC) codes have
been selected as the coding scheme for data channels in

the 5G new radio (NR) system [1], [2]. LDPC codes utilize
iterative decoding [3], [4] to achieve performance close to the
Shannon limit [5]. A number of iterative decoding algorithms
exist. Among these decoding algorithms, the standard sum-
product (SP) algorithm [6], also called the belief-propagation
(BP) algorithm [7], can achieve the optimal performance while
its high decoding complexity hinders its practical use. Instead
of the SP algorithm, the min-sum (MS) algorithm [8] and its
variants, such as the normalized min-sum (NMS) and the offset
min-sum (OMS) [9]–[11], have been developed to achieve the
approximate the performance of the SP algorithm with much
lower complexity, and thus they have been widely employed in
practical systems. Multi-edge type LDPC (MET-LDPC) codes
are introduced as a unified framework of structured LDPC
codes in [12]. Protograph LDPC codes [13] define a subclass
of MET-LDPC codes, which rely on the expansion of a smaller
matrix or graph prototype (the base graph) into a full matrix
or graph. With a well-designed structure, protograph LDPC
codes can achieve better performance and are more suitable
for an efficient encoding/decoding implementation.

In recent years, machine learning approaches have been
rapidly developing [14], [15], and they have given impressive
performance in physical layer communications [16]–[18], e.g.,
channel estimation, decoding, etc. Particularly, in [19], learn-
able weights are added to the SP algorithm and tuned by the
gradient-based optimization method. The resulting weighted
SP decoder in [19] can efficiently mitigate the negative impact
caused by the short cycles in the Tanner graph, and shows
the improvements of up to 1.5dB in the signal-to-noise ratio
(SNR) against the conventional SP algorithm when decoding
high-density parity-check (HDPC) codes. In [20] and [21], the
NMS/OMS decoders with learnable normalizing/offset factors
are studied to provide more hardware-friendly neural decoders.
Nevertheless, all these existing works [19]–[21] are on HDPC
with codelengths less than 200 bits.

As the codelength increases, the dimensions of the parity-
check matrix also increase, thus increasing the parameter array
of the neural decoder, and resulting in extremely high training
complexity. In addition, the iterative decoding convergence
rate for longer codes becomes slower, which requires more
iterations (e.g., 50, or even more) corresponding to quite
deep neural networks. It may lead to the vanishing gradient
problem during the training process. These reasons lead to that

ar
X

iv
:2

10
2.

03
82

8v
2

 [
cs

.I
T

]
 1

0
Fe

b
20

21

2

current neural SP decoders [19]–[21] may only support short
to moderate codelengths.

In this paper, from the point view of practicality, we propose
a neural MS decoding method for protograph LDPC codes
that makes full use of the lifting structure to overcome the
limitation of codelength. We add fine-tuned parameters to the
plain MS algorithm, making it a better approximation to the
SP algorithm. The proposed neural MS decoder is constructed
in a special way that follows a parameter-sharing mechanism.
By this means, only a small parameter array is required, whose
size is only proportional to the number of edges in the base
graph. This parameter-sharing mechanism efficiently reduces
the training complexity and memory cost, thus overcoming the
limitation of codelength in the conventional neural iterative
decoders [21]. In addition, different parameters are applied to
different edge-types and iterations, which enables the neural
MS decoder to mitigate the message correlation due to short
cycles in the Tanner graph and tends to faster convergence,
especially for some short codelength cases.

Note that the LDPC coding scheme in 5G NR [2] adopts
the protograph structure, including two base graphs (BG1 and
BG2), to meet the requirements of high performance, high
throughput, and low decoding latency. Hence, in this paper, we
choose 5G LDPC codes as a representative of the protograph
LDPC code class to train and verify the proposed neural MS
decoder.

To the best of our knowledge, this is the first work to inves-
tigate neural decoding methods for protograph LDPC codes.
The novelty and contribution of this paper are summarized as
follows:
• Parameter-Sharing Mechanism: For protograph LDPC

codes, since the base graph encapsulates the desired
macroscopic structure, the original structural properties
imposed by the base graph remain unchanged in the lifted
graph. Because of this, the same parameters can be shared
by a bundle of edges derived from the same edge in the
base graph. Accordingly, the number of parameter pairs
required for training only equals the number of edges in
the base code. Moreover, the same parameter settings can
be employed for decoding multiple codes derived from
the same base code. This parameter-sharing mechanism
makes it much more memory-efficient for the practical
implementation of the proposed neural MS decoder.

• Iteration-by-Iteration Greedy Training: Departing from
the well-known multi-loss training method [21], we pro-
pose an iteration-by-iteration, i.e., layer-by-layer in neural
networks, greedy training method by which only parame-
ters of the last decoding iteration are learnable, and those
for previous iterations are fixed. This training process
is beneficial in three ways: (i) reducing the training
complexity and combat the vanishing gradient problem in
deep neural MS decoders; (ii) enabling the proposed neu-
ral MS decoder to mitigate the message correlation due
to short cycles and tend to faster convergence, especially
for some short codelength cases. This is aligned well with
the early termination mechanism widely used in practical
iterative decoders; and (iii) enabling the proposed neural
MS decoder, with one iteration as its training granularity,

to flexibly set up the decoding configurations, i.e., the
number of iterations. In this way, many parameters in the
optimized MS decoder can be reused rather than retrained
for every different configuration.

• Codelength/Rate Compatible Training: Taking advantage
of the proposed parameter sharing mechanism, to enhance
the generalization ability of a trained neural MS decoder
to multiple codelengths and rates, we design a training
process that randomly selects samples from a set of codes
with different lengths or rates, and the codes provided
for selection are derived from the same base code. This
training process mitigates the overfitting problem to a
certain code length (implicitly, the lifting way of proto-
graph codes) or code rate, thus improving the length/rate
compatibility of a trained neural decoder.

• T-EXIT Evaluation: A trajectory-based extrinsic infor-
mation transfer (T-EXIT) analysis is performed for
neural MS decoders. The T-EXIT computation takes
into account different normalizing and offset factors on
edge bundles, which permits the convergence evaluation
among various decoding algorithms. It presents the supe-
riority of neural MS decoding from theoretical perspec-
tive.

The remainder of the paper is organized as follows. Section
II briefly reviews the mainstream iterative decoding algorithms
and the protograph LDPC codes. Section III describes the
proposed neural MS decoding algorithm and its training
method. In Section IV, damping factors are further introduced
to enhance the performance of neural MS decoders. Section V
introduces the T-EXIT performance analysis method. Section
VI shows the performance evaluation results with T-EXIT and
simulations. Finally, Section VII concludes the paper.

II. PRELIMINARIES

A. Notational Conventions

In this paper, we use calligraphic characters, such as X ,
to denote sets. We write lowercase letters (e.g., x) to denote
scalars. We use notation x to denote a vector and xi to denote
the i-th element in x. The bold letters, such as X, denote
matrices. Specially, the set of binary and real numbers are
denoted by B and R, respectively. In addition, we use the
uppercase letter (e.g., Y) to denote random variable and the
lowercase letter y to represent a realization.

Throughout this paper, log (·) denotes “logarithm base 2”,
and ln (·) stands for the “natural logarithm base e”, where the
constant e = 2.71828

B. Iterative Decoding Algorithms

As described by in [22], Tanner graph provides a complete
representation of LDPC code and it aids in the description of
decoding algorithms. A Tanner graph is a bipartite graph, that
defines two sets of nodes: variable nodes (VNs) and check
nodes (CNs). Each of the bits in the codeword corresponds
to a VN, and each of the parity-check equations (rows of the
parity-check matrix) corresponds to a CN. If a bit participates
in a parity-check equation, there is an edge between the
corresponding VN and CN.

3

Iterative decoding algorithms are operated on the Tanner
graph [6], which is a graphical representation of some parity
check matrix that describes the code. The commonly used
message in iterative decoding is the bit log-likelihood ratio
(LLR). Given a noisy received signal vector y corresponding
to a transmitted codeword x, the LLR of the v-th bit in x is
defined as

`v = ln
Pr (yv |xv = 0)

Pr (yv |xv = 1)
, (1)

where the Pr (yv |xv) denotes the transition probability from
xv to yv .

The decoding of LDPC codes can be described as iterative
message exchanges between VNs and CNs. During iteration
i, the message passing from VN v to CN c is

`(i)v→c = `v +
∑

c′∈N (v)\c

`
(i−1)
c′→v , (2)

where N (v) denotes the neighboring node set of v consisting
of CNs which are adjacent to the VN v, and N (v) \c denotes
the neighboring node set except the CN c.

The message passing from CN c to VN v is

`(i)c→v = 2tanh−1

 ∏
v′∈N (c)\v

tanh

(
`
(i)
v′→c

2

) , (3)

where N (c) denotes the neighboring node set of c consisting
of VNs which are adjacent to the CN c, and N (c) \v denotes
the neighboring node set except the VN v. At the first iteration,
`
(0)
c→v is initialized to 0 in (2).

After i iterations, the soft estimation sv about the LLR for
code bit xv is written as

sv = `v +
∑

c′∈N (v)

`
(i)
c′→v, (4)

and a decision is made by

x̂v =
1− sgn (sv)

2
, (5)

where the function sgn (sv) denotes the sign of sv .
The iterative decoding procedure described above is called

the sum-product (SP) algorithm or the belief-propagation (BP)
algorithm. To implement equation (3), the SP decoder involves
hyperbolic tangent functions and many multiplications. To re-
duce computational complexity, the min-sum (MS) algorithm
[8] is used to approximate equation (3) as

`(i)c→v =

 ∏
v′∈N (c)\v

sgn
(
`
(i)
v′→c

)× min
v′∈N (c)\v

∣∣∣`(i)v′→c

∣∣∣ . (6)

Compared to the SP algorithm, the MS approximation suf-
fers from non-negligible performance loss. Several enhanced
MS algorithms have been proposed in [9]: the normalized min-
sum (NMS) adds a normalization scaling factor α to (6) as

`(i)c→v = α×

 ∏
v′∈N (c)\v

sgn
(
`
(i)
v′→c

)× min
v′∈N (c)\v

∣∣∣`(i)v′→c

∣∣∣ .
(7)

333

1VN 2 3

1 2CN

VN

CN

1

1

1

1

1

1

2

2

2

2

2

2

333VN

CN

1

1

1

1

1

1

2

2

2

2

2

2

Copy 3 times

Edge permutation within

each edge-type (ET)

ET-1
ET-2

ET-3

ET-4

Fig. 1. A graphical demonstration of protograph LDPC codes.

Another technique named the offset min-sum (OMS) adds an
offset correction term to (6) as

`(i)c→v =

 ∏
v′∈N (c)\v

sgn
(
`
(i)
v′→c

)×
max

{
min

v′∈N (c)\v

∣∣∣`(i)v′→c

∣∣∣− β, 0} .
(8)

The OMS method avoids multiplications, making it more suit-
able for practical iterative decoder implementation. For NMS
and OMS algorithms, the critical α and β should be optimized
for every specific LDPC code by using the density evolution
(DE) [10] and the recommended values are α = 0.8, β = 0.15
in [9]1 for some regular LDPC codes. They are viewed as one
benchmark for comparison in many existing works [10], [11].
Thus, in this paper, we also adopt the NMS decoding with
α = 0.8 and the OMS decoding with β = 0.15 as two baseline
algorithms. Later, although some adaptive methods [11] were
proposed to recognize the signal amplitude and noise variance,
they also increase the computational complexity. Hence, there
are still no analytical results for the choice of α and β, and
the current optimization methods can only deal with single
parameter cases.

C. Protograph LDPC Codes

Multi-edge type LDPC (MET-LDPC) codes [12] define
a unified framework of structured LDPC codes. Unlike the
Tanner graph of conventional LDPC codes with only a single
edge-type, MET-LDPC codes provide multiple edge-types and
allow exploring better codes that are optimized under specific
constraints. These constraints are usually designed to improve
the efficiency of encoding and decoding.

Protograph LDPC codes [13] are a subclass of MET-LDPC
codes, which is defined using a small base code. The LDPC

1The normalizing factor in [9] is written as the division form, hence, the
recommended value 1.25 in [9] is converted to α = 1/1.25 = 0.8 in this
paper.

4

codes adopted in 5G NR are the protograph codes [2], and
Fig. 1 shows a toy example of protograph LDPC codes. A
set of edge-types are defined in an (Nb,Kb) base code, where
Nb and Nb − Kb equal the number of VNs and CNs in the
Tanner graph corresponding to this base code, i.e., the base
graph. According to the connections to these edges, variable
and check node-types are determined, respectively. An (N,K)
code is derived by taking Z = N/Nb = K/Kb replicas of
the base graph and then permuting the edges within the same
edge-type to integrate the separated Z base graph replicas
into a larger one. This operation is called lifting, and the
derived code is also named the “Z-lifted” LDPC code. Since
the edge permutation is performed only within a bundle of
edges of each edge-type, the structural properties of edges
and nodes (e.g., degree) in the lifted codes remain the same
with that in the base code. Hence, the macroscopic structure
of a protograph LDPC code can be captured by its small base
graph [1]. This encapsulation property of protograph LDPC
codes allows our proposed neural MS decoder to apply the
same correction term to all edges of the same edge-type. The
details will be presented in Section III.

III. THE PROPOSED NEURAL MIN-SUM DECODER

In this section, we present details of the optimized MS
decoding by using customized sparse neural networks.

A. Neural MS Decoding for Protograph LDPC Codes

The above normalizing and offset factors can be viewed as
the assigned weights and biases to the edges in the Tanner
graph. Thus, to find the optimal parameters, a straightforward
method is to construct an MS decoding neural network to auto-
matically learn these parameters. To this end, according to the
Tanner graph, we can construct a sparse neural decoder with a
not-fully connected structure that is a trellis representation of
iterative decoding. The neural network input layer is a vector
of size N , which is the code block length (i.e., the number of
variable nodes in the Tanner graph). All the subsequent layers
in the trellis, except for the last one (i.e., all the hidden layers),
are of size E, where E denotes the number of edges in the
Tanner graph. For ease of exposition, we mark the hidden layer
index i corresponding to the i-th iteration in the MS decoding
process. Each hidden layer includes two sublayers iv and ic
corresponding to VN update and CN update, respectively. The
output layer contains N neurons.

For hidden layer i, each processing element (PE) in sublayer
iv outputs the message along the edge sent from the associated
VN to CN, and each neuron in sublayer ic outputs the message
along the edge sent from the associated CN to VN. The PE in
the first hidden layer (sublayer 1v) corresponding to the edge
e = (v, c) is connected to the v-th element in the input layer.
The PEs in hidden layer i (i > 1) (sublayer iv) corresponding
to the edge e = (v, c) is connected to the neurons in hidden
layer (i− 1) (sublayer (i− 1)c) associated with the edges e′ =
(v, c′) for c′ 6= c. The neurons in hidden layer i (i ≥ 1)
(sublayer ic) corresponding to the edge e = (v, c) is connected
to the PEs in sublayer iv associated with the edges e′ = (v′, c)
for v′ 6= v.

Cluster 1 (Eb PEs)

...

VN update

sublayer

Cluster Z (Eb PEs)

Cluster 1 (Eb PEs)

...

VN update

sublayer

Cluster Z (Eb PEs)

Cluster 1

(Eb neurons)

...

CN update

sublayer

Cluster Z

(Eb neurons)

Cluster 1

(Eb neurons)

...

CN update

sublayer

Cluster Z

(Eb neurons)

Cluster 1 (Eb PEs)

...

VN update

sublayer

Cluster Z (Eb PEs)

Cluster 1 (Eb PEs)

...

VN update

sublayer

Cluster Z (Eb PEs)

Cluster 1

(Eb neurons)

...

CN update

sublayer

Cluster Z

(Eb neurons)

Cluster 1

(Eb neurons)

...

CN update

sublayer

Cluster Z

(Eb neurons)

...

Cluster 1 (Eb PEs)

...

VN update

sublayer

Cluster Z (Eb PEs)

Cluster 1 (Eb PEs)

...

VN update

sublayer

Cluster Z (Eb PEs)

Channel LLR

input

Channel LLR

input

Channel LLR

input

Channel LLR

input

Channel LLR

input

Channel LLR

input

Cluster 1

(Eb neurons)

...

CN update

sublayer

Cluster Z

(Eb neurons)

Cluster 1

(Eb neurons)

...

CN update

sublayer

Cluster Z

(Eb neurons)

Output layerOutput layer

Fig. 2. Network structure of the proposed neural MS decoder.

Regarding the protograph LDPC codes, all the E PEs or
neurons in each hidden layer can be divided to Z clusters, each
cluster contains Eb elements corresponding to the number of
edges on the base graph, thus we have E = ZEb. Given an
(Nb,Kb) base code Cb, for the Z-lifted code, we define the set
Eeb denoting the Z-bundle of edges derived from eb = (vb, cb)
as

Eeb=(vb,cb) ,{
e = (v, c)

∣∣∣∣∣v = vb + λvNb, λv ∈ [[N − 1]] ,

c = cb + λc (Nb −Kb) , λc ∈ [[N − 1]]

}
,

(9)

where the set [[N − 1]] , {0, 1, · · · , N − 1}. Thus, the PEs or
neurons in each cluster belong to a different set Eeb=(vb,cb). A
demonstration of the neural MS decoder is given in Fig. 2.

The messages transmitted over the neural MS decoder are
as following. Given the number of iterations I , consider the
i-th hidden layer, i = 1, 2, · · · , I , and the e = (v, c) is the
index of some PE in sublayer iv . The output message of this
PE is written as

`
(iv)
e=(v,c) = `v +

∑
e′=(v,c′),c′ 6=c

`
((i−1)c)
e′ , (10)

where `(0)e′ = 0 for all e′ at the initialization step. Regarding
the protograph structure, for any e ∈ Eeb=(vb,cb), we can derive
that e′ ∈ Ee′b=(vb,c′b) with c′b 6= cb in (10). The output message
of neuron e = (v, c) in the ic-th sublayer is written as

`
(ic)
e=(v,c) =

 ∏
e′=(v′,c),v′ 6=v

sgn
(
`
(iv)
e′

)×
ReLU

(
α(i)
e × min

e′=(v′,c),v′ 6=v

∣∣∣`(iv)e′

∣∣∣− β(i)
e

)
,

(11)

where ReLU (·) is one of the most commonly used activation
functions in deep learning studies,

ReLU (x) = max (x, 0) . (12)

Clearly, different from previous works [19]–[21], where [19]

5

TABLE I
FOUR TYPES OF NEURAL MS DECODER.

Type Description Definition (i′ and i′′ denote two different iterations)

Type-I neural NOMS α(i′) 6= α(i′′), β(i′) 6= β(i′′) with i′ 6= i′′

Type-II simplified neural NOMS α(i) = α(i), β(i) = β(i), α(i′) 6= α(i′′), β(i′) 6= β(i′′) with i′ 6= i′′

Type-III simplified neural NMS α(i) = α(i), β(i) = 0, α(i′) 6= α(i′′) with i′ 6= i′′

Type-IV simplified neural OMS α(i) = 1, β(i) = β(i), β(i′) 6= β(i′′) with i′ 6= i′′

trained a weighted SP decoder and [20] trained an OMS de-
coder with learnable offsets, we add both normalizing factors
and offset factors to (6) of the MS algorithm, i.e., the equation
(11). This design is indeed consistent with classical neural net-
works [14] equipped with both weights and biases so that the
degrees of freedom for optimization are expanded. Compared
to traditional neural decoders with only weights or biases, the
proposed neural MS decoding can better compensate for the
min-sum loss, and partially mitigate the message correlation
due to short cycles in the Tanner graph as a bonus. The output
neuron gives the information

ov = σ

`v + ∑
e′=(v,c′)

`
(Ic)
e′

 , (13)

where σ (x) = (1 + exp (−x))−1 is the sigmoid function, it
ensures the final network output is in the range [0, 1] denoting
the probability of transmitted bit xv = 0. Also, note that by
setting all the weights α(i)

e to 1 and all the biases β(i)
e to 0,

the proposed neural MS decoder regenerates the standard MS
decoder as (2) and (6).

The weights
{
α
(i)
e=(v,c)

}
and biases

{
β
(i)
e=(v,c)

}
within

neurons vary for different iteration i for i = 1, 2, · · · , I . The
message updating (2) from VNs to CNs remains unchanged
which is completed within the PEs as (10). The proposed
neural MS decoding method can be easily extended to the
neural SP decoding method by changing the message update
rule in (11) as follows:

`
(ic)
e=(v,c) =

α(i)
e × 2tanh−1

 ∏
e′=(v′,c),v′ 6=v

tanh

(
`
(iv)
e′

2

)+ β(i)
e .

(14)

Hereinafter, we focus on the neural MS decoding method and
the neural SP decoding method is set as a comparison in
Section VI.

Proposition 1 (parameter-sharing mechanism). The macro-
scopic structure of a protograph LDPC code can be captured
by its small base graph [1]. Taking advantage of this encap-
sulation property of protograph LDPC codes, an additional
restriction is applied to the weights and biases: for any edge
pair e1 and e2 belonging to the same edge-type, i.e., e1 ∈ Eb
and e2 ∈ Eb, the same values are applied to the neurons
corresponding to these two edges, i.e.,

α(i)
e1 = α(i)

e2 , (15a)

β(i)
e1 = β(i)

e2 . (15b)

Moreover, one parameter array may be applied to multiple
lifted codes derived from the same base code.

With the protograph-based parameter-sharing mechanism in
Proposition 1, to decode a set of protograph LDPC codes
derived from the same base code, only a small weight/bias
array must be adapted. In particular, the size of the parameter
array is proportional to the number of edge-types, or equals
the number of edges in the base graph2. Hence, compared to
applying independent correction terms to every edge in the
Tanner graph of every specific code [19]–[21], the proposed
protograph-based parameter-sharing mechanism can efficiently
reduce training complexity and memory cost. Furthermore, it
breaks the limitation of codelength, thus the proposed neural
MS decoder can be applied to moderate and long codelengths,
which is desired for practical use.

In practical implementation, the proposed neural MS de-
coder includes four basic types summarized in Table I. For
iteration i, the parameter array α(i) includes Eb elements
α
(i)
e and each one represents a different edge-type. Also, the

parameter array β(i) includes Eb elements β(i)
e . In fact, neural

MS decoding is an integrated version of NMS and OMS
algorithms with fine-tuned factors so that it is named “neural
normalized&offset MS (neural NOMS)”. To reduce complex-
ity, we tie the tuned factors and introduce three simplified
versions of the neural NOMS. As shown in Table I, the Type-
II decoder sets the normalizing and offset factors within one
iteration as two paramters and they vary as the number of
iterations increases. Type-III and Type-IV are the simplified
neural NMS and OMS decoding methods, respectively, and
have been studied in previous work [23].

B. Training the Neural MS Decoder

In this paper, we use the expected cross-entropy between
the transmitted codeword x and the neural MS decoder output
o for the loss function, which has been proven to be effective
in previous works [19]–[21], defined as

L (o,x) = − 1

N

N∑
v=1

xv log (ov)+ (1− xv) log (1− ov) ,

(16)

2If the base graph has parallel edges as in MET-LDPC codes [12], the
conclusion is still valid since these parallel edges deliver the same LLR
message so that they can share the same parameters.

6

where ov and xv denote the neural network output and the
v-th element of the transmitted codeword.

Given a particular normalizing and offset vector α and β,
the loss function (16) can be estimated. By computing the
gradient ∇α,βL, the normalizing/offset factors can be tuned
by gradient-based optimization methods which are widely used
in deep learning studies, e.g., ADAM [24].

To find the optimal normalizing/offset factors, a straightfor-
ward training method is to construct an MS decoding neural
network according to (10), (11) and (13), and tuning the
weights and biases for all the I iterations, i.e.,

{
α(i)

}
and{

β(i)
}

with i = 1, 2, · · · , I , to minimize the loss function in
(16). The gradients are propagated from the network layer of
the I-th iteration to that of the first iteration. With a practical
iteration number I , e.g., 25 or 50, the network structure is quite
deep and suffers from the gradient vanishing problem when
training. In addition, the generalization ability of one trained
neural MS decoder to various codelengths and code rates is
a key for practical use. To address these two problems, we
propose two training methods as follows:

1) Codelength/Rate Compatible Training: We do not re-
strict the training samples selected from some one particular
code, even though it can achieve the best performance for this
code. According to Proposition 1, the same parameter array
can be applied to multiple codes derived from the same base
graph. Therefore, to enhance the generalization ability of one
trained neural MS decoder to multiple codelengths and code
rates, we can train the neural network by randomly selecting
samples from a set of codes C = {C1, C2, · · · } with different
lengths or rates, and these codes are derived from one identical
base graph Cb. In this way, one trained neural MS decoder can
match multiple codes.

2) Iteration-by-Iteration Greedy Training: To address the
vanishing gradient problem in a deep neural decoder, [19]–[21]
employ a multi-loss function to inject the gradients directly to
every layer. In this paper, we propose a different way: the net-
work is built and trained iteration-by-iteration greedily. Once
a layer is trained, the corresponding weights and biases are
fixed in the training for later iterations. The neural decoding
network is growing from a one-layer network for only one
iteration to a multi-layer network for I iterations; each time,
only the weights/biases in the last layer are learnable.

Compared to the multi-loss training method in [21], one
would expect a performance loss under this greedy training
method. However, in practice, the number of iterations used
for decoding cannot be very large, i.e., I ≤ 50, the potential
performance loss is negligible. Although the value of I is
moderate for the greedy strategy, the corresponding neural
decoding network that consists of I , e.g., 25 or 50, layers
has already been quite deep, which may lead to the vanishing
gradient problem when directly training all I layers.

In summary, the proposed greedy training method has the
following advantages:
• The actual network for training always has a shallow

structure so as to avoid the vanishing gradient problem
and reduce the training complexity.

• Per-edge-type parameters and the greedy training method
enable the neural MS decoder to mitigate the message

…

Input layer Output layer

Reused for neural decoder with iterations Reused for neural decoder with iterations

Fig. 3. A sketch of the reusability of hidden layers trained with the proposed
iteration-by-iteration manner.

correlation due to short cycles in the Tanner graph and
tend to optimize the performance of neural decoders
as early as possible, i.e., faster convergence, especially
for some short codelength cases. This is consistent with
the early termination mechanism widely-used in LDPC
iterative decoding.

• The one-iteration training granularity enables the neural
MS decoder to flexibly set up its decoding configura-
tions, i.e., the number of iterations. In this way, many
parameters in the optimized MS decoder can be reused
rather than retrained for every different configuration. As
shown in Fig. 3, the neural network is trained for Imax

iterations, then for any neural decoder with I (I ≤ Imax)
iterations, it can be directly built by recycling the first I
hidden layers in the trained neural decoder.

Algorithm 1: Training the neural MS decoder
Input: The base code Cb, the maximum iteration

numbers Imax, a set of lifted codes used for
training C = {C1, C2, · · · } derived from Cb,
and the SNR table where SNR (i, j) denotes the
training SNR for the i-th iteration of code Cj ;

1 for k = 1, 2, · · · , Imax do
// iteration-by-iteration training

2 Initialize a set of neural MS decoders with shared
weights and biases

{
α(i)

}
and

{
β(i)

}
with

iteration i = 1, 2, · · · , k which correspond to all
Cj ∈ C, respectively;

3 Weight/bias vectors for iteration i = 1, 2 · · · , k − 1
are initialized to previously learned values;

4 Initialize α(k) and β(k) corresponding to the last
iteration with random values;

5 repeat
6 Randomly select a code Cj ∈ C;
7 Randomly generate a codeword x of Cj ;
8 Generate the received signal y by sending x

through a BPSK modulated AWGN channel
with SNR (k, j);

9 Feed y into the neural MS decoder
corresponding to Cj and obtain output s;

10 Compute loss function according to (16);
11 Update α(k) and β(k) using gradient descent

algorithm;
12 until converge or reach a maximum step number;

13 return
{
α(i)

}
and

{
β(i)

}
with i = 1, 2, · · · , Imax.

7

TABLE II
TWO TYPES OF NEURAL MS DECODER WITH DAMPING FACTORS.

Type Description Definition (i′ and i′′ denote two different iterations)

Type-V neural NOMS with damping α(i′) 6= α(i′′), β(i′) 6= β(i′′), γ(i′) 6= γ(i′′) with i′ 6= i′′

Type-VI simplified neural NOMS with damping α(i′) 6= α(i′′), β(i′) 6= β(i′′), γ(i) = γ(i), γ(i′) 6= γ(i′′) with i′ 6= i′′

Since the bit error rate (BER) could vary a lot with different
iteration numbers, the SNR should be assigned to different
levels during the training process. In addition, note that the
weights/biases are shared among all the possible lifted codes
from the same base code, to prevent overfitting to a specific
code, the training set should include samples from a set of
codes with multiple lifting factors Z. Therefore, a table of
SNRs for multiple codes under different iteration numbers is
required for training. These SNR values should be selected to
have the same BER performance under a reference decoding
algorithm, e.g., the SP algorithm, to make all the codes used
for training are (approximately) fairly handled.

The proposed training methods for the neural MS decoder
are summarized in Algorithm 1, which can be easily extended
to a batch training variant.

IV. LEARNING TO DAMP

Apart from optimizing the output LLR messages from CN
update, one additional way is to relax [21] or damp [25]
the output LLR messages from VN update. By introducing
the damping factor, the convergence rate of a neural MS
decoder can be further improved [26]. In addition, the message
correlation due to short cycles in the Tanner graph can be
further mitigated, and thus the performance of the neural MS
decoder for short codelengths is improved.

At iteration i, the message is damped by obtaining a convex
combination of the message computed at iteration (i− 1) and
the message at iteration i, with damping factors. Hence, in the
neural MS decoder, the output message of the PE e = (v, c)
in sublayer iv is written as

`
(iv)
e=(v,c) = γ(i)e `

((i−1)v)
e +

(
1− γ(i)e

)
˜̀(iv)
e , (17)

where
˜̀(iv)
e = `v +

∑
e′=(v,c′),c′ 6=c

`
((i−1)c)
e′ , (18)

and the damping factor 0 ≤ γ(i)e < 1. Clearly, as γ(i)e → 0, the
decoder becomes less damped, and as γ(i)e → 1, the decoder
becomes more damped. When γ(i)e = 0, the decoder reverts to
being a normal decoder.

Combining the damping factors, we further derive two types
of neural MS decoders as Table II that follow the four basic
types in Table I. For the Type-V neural MS decoder, the per-
edge damping factor array of each iteration γ(i) also obeys
the parameter-sharing mechanism in Proposition 1, i.e., the
size of γ(i) only equals the number of edge-types. During the
training phase, we also adopt the iteration-by-iteration method
to avoid the vanishing gradient problem. Also, under different
numbers of iterations, a number of parameters in the optimized

Channel LLR

input

Channel LLR

input

Channel LLR

input

Channel LLR

input

Cluster 1

(Eb neurons)

...

CN update

sublayer

Cluster Z

(Eb neurons)

Cluster 1

(Eb neurons)

...

CN update

sublayer

Cluster Z

(Eb neurons)

Cluster 1 (Eb PEs)

...

VN update

sublayer

Cluster Z (Eb PEs)

Cluster 1 (Eb PEs)

...

VN update

sublayer

Cluster Z (Eb PEs)

Cluster 1 (Eb PEs)

...

VN update

sublayer

Cluster Z (Eb PEs)

Cluster 1 (Eb PEs)

...

VN update

sublayer

Cluster Z (Eb PEs)

Cluster 1

(Eb neurons)

...

CN update

sublayer

Cluster Z

(Eb neurons)

Cluster 1

(Eb neurons)

...

CN update

sublayer

Cluster Z

(Eb neurons)

......

Fig. 4. Network structure of the neural MS decoder with damping factors.

MS decoder could be reused rather than retrained for every
different configuration. The structure of a damped neural MS
decoder is figuratively given in Fig. 4.

V. T-EXIT CONVERGENCE ANALYSIS

In this section, we perform a trajectory-based EXIT (T-
EXIT) convergence analysis for various decoders. EXIT chart
[27], [28] is a powerful tool to analyze the convergence
of iterative decoders. It tracks the mutual information (MI)
transfer process during iterations. However, the conventional
EXIT analysis cannot be roughly applied to protograph LDPC
codes. Considering the different edge-connection properties,
Liva et al. proposed the protograph EXIT (PEXIT) algorithm
[29], where the MI is calculated for each VN and CN rather
than degree-distribution pair. The PEXIT analysis provides a
remarkably accurate and simple prediction of the decoding
threshold for many code classes. Nevertheless, note that:
• PEXIT is an asymptotic method used to determine the it-

erative decoding threshold for an LDPC decoding process
assuming the number of decoding iterations is unlimited
and the codelength is infinite. Since the number of
iterations needed by the proposed neural MS decoder
is limited and the codelength is finite, we cannot apply
the PEXIT method to determine the decoding threshold
and predict the asymptotic performance of the decoding
process of the proposed decoder.

• PEXIT can only be appropriately applied to SP decoding
under the AWGN channel [29]. For other algorithms, e.g.,
MS and its variants, the critical duality relationship [6]

8

between VN and CN cannot be accurately satisfied. Con-
sequently, the MI update at CNs cannot be analytically
calculated. Meanwhile, the updated LLRs at CNs are not
Gaussian so that the MI is hard to track.

Recently, a scattered EXIT (S-EXIT) chart method [30]
was developed to optimize the degree profiles of short LDPC
codes. By simulating several individual instances of a short
code, one can obtain corresponding EXIT trajectories of an
actual iterative decoder, and the vertices of these trajectories
form a clutter. This S-EXIT method utilizes the statistics of
numerous EXIT trajectories, and tracks their frequency of
occurrence over the EXIT MI plane, thus enabling us to gain
insight into the iterative decoding behavior. For the proposed
decoder, there is no need for us to “see through the clutter”
empirically as in S-EXIT since we only care about the average
reliability of propagated messages.

To evaluate the convergence performance of an iterative de-
coder, we track the average MI (AMI) transfer process between
VNs and CNs such that we can provide a virtual representation
of the iterative decoding process. This trajectory-based EXIT
method is named T-EXIT.

For iteration i, we denote I
(i)
A,VN (I(i)A,CN) as the a priori

AMI between input LLRs `(i−1)c→v (`(i)v→c) and the corresponding
code bits. Similarly, we denote I(i)E,VN (I(i)E,CN) as the extrinsic
AMI between output LLRs `(i)v→c (`(i)c→v) and the code bits. The
target of T-EXIT analysis is to obtain two transfer functions

I
(i)
E,VN = Tv

(
I
(i)
A,VN

)
, (19a)

I
(i)
E,CN = Tc

(
I
(i)
A,CN

)
. (19b)

To this end, we first collect all the output LLRs of VNs
and CNs at each iteration by using a number of simulated
code blocks. Then, we count the probability density functions
(PDFs) of these LLRs with the histogram method, and calcu-
late the AMI as

IY = I (X;Y) =
∑
x∈B

∫
R
pY (y|x)pX (x) log

pY (y|x)
pY (y)

dy.

(20)
In this way, we can get a zigzag path that reflects the decoding
trajectory. Then, by connecting the vertices at both ends of the
zigzag path separately, we can get two curves corresponding to
Tv (·) and T−1c (·), respectively. The specific steps of T-EXIT
are summarized as following.
• Initialization

Initialize the LDPC code C, the number of iterations I ,
the SNR, and the number of simulated blocks K (K is
sufficiently large);
Initialize I(1)A,VN = I

(0)
E,CN = 0;

Initialize vectors `(i)VN = ∅ and `(i)CN = ∅ to record LLR
messages with i = 1, 2, · · · , I;
Initialize vectors b

(i)
VN = ∅ and b

(i)
CN = ∅ to record code

bits, with i = 1, 2, · · · , I .
• Count LLR distributions

For k = 1, 2, · · · ,K and i = 1, 2, · · · , I , run simulation
by using the selected decoding algorithm so as to collect
total E LLR messages `(i)v→c (`(i)c→v) on each edge and

their corresponding code bits xv , then append them to
`
(i)
VN (`(i)CN), and b

(i)
VN (b(i)

CN), respectively;
For i = 1, 2, · · · , I , utilize `(i)VN (`(i)CN) and b

(i)
VN (b(i)

CN)
to count PDFs pE,VN (`|0) (pE,CN (`|0)), pE,VN (`|1)
(pE,CN (`|1)), and pE,VN (`) (pE,CN (`)) with the his-
togram method, then calculate the AMI I(i)E,VN (I(i)E,CN)
according to (20).

• Generate the trajectory of T-EXIT
On the EXIT plane, write 2I AMI pairs as the coordinate
points, which can be expressed as:

(
I
(i)
A,VN, I

(i)
E,VN

)
=
(
I
(i−1)
E,CN, I

(i)
E,VN

)
,(

I
(i)
E,CN, I

(i)
A,CN

)
=
(
I
(i)
E,CN, I

(i)
E,VN

)
,

(21)

where i = 1, 2, · · · , I;
Connect the adjacent coordinate points in the form(

I
(i)
A,VN, I

(i)
E,VN

)
→
(
I
(i)
E,CN, I

(i)
A,CN

)
, (22)

where i = 1, 2, · · · , I . Then, we get the extrinsic AMI
transfer trajectory.

• Generate two transfer functions of T-EXIT
Connect the coordinate points in the form

(
I
(i)
A,VN, I

(i)
E,VN

)
→
(
I
(i+1)
A,VN, I

(i+1)
E,VN

)
,(

I
(i)
E,CN, I

(i)
A,CN

)
→
(
I
(i+1)
E,CN, I

(i+1)
A,CN

)
,

(23)

where i = 1, 2, · · · , I − 1. Then, we get two T-EXIT
curves with respect to Tv (·) and T−1c (·), respectively.

According to the principle of EXIT, there is a transfer
relationship between the a priori AMI and the extrinsic AMI,
i.e.,

I
(i)
A,CN = I

(i)
E,VN, I

(i+1)
A,VN = I

(i)
E,CN. (24)

For each iteration i, the extrinsic AMI from VN update I(i)E,VN

dominates the system BER performance. According to (19),
we can also derive that

I
(i+1)
E,VN = Tv

(
Tc

(
I
(i)
E,VN

))
. (25)

If the iterative decoding finally converges, we have I(i+1)
E,VN =

I
(i)
E,VN , I

(∗)
E,VN. Apparently, I(∗)E,VN is the fixed point of the

function in (25), i.e.,

I
(∗)
E,VN = Tv

(
Tc

(
I
(∗)
E,VN

))
⇒ T−1v

(
I
(∗)
E,VN

)
= Tc

(
I
(∗)
E,VN

)
.

(26)
Followed by this, the coordinate (I

(∗)
A,VN, I

(∗)
E,VN) of the fixed

point on the EXIT plane is the intersection of two curves
Tv (·) and T−1c (·). Therefore, after getting these two T-EXIT
transfer functions, one can calculate the intersection coordinate
that captures the performance at convergence under finite
codelength and limited number of iterations.

VI. PERFORMANCE EVALUATION

In this section, we construct neural MS decoders for the
protograph LDPC codes defined in the 5G standard [2], and
simulate the block error rate (BLER) performance over the
binary phase shift keying (BPSK) modulated additive white

9

TABLE III
BG2 CODES FOR TRAINING WITH THE CODE RATE R = 1/5.

Index C1 C2 C3 C4

Lifting size Z = 3 Z = 6 Z = 10 Z = 16

(N,K) (150, 30) (300, 60) (500, 100) (800, 160)

TABLE IV
BG2 CODES FOR TRAINING WITH THE NUMBER OF INFORMATION BITS K = 160.

Index C1 C2 C3

Code rate R 0.3701 0.3008 0.2451
(N,K) (432, 160) (532, 160) (653, 160)

Index C4 C5 C6

Code rate R 0.1885 0.1533 0.1172
(N,K) (848, 160) (1043, 160) (1360, 160)

Fig. 5. Distributions of weights and biases for the Type-I neural MS decoder.

Gaussian noise (AWGN) channel and the Rayleigh fading
channel. The definition of SNR in all these results is the bit
SNR, i.e., Eb/N0, where N0 denotes the noise power.

The employed base code is BG2 (defined in [2, Table 5.3.2-
3]), which has 42 rows and 52 columns in the parity-check
matrix HBG2 with 197 non-zero elements3. According to the
rate-matching algorithm in [2], the two node-types correspond-
ing to the first two columns in the parity-check matrix HBG2

are always punctured, i.e., the code bits of its lifted codes
with these two node-types will never be transmitted through
the channel. Therefore, the baseline code rate of BG2 codes
is R = (52− 42) / (52− 2) = 1/5. The lifted codes given in
Table III and Table IV are used for training, which are the
short and medium codes due to the target codelength of BG2
and limited computational capability. The code rates in Table
IV are chosen from the 5G NR modulation and coding scheme
(MCS) table [31, Table 5.1.3.1-1]. A reference SNR table for
training is computed for these codes, which consists of the

3One can also select the BG1, and similar results and conclusions can be
observed. We do not repeatedly show the performance of codes derived from
BG1 in this paper.

minimum required SNRs to achieve a target BER = 0.001
under the AWGN channel and the standard SP decoding with
50 iterations.

The neural MS decoders in Table I and Table II are trained
under the AWGN channel with up to 25 iterations. For each it-
eration, the parameters are trained over 50000 batches, with 50
samples in each batch. To update the weights/biases/damping
factors, we adopt the Adam optimizer [24] with an initial
learning rate of 0.001. The source code used to generate the
results is available on github4.

A. Training Results

In this part, we visually demonstrate the trained neural MS
decoders. The six types of neural MS decoders in Table I and
Table II are trained by randomly selecting samples from Table
III.

For the Type-I neural MS decoder, the distributions of
normalizing factors (weights) and offset factors (biases) are

4The code is available in https://github.com/KyrieTan/Neural-Protograph-
LDPC-Decoding

10

presented in Fig. 5(a) and Fig. 5(b), respectively. For each
iteration, all the weights or biases are counted as one column
in Fig. 5. The weights α(i) vary with iterations, and most
values concentrate on the range of 0.5 to 0.75 when i ≥ 9. For
i < 9, they concentrate on the range of 0.75 to 0.9. Moreover,
as the number of iterations increases, the weights tend to be
smaller. The biases β(i) focus on the range of 0.05 to 0.15 for
any iteration i ∈ [1, 25].

For the Type-II neural MS decoder, the plots of weights
and biases are shown in Fig. 6. Apparently, compared to the
training results of the Type-I decoder, since each iteration only
corresponds to one weight α(i) and bias β(i), we can observe
that α(i) concentrates on the range of 0.8 to 1. However, the
bias β(i) varies a lot with the iteration, which increases from
0.05 to 0.6 for i ≤ 19. Then, it stays on a stable value around
0.4 for i > 19. That is quiet different from state-of-the-art
normalizing and offset factors α = 0.8, β = 0.15 in [9]
because we jointly optimize these two factors. For the Type-
III and Type-IV neural MS decoders, the plots of weights and
biases are shown in Fig. 7, respectively. Since only one weight
or bias is added to each iteration, that is equivalent to single
variable optimization so that the results are different from that
in Fig. 6. The weights decrease with iteration i, but the biases
increase with the iterations.

Neural MS decoder layer index

N
or

m
al

iz
in

g/
of

fs
et

 f
ac

to
rs

(w
ei

gh
ts

/b
ia

se
s)

Weights
Biases

Fig. 6. Plots of weights and biases for the Type-II neural MS decoder.

Neural MS decoder layer index

N
or

m
al

iz
in

g/
of

fs
et

 f
ac

to
rs

(w
ei

gh
ts

/b
ia

se
s)

Weights
Biases

Fig. 7. Plots of weights and biases for the Type-III and Type-IV neural MS
decoders, respectively.

As for the damping factors of Type-V and Type-VI de-
coders, we exemplarily show the damping factors of the Type-
VI neural MS decoder in Fig. 8. Clearly, all damping factors
γ(i) concentrate on the range of 0.15 to 0.2. It means the
decoder tends to be less damped, which gives more confidence
to the current iteration.

Neural MS decoder layer index

D
am

pi
ng

 f
ac

to
rs

Fig. 8. Plot of damping factors for the Type-VI neural MS decoder.

B. T-EXIT Analysis

As a theoretical performance evaluation tool, the T-EXIT
analysis results are given in this part. The neural MS decoder
is trained by randomly selecting samples from Table III. Two
T-EXIT charts for BG2 LDPC codes under the AWGN channel
are shown in Fig. 9, where the number of decoding iterations
is I = 25. With Z = 3 in Fig. 9(a), the extrinsic AMI
transfer trajectories of various decoders overlap such that they
are somewhat indistinguishable. However, it can be seen from
the zoomed area that the extrinsic AMI increment step of the
proposed neural MS decoder is superior to others, which only
falls behind the SP decoder. When the codelength becomes
longer (Z = 16 in Fig. 9(b)), the difference between extrinsic
AMI transfer trajectories becomes more obvious. Although
the SP decoder achieves the maximum extrinsic AMI after
25 iterations which corresponds to the best error correction
performance, the final extrinsic AMI I(25)E,CN of the neural MS
decoder closely follows.

As shown in Table V, we also calculate the intersection
coordinate for each pair of T-EXIT curves Tv (·) and T−1c (·)
in Fig. 9. The intersection ordinate I(∗)E,VN reflects the perfor-
mance at convergence. For the short codelength with Z = 3,
the proposed neural MS decoding can finally outperform SP
decoding and achieve the optimal performance. For the longer
codelength with Z = 16, SP decoding is the most prominent
while neural MS decoding closely follows. These results are
consistent with the simulation results in Subsection VI-C, and
imply the superiority of the proposed neural MS decoding.

TABLE V
INTERSECTION COORDINATES OF Tv (·) AND T−1

c (·).

Iterative decoding
algorithm

(I
(∗)
A,VN, I

(∗)
E,VN)

Z = 3 (4dB) Z = 16 (1.5dB)

SP (0.6806, 0.9013) (0.5722, 0.8646)

MS (0.6432, 0.8714) (0.3350, 0.5919)

NMS (0.6738, 0.8953) (0.5388, 0.8302)

OMS (0.6698, 0.8928) (0.5057, 0.7909)

Neural MS (0.6764, 0.9014) (0.5678, 0.8641)

C. Simulation Results

The BLER results under the AWGN channel with I = 25
iterations of (150, 30) and (800, 160) BG2 codes are given in

11

Fig. 9. Two T-EXIT charts for the BG2 LDPC codes under the AWGN channel with I = 25 iterations. The code with the lifting size Z = 3 is shown in
(a), where the SNR is 4dB. The code with the lifting size Z = 16 is shown in (b), where the SNR is 1.5dB.

Fig. 10, whose lifting sizes are Z = 3 and Z = 16. The six
types of neural MS decoders are trained by randomly selecting
samples from Table III. For comparison, the BLER curves
of SP, MS, NMS (with a widely-used constant normalizing
term α = 0.8) and OMS (with a widely-used constant offset
correction term β = 0.15) decoding algorithms are provided
as benchmarks. Note that if we individually optimize α or β
for each specific code, the performance of NMS and OMS
algorithms may be somewhat improved. However, comparing
the proposed algorithm with these algorithms is unfair because
we apply only one parameter array to multiple codes due to
the use of codelength/rate compatible training method. In this
figure, we also compare the proposed method with the neural
SP decoding method. The two test codes in Fig. 10 are referred
to as the “matched training and testing” cases, i.e., they have
been selected as samples during the training process.

For the short code of Z = 3, we observe that all neural MS
decoders present gains with respect to the original MS decoder.
The Type-I neural MS decoder outperforms OMS and NMS by
0.4dB and 0.2dB, respectively. Equipped with damping factors,
the performance of Type-V&VI neural MS decoders can be
further improved in the low SNR region. More interestingly, it
can even outperform SP decoding in the high SNR region. The
reasons for this performance gain are twofold as explained in
Subsection VI-D. As for the longer code with Z = 16, the
gains of neural MS decoders versus the original MS decoder
become larger, and the Type-I neural MS decoder outperforms
OMS and NMS by 0.5dB and 0.3dB, respectively. Compared
to SP decoding, although there exists some slight performance
loss of the Type-I neural MS decoder, it involves much lower
complexity and quite closely approaches SP decoding in the
high SNR region. Meanwhile, the trained decoders show good
generalization ability to different codelengths due to the length
compatible training method. In addition, from the results of
damped neural MS decoders, we find that using per-edge-type
damping factors (Type-V) does not improve much upon using

single parameter per-iteration (Type-VI). Hence, the Type-VI
neural MS decoder with only one damping factor γ(i) on each
iteration achieves a better tradeoff between performance and
complexity.

Fig. 11 shows the BLER results under the Rayleigh fading
channel, where the code configurations are the same as that
in Fig. 10. The neural network parameters trained under the
AWGN channel in Fig. 10 are directly used in this figure. It is
interesting to observe that the proposed neural MS decoding
still performs well especially in the high SNR region. With
Z = 16, the proposed neural MS decoder outperforms the
standard SP decoding, which is different from that under the
AWGN channel. These results imply that the trained neural
decoder presents good robustness under the Rayleigh fading
channel.

Fig. 12 shows the SNR required for various decoders with a
certain number of iterations to achieve BLER = 10−2 or 10−4

under the AWGN channel. The neural MS decoder is trained
by randomly selecting samples from Table III. The results in
Fig. 12(a) (Z = 3) and Fig. 12(b) (Z = 16) correspond to the
“matched training and testing” cases, and the results in Fig.
12(c) (Z = 8) and Fig. 12(d) (Z = 30) correspond to the
“mismatched training and testing” cases, i.e., these two lifting
sizes are not included in the training set of Table III.

With Z = 3 in Fig. 12(a), considering the SNR required to
achieve BLER = 10−2, the neural MS decoder outperforms
the standard MS decoder more than 0.5dB, and it is quite
close to the standard SP decoder. Fig. 12(a) also gives the
required SNRs to achieve BLER = 10−4, in this high SNR
region, the neural MS decoder can even outperform the SP
decoder at early iterations. In this case, we also show the
performance of the neural MS decoder under the conventional
multi-loss training [21] with I = 25. The proposed greedy
training method tends to optimize the performance of neural
decoders as early as possible, i.e., faster convergence. How-
ever, the traditional multi-loss training [21] tends to optimize

12

Fig. 10. BLER performance of BG2 codes with lifting sizes Z = 3 in (a) and Z = 16 in (b) under the AWGN channel, where the number of iterations is
I = 25.

Fig. 11. BLER performance of BG2 codes with lifting sizes Z = 3 in (a) and Z = 16 in (b) under the Rayleigh fading channel, where the number of
iterations is I = 25.

the performance for the target number of iterations, i.e., good
results can only be observed at the final output. Hence, given
I = 25, we can observe that these two training methods finally
achieve similar performance when the number of iterations
finally reaches 25, though the proposed training method still
presents some gain at this point. Fig. 12(b) shows the required
SNRs to achieve BLER = 10−2 when Z = 16. Though still
better than the MS/NMS/OMS algorithms, the performance of
neural MS decoding is slightly inferior to SP decoding. For
the required SNRs to achieve BLER = 10−4 in Fig. 12(b),
we observe that the neural MS decoder and the SP decoder
achieve the same performance, which implies the superiority
of the neural MS deocder in the high SNR region.

The results of mismatched training and testing are shown

in Fig. 12(c) and Fig. 12(d). The proposed neural MS decoder
still provides stable performance gain versus MS decoding and
approach SP decoding, which implies the generalization ability
of the neural MS decoder. With Z = 8, the proposed neural
MS decoding method outperforms SP decoding at BLER =
10−4. For longer codes, e.g., Z = 30, it may not outperform
SP decoding. The explanations about these observations are
given in Subsection VI-D.

Fig. 13 shows the SNR required for various decoders to
achieve BLER = 10−2 or 10−4 under the Rayleigh fading
channel. From this figure, we can see that, with Z = 3, the
performance gain of neural MS decoding versus SP decoding
can reach 0.6dB at BLER = 10−4, which is larger than that
of 0.4dB under the AWGN channel. With Z = 16, neural MS

13

4@BLER 10−=

2@BLER 10−=

4@BLER 10−=

2@BLER 10−=

4@BLER 10−=

2@BLER 10−=

2@BLER 10−=

Fig. 12. SNR required to achieve BLER = 10−2 or 10−4 under the AWGN channel, (a) shows the (150, 30) code with Z = 3, (b) shows the (800, 160)
code with Z = 16, (c) shows the (400, 80) code with Z = 8, and (d) shows the (1500, 300) code with Z = 30.

4@BLER 10−=

2@BLER 10−=

4@BLER 10−=

2@BLER 10−=

Fig. 13. SNR required to achieve BLER = 10−2 or 10−4 under the Rayleigh fading channel, (a) shows the (150, 30) code with Z = 3, (b) shows the
(800, 160) code with Z = 16 in (b).

14

Fig. 14. BLER performance of BG2 codes under the AWGN channel with K = 160 and code rates R = 0.3008 (i.e., (532, 160) code) in (a) and
R = 0.1172 (i.e., (1360, 160) code) in (b), the number of iterations I = 25.

decoding also outperforms SP decoding at BLER = 10−4.
The BLER results with I = 25 iterations of (532, 160) and

(1360, 160) BG2 codes are given in Fig. 14, whose code rates
are R = 0.3008 and R = 0.1172, respectively. All these neural
MS decoders are trained by randomly selecting samples from
Table IV, and these code rates are chosen from the 5G NR
MCS table [31, Table 5.1.3.1-1]. We also observe that the
neural MS decoder outperforms the traditional MS/NMS/OMS
decoders. In addition, it approaches SP decoding in the high
SNR region. These results imply the generalization ability of
the neural MS decoder to different code rates due to the rate
compatible training method.

D. Discussion about the Gains of Neural MS Decoding
Combing all the simulation results, we can summarize the

following conclusions:
• For short codelengths, e.g., Z = 3, the proposed neural

MS decoding method can provide superior BLER per-
formance with respect to the standard MS/NMS/OMS
decoding methods. In the high SNR region, it can even
outperform the SP decoding method.

• For medium or long codelengths, e.g., Z = 16, the pro-
posed neural MS decoding can approach the performance
of SP decoding but may not surpass SP.

To explain the gains achieved by the proposed neural MS
decoding, in Table VI, we count the number of short cycles
of the aforementioned codes. Clearly, some short cycles exist,
e.g., 4-cycles, especially for short codes. As the lifting size
increases, the number of 4-cycles decreases rapidly.

Following previous works [9] and [21], the gains achieved
by the proposed algorithm stems from two aspects:

1) Better Approximation to the SP Algorithm: Well-learned
weights (normalizing factors) and biases (offset factors) make
the neural MS decoding method a better approximation to the
SP algorithm. This property contributes to most of the per-
formance gain. It is inherently aligned with the conventional

TABLE VI
NUMBER OF SHORT CYCLES FOR DIFFERENT LIFTING SIZES Z OF BG2.

Cycle
length

Lifting size
Z = 3 Z = 8 Z = 16 Z = 30

4 428 224 176 0
6 11511 11800 10768 11460
8 339849 373044 379192 372750

10 9823374 11642984 11926672 12082290

optimization of MS decoding by introducing one normalizing
or offset factor [9], which should be individually optimized
by using the DE algorithm for each specific LDPC code [10].
In our work, we can optimize multiple weights and biases in
parallel, and thus the degrees of freedom for optimization are
expanded. Therefore, more gains can be observed with respect
to the single parameter optimization.

2) Mitigating the Effects of Short Cycles: Well-learned pa-
rameters can further mitigate the effects of short cycles, which
is aligned with the performance gain stated by Nachmani et
al. in [21]. Indeed, this can be seen more clearly for HDPC
codes as seen in [21]. This inference is based on the fact that
there exist a large number of short cycles in the Tanner graph
of HDPC codes. In comparison, sophisticated LDPC codes
may efficiently eliminate short cycles; nevertheless, in this
paper, we design neural MS decoding for protograph LDPC
codes. For this special but widely-used case, each code is
lifted from the base graph, which adds flexibility while also
inevitably introducing some short cycles, e.g., 4-cycles. From
Table VI, we find that there indeed exist some short cycles,
especially for short codes, i.e., small lifting sizes. From this
conceptual perspective, we reasonably interpret the additional
gain achieved by the proposed neural MS decoding.

For medium or long codelengths, as shown in Table VI, the
number of short cycles decreases a lot so that SP decoding

15

TABLE VII
OPERATIONS REQUIRED FOR ONE ITERATION.

Operation tanh × + comp. sign flip

SP 2E ≈ 2E ≈ 2E – –
MS – – ≈ 2E ≈ 2E ≈ 2E

NMS – E ≈ 2E ≈ 2E ≈ 2E

OMS – – ≈ 3E ≈ 2E ≈ 2E

Type-I&II neural MS – E ≈ 3E ≈ 2E ≈ 2E

Type-III neural MS – E ≈ 2E ≈ 2E ≈ 2E

Type-IV neural MS – – ≈ 3E ≈ 2E ≈ 2E

Type-V&VI neural MS – 2E ≈ 4E ≈ 2E ≈ 2E

Neural SP 2E ≈ 3E ≈ 3E – –

presents good performance. At this time, the main task of the
neural MS decoder is to compensate for the approximation
loss of MS decoding so that it may not surpass SP decoding.

We present the neural SP decoding results as a supplemen-
tary proof of the above explanations in Fig. 10. The results
show that it can also beat standard SP decoding. Combining
with the cycle distribution results in Table VI, we verify
the statement of restraining short cycles by neural decoding.
However, we also observe that the performance gain of neural
SP decoding with respect to the proposed neural MS decoding
is trivial in the high SNR region, i.e., the BLER performance
of neural MS decoding is quite close to that of neural SP
decoding. It means that well-learned weights and biases in the
neural MS decoder are already enough to compensate for the
loss of MS approximation and mitigate the effects of short
cycles like that in the neural SP decoder.

E. Complexity Comparison

Table VII summarizes the required operations for one iter-
ation of the six types of neural MS decoder in Table I and
Table II, along with SP, MS, NMS, and OMS algorithms. E
denotes the number of edges in the Tanner graph of LDPC
codes. The neural MS decoders avoid computing hyperbolic
tangent functions, and they have a complexity roughly the
same with NMS and OMS. Since different weights and biases
are engaged per iteration, the neural MS decoders require
additional memory to store the parameters. Also, it should be
noted that the cost of damping operation in the Type-V&VI
decoders is not only the additional 2E multiplications “×” but
also the additional memory to store the previous iteration’s
LLRs. The neural SP decoder is of the highest complexity.

VII. CONCLUSION AND FUTURE TRENDS

In this paper, a set of neural MS decoding algorithms for
protograph LDPC codes has been presented. In these algo-
rithms, weights and biases are added to the edges correspond-
ing to the CN to VN updating equation of the MS algorithm,
which renders neural MS decoding a better approximation to
the SP. To mitigate the impact of short cycles in iterative
decoding, the weights and biases are allowed to take different
values for different iterations. Exploiting the lifting structure

of protograph LDPC codes, the same parameter has been
shared among a bundle of edges which are derived from the
same edge in the base graph. A low-complexity iteration-by-
iteration training mechanism has been proposed for tuning
the parameters, which also avoids the vanishing gradient
problem. The proposed training method enables the neural MS
decoder to achieve better performance with faster convergence.
Combined with damping factors, the performance of the neural
MS decoder can be further improved. The proposed neural MS
decoders have similar complexity compared to MS/NMS/OMS
and are much more hardware-friendly than SP. Results have
shown that the performance of neural MS decoding is consis-
tently better than original MS/NMS/OMS algorithms, and is
close to or even better than the SP algorithm.

There exist many issues to be addressed in the future. One of
them is the quantization of neural decoder parameters, we can
investigate the influence of quantized parameters on the neural
MS decoder. In addition, the similar method to compensate for
the loss of message quantization in hardware implementation
of protograph LDPC decoding is worth to be studied.

ACKNOWLEDGMENT

The authors would like to thank Kai Chen and Dexin Zhang
for their suggestions on this work.

REFERENCES

[1] T. Richardson and S. Kudekar, “Design of low-density parity check
codes for 5G new radio,” IEEE Commun. Magazine, vol. 56, no. 3,
pp. 28–34, Mar. 2018.

[2] Multiplexing and channel coding, Release 16, 3GPP Standard TS 38.212,
V16.0.0, Dec. 2019.

[3] T. Richardson and R. Urbanke, Modern coding theory. Cambridge, U.K.:
Cambridge Univ. Press, 2008.

[4] M. P. Fossorier, “Iterative reliability-based decoding of low-density
parity check codes,” IEEE J. Select. Areas Commun., vol. 19, no. 5,
pp. 908–917, May 2001.

[5] S.-Y. Chung, J. G. D. Forney, T. Richardson, and R. Urbanke, “On
the design of low-density parity-check codes within 0.0045 dB of the
Shannon limit,” IEEE Commun. Lett., vol. 5, pp. 58–60, Feb. 2001.

[6] S. Lin and D. J. Costello, Error control coding (2nd ed.). Prentice-Hall,
Inc., 2004.

[7] J. Pearl, Probabilistic reasoning in intelligent systems, San Mateo, CA,
Morgan Kaufmann, 1988.

[8] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. Info. Theory, vol. 47, no. 2,
pp. 498–519, Feb. 2001.

16

[9] J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X. Y. Hu,
“Reduced-complexity decoding of LDPC codes,” IEEE Trans. Commun.,
vol. 53, no. 8, pp. 1288–1299, Aug. 2005.

[10] J. Chen and M. P. C. Fossorier, “Density evolution for two improved
BP-based decoding algorithms of LDPC codes,” IEEE Commun. Lett.,
vol. 6, no. 5, pp. 208–210, May 2002.

[11] X. Wu, Y. Song, M. Jiang, and C. Zhao, “Adaptive-normalized/offset
min-sum algorithm,” IEEE Commun. Lett., vol. 14, no. 7, pp. 667–669,
Jul. 2010.

[12] T. Richardson and R. Urbanke, “Multi-edge type LDPC codes,” in Proc.
Workshop Honoring Prof. Bob McEliece on his 60th Birthday, Pasadena,
CA, 2002.

[13] J. Thorpe. “Low density parity check (LDPC) codes constructed from
protographs,” JPL IPN Progress Report, pp. 154, Aug. 2003.

[14] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Artificial neural
networks-based machine learning for wireless networks: a tutorial,”
IEEE Commun. Surv. Tuts., vol. 21, no. 4, pp. 3039–3071, Fourthquarter
2019.

[15] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint
learning and communications framework for federated learning over
wireless networks,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp.
269–283, Jan. 2021.

[16] Z. Qin, H. Ye, G. Y. Li, and B. F. Juang, “Deep learning in physical layer
communications,” IEEE Wireless Commun., vol. 26, no. 2, pp. 93–99,
Apr. 2019.

[17] H. He, S. Jin, C. Wen, F. Gao, G. Y. Li, and Z. Xu, “Model-driven deep
learning for physical layer communications,” IEEE Wireless Commun.,
vol. 26, no. 5, pp. 77–83, Oct. 2019.

[18] T. Wang, C. Wen, H. Wang, F. Gao, T. Jiang, and S. Jin, “Deep
learning for wireless physical layer: opportunities and challenges,” China
Communications, vol. 14, no. 11, pp. 92–111, Nov. 2017.

[19] E. Nachmani, Y. Beery, and D. Burshtein, “Learning to decode linear
codes using deep learning,” in Proc. 54th Annu. Allerton Conf. Commun.,
Control Comput., pp. 341–346, Monticello, IL, Sep. 2016.

[20] L. Lugosch and W. J. Gross, “Neural offset min-sum decoding,” in Proc.
IEEE Int. Symp. Info. Theory, pp. 1361–1365, Aachen, Jun. 2017.

[21] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and Y.
Beery, “Deep learning methods for improved decoding of linear codes,”
IEEE J. Sel. Topics Signal Process., vol. 12, no. 1, pp. 119–131, Feb.
2018.

[22] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans.
Info. Theory, vol. 27, no. 5, pp. 533–547, Sep. 1981.

[23] M. Lian, F. Carpi, C. Hager, and H. D. Pfister, “Learned belief-
propagation decoding with simple scaling and SNR adaptation,” in Proc.
IEEE Int. Symp. Info. Theory, pp. 161–165, Paris, France, Jul. 2019.

[24] D. Kingma and J. Ba, “Adam: a method for stochastic optimization,”
in Proc. International Conference on Learning Representations (ICLR),
San Diego, 2015.

[25] T. L. Narasimhan and A. Chockalingam, “Channel hardening-exploiting
message passing (CHEMP) receiver in large-scale MIMO systems,”
IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 847–860, Oct.
2014.

[26] M. Pretti, “A message passing algorithm with damping,” J. Statist.
Mech.: Theory Practice, p. 11008, Nov. 2005.

[27] S. ten Brink, “Convergence behavior of iteratively decoded parallel
concatenated codes,” IEEE Trans. Commun., vol. 49, no. 10, pp. 1727–
1737, Oct. 2001.

[28] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density
parity-check codes for modulation and detection,” IEEE Trans. Com-
mun., vol. 52, no. 4, pp. 670–678, Apr. 2004.

[29] G. Liva and M. Chiani, “Protograph LDPC codes design based on
EXIT analysis,” in Proc. IEEE Global Commun. Conf., pp. 3250–3254,
Washington, DC, Nov. 2007.

[30] M. Ebada, A. Elkelesh, S. Cammerer, and S. ten Brink, “Scattered EXIT
charts for finite length LDPC code design,” in Proc. IEEE Int. Conf.
Commun., pp. 1–7, Kansas City, MO, May 2018.

[31] Physical layer procedures for data, Release 16, 3GPP Standard TS
38.214, V16.0.0, Dec. 2019.

	I Introduction
	II Preliminaries
	II-A Notational Conventions
	II-B Iterative Decoding Algorithms
	II-C Protograph LDPC Codes

	III The Proposed Neural Min-Sum Decoder
	III-A Neural MS Decoding for Protograph LDPC Codes
	III-B Training the Neural MS Decoder
	III-B1 Codelength/Rate Compatible Training
	III-B2 Iteration-by-Iteration Greedy Training

	IV Learning to Damp
	V T-EXIT Convergence Analysis
	VI Performance Evaluation
	VI-A Training Results
	VI-B T-EXIT Analysis
	VI-C Simulation Results
	VI-D Discussion about the Gains of Neural MS Decoding
	VI-D1 Better Approximation to the SP Algorithm
	VI-D2 Mitigating the Effects of Short Cycles

	VI-E Complexity Comparison

	VII Conclusion and Future Trends
	References

