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JUHL’S FORMULAE FOR GJMS OPERATORS AND

Q-CURVATURES

CHARLES FEFFERMAN AND C. ROBIN GRAHAM

1. Introduction

GJMS operators and Q-curvatures are important objects in conformal geometry
which have been studied intensely during the past decade. In [J2], [J3], building on
previous work beginning with [J1], Juhl has derived remarkable formulae for GJMS
operators and Q-curvatures which reveal unexpected algebraic structure. In this
paper we give direct proofs of Juhl’s formulae starting from the original construction
of [GJMS].

Juhl’s formulae are expressed in terms of quantities arising in the expansion of a
Poincaré metric, or equivalently an ambient metric, associated to a given pseudo-
Riemannian metric. Let g be a pseudo-Riemannian metric of signature (p, q), p+ q =
n ≥ 3, on an n-dimensional manifold M . A Poincaré metric in normal form relative
to g is a metric g+ on M × (0, ǫ) of the form

g+ = r−2
(
dr2 + hr

)
,

where hr is a smooth 1-parameter family of metrics onM satisfying h0 = g, for which
Ric(g+)+ng+ = 0 in the following asymptotic sense. If n is odd, then Ric(g+)+ng+ =
O(r∞), while if n is even, then Ric(g+) + ng+ = O(rn−2) and the tangential trace of
r2−n (Ric(g+) + ng+) vanishes at r = 0. Set

V (r) =

√
det hr
det h0

and W (r) =
√
V (r). Let δ denote the divergence operator on vector fields with

respect to g, given by δϕ = ∇iϕ
i. Define a 1-parameter family M(r) of second order

differential operators on M by

(1.1) M(r) = δ(h−1
r d)− U(r),

where

U(r) =
[∂2r − (n− 1)r−1∂r + δ(h−1

r d)]W (r)

W (r)

acts as a zeroth order term. (We write U(r) in the form given in v1 of [J3]. v2 of
[J3] expresses it in a different form; see Lemma 8.1 of v2.) Use M(r) as a generating
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function for second order differential operators M2N on M defined for N ≥ 1 (and
N ≤ n/2 if n is even) by

(1.2) M(r) =
∑

N≥1

M2N
1

(N − 1)!2

(
r2

4

)N−1

.

The M2N are natural scalar differential operators. Natural scalar invariants W2N are
defined by

(1.3) W (r) = 1 +
∑

N≥1

W2Nr
2N

for N ≥ 1 (and N ≤ n/2 if n is even).
Juhl’s formulae involve constants nI , mI which are parametrized by ordered lists

I = (I1, . . . , Ir) of positive integers. I is referred to as a composition of the sum
|I| = I1+I2+ · · ·+Ir. Sometimes compositions are written in the form (I, a) singling
out the last entry. In this case the convention is that I is allowed to be empty but
a > 0. The constants appearing in Juhl’s formulae are:

nI = (|I| − 1)!2
r∏

j=1

1

(Ij − 1)!2

r−1∏

j=1

1(∑j
k=1 Ik

)(∑r
k=j+1 Ik

)

mI = (−1)r+1|I|!(|I| − 1)!
r∏

j=1

1

Ij!(Ij − 1)!

r−1∏

j=1

1

Ij + Ij+1
.

(1.4)

Empty products are always interpreted as 1. Observe when r = 1 that n(N) = m(N) =
1.

Let P2N denote the GJMS operators, with sign convention determined by P2N =
∆N + . . . with ∆ = δ(g−1d). These are defined for all N ≥ 1 for n odd and for
1 ≤ N ≤ n/2 for n even. Iterated compositions of the P2N and the M2N are denoted
by P2I = P2I1 ◦ · · · ◦ P2Ir and M2I = M2I1 ◦ · · · ◦M2Ir .

Juhl proves four formulae: an explicit formula and a recursive formula each for
GJMS operators and for Q-curvatures. All four formulae are universal in the dimen-
sion.

Theorem 1.1. Explicit formula for GJMS operators. For N ≥ 1 (and N ≤ n/2
if n is even),

(1.5) P2N =
∑

|I|=N

nIM2I .

Theorem 1.2. Recursive formula for GJMS operators. For N ≥ 1 (and N ≤
n/2 if n is even),

(1.6) P2N = −
∑

|I|=N
I 6=(N)

mIP2I +M2N .
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Clearly the explicit formula expresses P2N in terms of the second order building
blocks M2M , M ≤ N . The recursive formula expresses each P2N as a sum of com-
positions of lower order GJMS operators, modulo the second order term M2N . For
N = 1 both formulae state that M2 = P2, the Yamabe operator. For N = 2 the
formulae express the Paneitz operator as P4 = M2

2 +M4 = P 2
2 +M4. The principal

part of M2N for N > 1 involves curvature, and M2N = 0 for N > 1 if g is flat.
Further discussion and specializations of the formulae may be found in [J3].

The Q-curvatures are defined in terms of the zeroth order terms of the GJMS
operators:

(1.7) P2N(1) = (−1)N
(n
2
−N

)
Q2N .

Q2N is defined for all N ≥ 1 if n is odd and for 1 ≤ N ≤ n/2 if n is even. For n
even, both sides vanish in the critical case N = n/2 and Qn is defined by an analytic
continuation.

Theorem 1.3. Explicit formula for Q-curvatures. For N ≥ 1 (and N ≤ n/2 if
n is even),

(1.8) (−1)NQ2N =
∑

|(I,a)|=N

n(I,a)a!(a− 1)!22aM2I(W2a).

Theorem 1.4. Recursive formula for Q-curvatures. For N ≥ 1 (and N ≤ n/2
if n is even),

(1.9) (−1)NQ2N = −
∑

|(I,a)|=N
a<N

m(I,a)(−1)aP2I(Q2a) +N !(N − 1)!22NW2N .

The explicit formula expresses Q2N in terms of the operators M2M and the coeffi-
cients W2a. The recursive formula expresses Q2N in terms of GJMS operators applied
to Q2a with a < N , modulo the multiple of W2N . Observe that the factor n/2 − N
in the definition which vanished in the critical case no longer appears. So the Q-
curvature formulae do not follow immediately from the GJMS operator formulae just
by taking constant terms.

If g is Einstein or locally conformally flat, then there is an invariantly defined
Poincaré metric to infinite order also if n is even. It can be written explicitly; see
[FG]. In these cases, P2N and Q2N are invariantly defined for all N ≥ 1 also for n
even. For such g, Juhl’s formulae and our proofs are valid for all N .

The GJMS operators are known to be self-adjoint. This is exhibited by the formulae
(1.5) and (1.6), since M(r) is evidently self-adjoint with respect to g for each r
so that the M2N are all self-adjoint, and since nI = nI−1 and mI = mI−1 where
I−1 = (Ir, . . . , I1). However, the self-adjointness is not obvious from the original
GJMS construction. If one desires to understand Juhl’s formulae in terms of the
original construction, it is reasonable to start by asking the modest question of how
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to see the self-adjointness from that derivation. It turns out that understanding this
is the key to unlocking the mysteries of Juhl’s formulae.

The operators P2N were derived in [GJMS] via the Laplacian of the ambient metric
associated to g. In normal form, this is the metric

(1.10) g̃ = 2ρdt2 + 2tdtdρ+ t2gρ

on R+ ×M × (−ǫ, ǫ), where t ∈ R+, ρ ∈ (−ǫ, ǫ), and gρ = hr with ρ = −r2/2. The
asymptotic vanishing of Ric(g+) + ng+ at r = 0 translates into asymptotic vanishing

of Ric(g̃) at ρ = 0. See [FG] for details. If f ∈ C∞(M) and f̃ ∈ C∞(M × (−ǫ, ǫ))
satisfies f̃(x, 0) = f , then the GJMS definition is

(1.11) P2Nf = ∆̃N (tN−n/2f̃)|ρ=0,t=1

where ∆̃ denotes the Laplacian in the metric g̃. The right-hand side is shown to be

independent of the choice of f̃ extending f .

It is straightforward to calculate the Laplacian ∆̃ of a metric of the form (1.10).
Evidently there is a term involving the Laplacian ∆gρ in the metric gρ for fixed ρ
acting in the M factor (see (2.1) below). This term is not self-adjoint with respect to

g = g0, so P2N obtained by iterating ∆̃ and restricting to ρ = 0 does not appear to be
self-adjoint either. This is the reason that self-adjointness of the P2N is not apparent
from this construction. However, if we set

(1.12) v(ρ) =

√
det gρ
det g0

(so that v(ρ) = V (r) with ρ = −r2/2), then multiplying the volume form for g by
v(ρ) gives the volume form for gρ. It follows that for each ρ the operator v(ρ)∆gρ

is self-adjoint with respect to g. Pre- and post-composing a self-adjoint operator
with multiplication by a smooth real function gives another self-adjoint operator.
Therefore the operator v1/2 ◦ ∆gρ ◦ v−1/2 is also self-adjoint with respect to g. This
motivates consideration of

∆̃v := v1/2 ◦ ∆̃ ◦ v−1/2,

as we are guaranteed that the operator acting along M when ∆̃v is written out will

be self-adjoint with respect to g. Moreover, ∆̃N
v = v1/2 ◦ ∆̃N ◦ v−1/2 since the middle

factors of v±1/2 cancel. The pre- and post-multiplications by v±1/2 affect neither the
extension property nor the restriction back to ρ = 0 since v = 1 at ρ = 0. Hence
(1.11) can be rewritten as

(1.13) P2Nf = ∆̃N
v (t

N−n/2f̃)|ρ=0,t=1.

Now a direct calculation which we carry out in §2 shows that

(1.14) ∆̃v(t
γ f̃) = tγ−2

[
−2ρ∂2ρ + (2γ + n− 2)∂ρ + M̃(ρ)

]
f̃ ,
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where M̃(ρ) = M(r), ρ = −r2/2. This is the key identity. It explains the previously

mysterious appearance of both W =
√
V and the generating function M(r) in Juhl’s

theory. Since
[
−2ρ∂2ρ + (2γ + n− 2)∂ρ

]
ρk = ck,γ,nρ

k−1 for constants ck,γ,n, upon

choosing f̃ to be independent of ρ we see that iterating (1.14) and restricting to
ρ = 0, t = 1 gives a formula for P2N as a linear combination of compositions of the

Taylor coefficients of M̃(ρ), i.e. of theM2I . Showing that the coefficients in the linear
combination are the nI reduces to a (rather nontrivial) combinatorial identity which
we derive in §3. This proves Theorem 1.1. Theorem 1.3 reduces to an equivalent
combinatorial identity upon calculating P2N1 using (1.13), (1.14) and taking the

extension f̃ to be v1/2 rather than 1. This reduction is included in §2 and the proof
of the relevant combinatorial identity in §3.

Theorem 1.2 can be derived from Theorem 1.1 by inverting (1.5), viewed as a for-
mal transformation law from the M2N to the P2N . A proof in the opposite direction
due to Krattenthaler was presented in §2 of [J3] and immediately implies the direc-
tion we need here. Likewise, Theorem 1.4 follows from Theorem 1.3 upon inverting
(1.8), viewed as a formal transformation from the W2N to the Q2N . In §4 we review
Krattenthaler’s proof of the inversion for the operators following the presentation in
[J3] and then present the similar but more complicated proof for the Q-curvatures.

It is also possible to prove both the explicit and recursive formulae for Q-curvatures
by taking the constant term in the corresponding formula for the GJMS operators
and then rewriting by deriving and substituting expressions for the M2N(1). This
approach is closely related to arguments in [J3], where the scalar invariants M2N(1)
play a prominent role.

We still find these formulae to be quite astonishing. Juhl deserves great credit for
their discovery as subtle consequences of the recursive structure of his residue families.
Even though we now see that this theory of residue families and their factorization
identities is not required for their proofs, this theory, linking ideas from conformal
geometry, representation theory and spectral theory, appears deep and fascinating
and deserves further exploration.

2. Explicit Formulae

In this section we give the details of the argument outlined in the introduction
which reduces Theorem 1.1 to a combinatorial identity and then show how similar
reasoning reduces Theorem 1.3 to an equivalent combinatorial identity.

The first task is to establish (1.14) by direct calculation. The inverse of the metric
(1.10) is

g̃IJ =




0 0 t−1

0 t−2gijρ 0
t−1 0 −2ρt−2



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and
√
| det g̃| = tn+1

√
| det gρ|. Using this in

∆̃ =
1√

| det g̃|
∂I

(
g̃IJ
√
| det g̃|∂J

)

gives

(2.1) ∆̃(tγϕ) = tγ−2
[
−2ρϕ′′ + (2γ + n− 2− 2ρv′/v)ϕ′ + (∆gρ + γv′/v)ϕ

]

(cf. (3.5) of [GJMS]). Here v is given by (1.12), ′ denotes ∂ρ, and ϕ is independent
of t. Set w = v1/2 and ϕ = w−1ψ. Then v′/v = 2w′/w and

ϕ′ = w−1ψ′ − w−2w′ψ

ϕ′′ = w−1ψ′′ − 2w−2w′ψ′ + (2w−3w′2 − w−2w′′)ψ.

Substituting and simplifying gives

w
[
− 2ρϕ′′+(2γ + n− 2− 2ρv′/v)ϕ′ + γ(v′/v)ϕ

]

=− 2ρψ′′ + (2γ + n− 2)ψ′ + w−1
[
2ρw′′ − (n− 2)w′

]
ψ.

(2.2)

For the remaining term in (2.1) we have

Lemma 2.1.

(2.3) w ◦∆gρ ◦ w−1 = δ(g−1
ρ d)− w−1δ(g−1

ρ dw).

(Recall that δ denotes the divergence operator with respect to g = g0.) The second
term on the right-hand side acts as a zeroth order operator.

Proof. For fixed ρ it is clear that w◦∆gρ◦w−1 and δ(g−1
ρ d) are second order differential

operators whose principal parts agree. We observed in the introduction that the first
is self-adjoint with respect to g, and clearly this is the case for the second. So their
difference is zeroth order. Evaluating on w identifies the zeroth order term. �

Multiplying (2.1) by w and substituting (2.2) and (2.3) yields

(2.4) w∆̃(tγw−1ψ) = tγ−2
[
−2ρψ′′ + (2γ + n− 2)ψ′ +

(
δ(g−1

ρ d)− Ũ(ρ)
)
ψ
]

where

Ũ(ρ) =

[
−2ρ∂2ρ + (n− 2)∂ρ + δ(g−1

ρ d)
]
w(ρ)

w(ρ)
.

The chain rule with ρ = −r2/2 shows that Ũ(ρ) = U(r) so that δ(g−1
ρ d) − Ũ(ρ) =

M̃(ρ). Hence (2.4) becomes (1.14). This completes the derivation of (1.14).
Set

Rk = −2ρ∂2ρ + 2k∂ρ + M̃(ρ)

and note that (1.2) becomes

M̃(ρ) =
∑

N≥1

M2N
1

(N − 1)!2

(
−ρ
2

)N−1

.
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Iterating (1.14) gives

∆̃N
v (t

N−n/2f̃) = t−N−n/2R1−NR3−N · · ·RN−3RN−1f̃ ,

so we deduce that R1−NR3−N · · ·RN−3RN−1f̃ |ρ=0 depends only on f̃ |ρ=0. Tak-

ing f̃ to be independent of ρ, it follows upon expanding the right-hand side that
R1−NR3−N · · ·RN−3RN−1|ρ=0 is a linear combination of the compositions M2I . In
the next section we will prove the combinatorial identity

(2.5) R1−NR3−N · · ·RN−3RN−1|ρ=0 =
∑

|I|=N

nIM2I

which identifies the constants in the linear combination. Theorem 1.1 then follows
via (1.13).

We next show that Theorem 1.3, the explicit formula for Q-curvatures, reduces to
a similar combinatorial identity which we will see in the next section is equivalent to
(2.5). By definition we have (−1)N (n/2 − N)Q2N = P2N1. Use (1.13) to calculate

P2N1, taking f̃ = v1/2 to be the extension of f = 1. Thus

(−1)N (n/2−N)Q2N = ∆̃N−1
v

(
v1/2∆̃(tN−n/2)

)
|ρ=0,t=1.

Equation (2.1) gives

∆̃(tN−n/2) = tN−n/2−2(N − n/2)v′/v = 2tN−n/2−2(N − n/2)w′/w.

The factors of (N − n/2) cancel, and it follows that

(2.6) (−1)NQ2N = −2∆̃N−1
v (tN−n/2−2w′)|ρ=0,t=1.

Iterating (1.14) gives

(2.7) (−1)NQ2N = −2R1−NR3−N · · ·RN−3(w
′)|ρ=0.

Now w = 1 +
∑

a≥1W2a(−2ρ)a, so

(2.8) w′ =
∑

a≥1

a(−2)aW2aρ
a−1.

As will be shown in the next section, the following is equivalent to (2.5).

Proposition 2.2. Let 1 ≤ a ≤ N and let f be a function on M (i.e. independent of
ρ). Then

(2.9) R1−NR3−N · · ·RN−3(fρ
a−1)|ρ=0 =

∑

|I|=N−a

n(I,a)(a− 1)!2(−2)a−1M2I(f).

Substituting (2.8) into (2.7) and applying (2.9) termwise gives

(−1)NQ2N =
∑

(I,a)=N

n(I,a)a!(a− 1)!22aM2I(W2a),

which is the explicit formula for Q2N .



JUHL’S FORMULAE 8

For n even, the above argument applies also for the critical case N = n/2 since
Qn is defined by removing the factor of n/2 − N . The critical case may also be
deduced without this argument of analytic continuation in the dimension by using
the realization

(−1)n/2Qn = −∆̃n/2(log t)|ρ=0,t=1

derived in [FH]. Namely, write

∆̃n/2(log t)|ρ=0,t=1 = ∆̃n/2−1
v

(
w∆̃(log t)

)
|ρ=0,t=1.

Direct calculation gives w∆̃(log t) = 2t−2w′. So we recover (2.6) and the argument
proceeds as above.

3. Combinatorial Identities

In this section we derive the combinatorial identities (2.5) and (2.9) to which The-
orems 1.1 and 1.3 were reduced above. Begin with (2.5). First change variables:
set

(3.1) s = −ρ
2
, xN =

M2N

(N − 1)!2
, X(s) = M̃(ρ) =

∞∑

N=0

xN+1s
N .

As far as this identity is concerned, x1, x2, . . . can simply be regarded as noncommut-
ing variables, all of which commute with s. In the new variables, the Rk become the
differential operators

Lk = s
d2

ds2
− k

d

ds
+X(s),

where X(s) acts as a zeroth order multiplication operator. We only have to verify
the constant term in ∂ρ of (2.5), which becomes

Theorem 3.1. Let N ≥ 1. Then

(3.2) L1−NL3−N · · ·LN−3LN−11|s=0 =
∑

|I|=N

n̄I xI1xI2 · · ·xIr ,

where

n̄I =
(N − 1)!2

∏r−1
k=1

(∑k
j=1 Ij

)(∑r
j=k+1 Ij

) .

Set L̄j = LN+1−2j so that L1−NL3−N · · · LN−3LN−1 = L̄N L̄N−1 · · · L̄2L̄1. Since
n̄I = n̄I−1 , (3.2) can be rewritten as

(3.3) L̄N L̄N−1 · · · L̄2L̄11|s=0 =
∑

|I|=N

n̄I xIrxIr−1
· · ·xI1.

Fix positive integers I1, . . . , Ir, where r ≥ 1. We will prove (3.3) by verifying the
coefficient of xIrxIr−1

· · ·xI1 in L̄N L̄N−1 · · · L̄2L̄11|s=0 for each choice of I1, . . . , Ir.
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For 1 ≤ l ≤ r, set

ml = I1 + I2 + · · ·+ Il

so that 1 ≤ m1 < m2 < · · · < mr−1 < mr. (The mI from the previous sections
will not appear in this section.) Consider the calculation of L̄N L̄N−1 · · · L̄2L̄11 by
successive multiplication from the left. For 1 ≤ j ≤ N , L̄jL̄j−1 · · · L̄11 is a formal
power series in s whose coefficients are polynomials in the x’s. The only monomials in
the x’s appearing in L̄jL̄j−1 · · · L̄11 which can ultimately contribute to the coefficient
of xIrxIr−1

· · ·xI1 in L̄N L̄N−1 · · · L̄2L̄11 are of the form xIlxIl−1
· · ·xI1 for some l, 1 ≤

l ≤ r. The term sd2/ds2− (N +1− 2k)d/ds in one of the factors L̄k just reduces the
power of s by 1 and multiplies by a constant. The term X(s) is linear in the x’s. So
in order for a monomial xIlxIl−1

· · ·xI1 to appear in the expansion of L̄jL̄j−1 · · · L̄11,
it must be that the zeroth order term X(s) has contributed in exactly l of these L̄k.
Thus the differentiation in s terms have contributed in exactly j − l of the L̄k. It
follows that the power of s multiplying xIlxIl−1

· · ·xI1 is sml−l−(j−l) = sml−j . Hence
we have

(3.4) L̄jL̄j−1 · · · L̄11 =

min(j,r)∑

l=1

cj,l xIlxIl−1
· · ·xI1sml−j + . . .

for some constants cj,l, where . . . indicates terms involving monomials in the x’s which
cannot contribute in the end. The cj,l are defined for 1 ≤ j ≤ N , 1 ≤ l ≤ min(j, r),
and we have c1,1 = 1 and cj,l = 0 if ml < j ≤ N .

From (3.4) it follows first that the coefficient of xIr · · ·xI1 in L̄N L̄N−1 · · · L̄2L̄11|s=0

is zero unless |I| = N . In fact, taking j = N , the term xIr · · ·xI1 on the right-hand
side is multiplied by smr−N . This vanishes at s = 0 unless mr = N , i.e. |I| = N .
Theorem 3.1 therefore reduces to the statement that cN,r = n̄I if |I| = N . We assume
henceforth that |I| = N , i.e. mr = N .

Extend the definition of the cj,l to 0 ≤ j ≤ N , 0 ≤ l ≤ r by defining c0,0 = 1 and
cj,l = 0 if 0 ≤ j < l ≤ r or if l = 0 and 1 ≤ j ≤ N . We claim that these constants
satisfy the recursion relation:

(3.5) cj+1,l = −(ml − j)(N −ml − j)cj,l + cj,l−1

for 0 ≤ j ≤ N−1, 1 ≤ l ≤ r. For 1 ≤ j ≤ N−1 and 1 ≤ l ≤ min(j+1, r) this follows
by applying L̄j+1 to (3.4). For j = 0, l = 1 both sides are 1, and for all the other
values both sides vanish. Now extend the definition of the cj,l to j > N , 0 ≤ l ≤ r by
setting cj,0 = 0 for j > N and by requiring that (3.5) hold for j ≥ N , 1 ≤ l ≤ r. The
resulting cj,l are defined for j ≥ 0, 0 ≤ l ≤ r, and (3.5) holds for j ≥ 0, 1 ≤ l ≤ r.

Define generating functions

Fl(y) =
∞∑

j=0

cj,l
(j!)2

yj, 0 ≤ l ≤ r.
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The definitions of the cj,0 and c0,l show that

(3.6) F0 = 1 and Fl(0) = 0, 1 ≤ l ≤ r.

The recursion (3.5) turns into a differential equation relating Fl and Fl−1. For fixed
positive integral N as above, define ordinary differential operators

Dm = y(1 + y)
d2

dy2
+ [1− (N − 1)y]

d

dy
+m(N −m).

Lemma 3.2. Let

(3.7) u =
∞∑

j=0

uj
(j!)2

yj, f =
∞∑

j=0

fj
(j!)2

yj

be formal power series. Then Dmu = f if and only if

(3.8) uj+1 = −(m− j)(N −m− j)uj + fj, j ≥ 0.

The proof is to substitute the expansions into the equation and to compare coefficients
of like powers of y. Comparing (3.5) and (3.8) then gives immediately

(3.9) Dml
Fl = Fl−1, 1 ≤ l ≤ r.

Now Dm has a regular singularity at y = 0 with indicial root 0 of multiplicity 2.
By general Frobenius theory or just by staring at (3.8), there exists a unique formal
power series solution of Dmu = 0 with u(0) = 1. Also, for any formal power series
f there exists a unique formal power series solution u to Dmu = f with u(0) = 0.
In particular, (3.6) and (3.9) together characterize the functions Fl. Combining the
solutions of the homogeneous and inhomogeneous problems shows that for any f there
is a unique solution u to Dmu = f with u(0) any prescribed value.

Since the yN coefficient of Fr(y) is cN,r/(N !)2, the above considerations show that
the statement cN,r = n̄I to which Theorem 3.1 reduced is a consequence of the
following.

Proposition 3.3. Let r ≥ 1 and 1 ≤ m1 < m2 < · · · < mr = N . Define formal
power series Fl(y) for 0 ≤ l ≤ r by (3.6) and (3.9). Then Fr is a polynomial of degree
= N and its yN coefficient is

[
N2

r−1∏

l=1

ml(N −ml)

]−1

.

Remarks. It follows easily from the discussion below (or from the definition of the cj,l)
that Fl is a polynomial of degree ≤ ml. For l < r it often happens that deg Fl < ml.
It is easily seen from the definition of the cj,l (or from (3.5)) that the lowest power of
y occuring in Fl with nonzero coefficient is yl, and its coefficient is 1.

We prove Proposition 3.3 by expressing the Fl(y) in terms of special solutions of
the differential equations. Let Pm denote the formal power series defined by

DmPm = 0, Pm(0) = 1.
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Then Pm = PN−m since Dm = DN−m. Clearly P0(y) = 1. We claim that if m is an
integer satisfying 0 ≤ m ≤ N , then Pm is a polynomial of degree = min(m,N −m).
This is clear from (3.8) with f = 0 since the multiplicative factor first vanishes when
j = min(m,N−m). Up to a simple linear change of independent variable and overall
multiplicative factor, the Pm are particular instances of Jacobi polynomials.

Next observe that the same reasoning applies if f is a polynomial of degree <
min(m,N−m): the unique solution u with u(0) any prescribed value is a polynomial
of degree ≤ min(m,N−m). The multiplicative factor (m−j)(N−m−j) also vanishes
for j = max(m,N −m). Again the same reasoning shows that if f is a polynomial
of degree < max(m,N −m), then u is a polynomial of degree ≤ max(m,N −m). In
particular, if m 6= N/2 the conditions

DmQm = Pm, Qm(0) = 0

uniquely determine a polynomialQm of degree≤ max(m,N−m). AgainQm = QN−m.
In the special case m = 0, we have

Lemma 3.4. The yN coefficient of Q0 is N−2.

Proof. We have P0 = 1. So (3.8) with j = 0 and u0 = 0 gives u1 = 1. Setting m = 0
and iterating (3.8) for higher j gives

uj = (j − 1)!(N − j + 1)(N − j + 2) · · · (N − 1).

Hence uN = (N − 1)!2. The result now follows from (3.7). �

Proof of Proposition 3.3. Begin by observing that the definition of the Fl and the
conclusion both remain unchanged if any ml is replaced by N − ml. We use this
observation to redefine some of the ml. Namely, if 1 ≤ l ≤ r − 1 and ml satisfies the
two conditions that ml > N/2 and for no k is it the case that mk = N − ml, then
we replace ml by N −ml. The new sequence of ml need no longer be increasing but
that will be irrelevant; it suffices to prove the statement of the theorem with the Fl

defined using these ml. It is still the case that all ml are distinct, and we now have
the property that if for some l one has ml > N/2, then necessarily there is k < l for
which N −ml = mk.

For convenience, let us set m0 = 0 and enlarge the set of m’s to include m0. Then
m0 = 0 and mr = N are both in our enlarged set of m’s, and now the property stated
above that if ml > N/2, then there is k < l for which N − ml = mk holds also for
l = r.

Define polynomials pl, 0 ≤ l ≤ r, as follows:

pl = Pml
if ml ≤ N/2

pl = Qml
if ml > N/2.

Clearly deg pl ≤ ml.
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Claim: There are constants aj,l for 0 ≤ l ≤ r, 0 ≤ j ≤ l, satisfying

(3.10) Fl =

l∑

j=0

aj,lpj, 0 ≤ l ≤ r

(3.11) a0,l =

[
l∏

j=1

mj(N −mj)

]−1

, 0 ≤ l ≤ r − 1

(3.12) ar,r =

[
r−1∏

l=1

ml(N −ml)

]−1

.

In (3.11) and (3.12) an empty product is interpreted as 1.
Proposition 3.3 follows immediately from the Claim. In fact, all pj for 0 ≤ j ≤ r−1

have degree < N and pr = Q0 has degree = N by Lemma 3.4. Thus (3.10) for l = r
together with (3.12) show that Fr has degree = N . Only pr = Q0 contributes to its
yN coefficient, which by Lemma 3.4 is N−2ar,r.

The Claim is proved by induction on l. It is clear for l = 0 since F0 = p0 = 1.
Suppose that the Claim is established for l − 1 and assume first that l < r. The
argument is slightly different for the last induction step passing from l = r − 1 to
l = r.

Now Fl is defined by

Dml
Fl = Fl−1 =

l−1∑

j=0

aj,l−1pj, Fl(0) = 0.

For each j, 0 ≤ j ≤ l − 1, we will solve Dml
uj = pj, uj(0) = 0, with uj a linear

combination of the pk, 0 ≤ k ≤ l. Then Fl =
∑l−1

j=0 aj,l−1uj is of the desired form.
The construction of the uj’s is based on the observation

(3.13) Dml
= Dmj

+ [ml(N −ml)−mj(N −mj)].

Consider different cases for j. If mj ≤ N/2 and mj(N − mj) 6= ml(N − ml), then
pj = Pmj

solves Dmj
pj = 0. Hence (3.13) gives

Dml

(
[ml(N −ml)−mj(N −mj)]

−1pj
)
= pj .

Correct the value at y = 0 by subtracting a multiple of the solution of the homoge-
neous equation: set

uj = [ml(N −ml)−mj(N −mj)]
−1(pj − Pml

).

Clearly uj solves the equation and the initial condition. Now Pml
is of the form pk for

some k with 1 ≤ k ≤ l: if ml ≤ N/2 then Pml
= pl, while if ml > N/2, then Pml

= pk,
where k < l is the index such that N − ml = mk. Thus we have constructed uj of
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the desired form in this case. Note that if j = 0, then mj = 0 and our solution is
u0 = [ml(N −ml)]

−1(p0 − Pml
). The coefficient of p0 is [ml(N −ml)]

−1, and p0 has
coefficient zero when any of the uj with j > 0 is expressed as a linear combination of
the p’s.

Next consider the construction of uj in case mj ≤ N/2 but mj(N −mj) = ml(N −
ml). This case might not occur at all, and if it does it can occur for only one j. Since
j < l we have mj 6= ml, so it must be that ml > N/2 and mj = N −ml. Therefore
pj = Pmj

and pl = Qml
. Since Dml

Qml
= Pml

= Pmj
and Qml

(0) = 0, we just take
uj = Qml

= pl. p0 does not occur in the expression of this uj as a linear combination
of the p’s.

The remaining possibility is mj > N/2. Now we need to solve Dml
uj = pj = Qmj

.
Once again we apply (3.13) to conclude that

Dml
Qmj

= Dmj
Qmj

+ [ml(N −ml)−mj(N −mj)]Qmj

= Pmj
+ [ml(N −ml)−mj(N −mj)]Qmj

.

Since j < l it is impossible thatml = N−mj . Thereforeml(N−ml)−mj(N−mj) 6= 0.
Arguing exactly as in the first case above we conclude that we can solve Dml

vj = Pmj
,

vj(0) = 0, with vj a linear combination of the pk for 1 ≤ k ≤ l. Then we take

uj = [ml(N −ml)−mj(N −mj)]
−1(Qmj

− vj)

=[ml(N −ml)−mj(N −mj)]
−1(pj − vj).

Once again, p0 has coefficient zero when uj is expressed as a linear combination of
the p’s.

This concludes the induction step for l < r: Fl =
∑l−1

j=0 aj,l−1uj is of the desired
form. Since p0 only entered in the construction of u0, and its coefficient in u0 was
[ml(N −ml)]

−1, we have

a0,l = [ml(N −ml)]
−1a0,l−1.

Thus (3.11) follows by induction as well.
Finally consider the last inductive step, passing from r − 1 to r. Now ml = N so

N − ml = m0 = 0. We again divide {j : 0 ≤ j ≤ r − 1} into the same three cases
as above and solve for the uj using the same methods. The difference now is that
j = 0 occurs in the second case instead of the first, since m0(N −m0) = mr(N −mr).
So u0 = Q0 = pr. In no other uj does pr occur with nonzero coefficient. From

Fr =
∑r−1

j=0 aj,r−1uj we therefore deduce ar,r = a0,r−1, which gives (3.12). �

This completes the proof of Theorem 3.1 and thus of (2.5). It remains to prove
Proposition 2.2. It is evident upon expanding the Rk’s that the left-hand side of (2.9)
is a linear combination of M2I(f). Again make the change of variables (3.1). Then
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(2.9) becomes

L1−NL3−N · · · LN−3(s
a−1)|s=0 =

∑

|I|=N−a

n(I,a)(a− 1)!2(I1 − 1)!2 . . . (Ir − 1)!2 xI

=
∑

|I|=N−a

n̄(I,a) xI .

But this is equivalent to (3.2), which stated

L1−NL3−N · · · LN−3LN−11|s=0 =
∑

|J |=N

n̄J xJ =
∑

|(I,a)|=N

n̄(I,a) xIxa,

as one sees upon evaluating LN−11 = X(s) =
∑

a≥1 xas
a−1.

4. Recursive Formulae

In this section we present the proofs of Theorems 1.2 and 1.4. First consider The-
orem 1.2. Since n(N) = 1, (1.5) can be written as P2N = M2N +

∑
|I|=N,I 6=(N) nIM2I .

The second term on the right-hand side only involves M2M withM < N . Thus this is
a polynomial lower-triangular system, and it follows that there are constants aI deter-
mined inductively by inverting this relation so that M2N = P2N +

∑
|I|=N,I 6=(N) aIP2I .

Observe that (1.6) is another relation of this same form. §2 of [J3] presents a proof
due to Krattenthaler that (1.5) and (1.6) are inverse relations in the other direction.
Specifically, Krattenthaler showed that if M2N are defined by

(4.1) M2N =
∑

|I|=N

mIP2I ,

then

(4.2) P2N =
∑

|I|=N

nIM2I .

Our desired identity (1.6) follows from the uniqueness of the inverse. Concretely, from
(4.2) one deduces M2N = P2N +

∑
|I|=N,I 6=(N) aIP2I by precisely the same inductive

inversion as for the M2N . Hence M2N = M2N , and (1.6) follows.
We review Krattenthaler’s proof of (4.2) as presented in §2 of [J3] as a warm-up

for the proof of Theorem 1.4. Substitution of (4.1) into (4.2) shows that (4.2) is
equivalent to

(4.3) P2N =
∑

|I|=N

∑

|J1|=I1,...,|Jr|=Ir

nImJ1 · · ·mJrP2J1 · · ·P2Jr .

The coefficient of P2N on the right-hand side is 1, so one is reduced to showing
that for K = (K1, . . . , Ks) with s > 1, the coefficient of P2K in (4.3) vanishes.
Given K, the choice of J ’s corresponds to a choice of subset A = {a1, . . . , ar−1} of
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[s− 1] = {1, . . . , s− 1} (including the empty set) of cardinality r− 1, which we order
by 1 ≤ a1 < a2 < . . . < ar−1 ≤ s− 1. The parameterization is

J1 = (K1, . . . , Ka1), J2 = (Ka1+1, . . . , Ka2), . . . ,

Jr−1 = (Kar−2+1, . . . , Kar−1
), Jr = (Kar−1+1, . . . , Ks).

(4.4)

The J ’s determine I by I = (|J1|, . . . , |Jr|). The coefficient of P2K1
· · ·P2Ks

is then

(4.5)
∑

A⊂[s−1]

nImJ1 . . .mJr ,

so (4.2) reduces to showing that this vanishes for all (K1, . . . , Ks) with s > 1.
Sums such as (4.5) can be evaluated using the following ingenious lemma of Krat-

tenthaler.

Lemma 4.1. Let s > 1 and let K1, . . . , Ks ∈ N. Set |K| = ∑s
j=1Kj. For A =

{a1, . . . , ar−1} ⊂ [s− 1], define J1, . . . , Jr and I as above. Then

∑

A⊂[s−1]

(−1)rI1 · · · Ir−1(Ir +X) ·
∏

a∈A(Ka +Ka+1 + Y χ(a = s− 1))
∏r−1

i=1 (
∑i

k=1 Ik)(
∑r

k=i+1 Ik)

=
X(|K| −Ks) + Y (Ks +X)

|K| −K1
.

(4.6)

Here χ(S) = 1 if S is true and χ(S) = 0 otherwise. X and Y are formal variables;
the identity holds as polynomials in X and Y .

This is Lemma 2.1 in [J3]. The proof is by induction on s, decomposing the set of
subsets A ⊂ [s] according to their last element. The proof is not at all obvious, but
the real ingenuity was to introduce the variables X and Y and to find the identity
(4.6) amenable to a proof by induction. For the purposes of this paper it suffices to
know (4.6) in the case X = Y . An examination shows that the proof by induction
actually applies to this case directly; it is not necessary for our purposes to introduce
both independent variables X and Y . We rewrite the identity for the case X = Y
in the form we will need it in the proof of Theorem 1.4. Setting X = Y = −b and
replacing Ks by Ks + b in (4.6) gives

(4.7)
∑

A⊂[s−1]

(−1)rI1 · · · Ir
∏

a∈A(Ka +Ka+1)∏r−1
i=1 (

∑i
k=1 Ik)(

∑r
k=i+1 Ik + b)

= − b|K|
|K| −K1 + b

.

This holds also for s = 1, since in that case both sides are −K1. As usual, empty
products are interpreted as 1. The form (4.7) seems natural: the induction hypothesis
arises natually in its proof by induction and the function χ(a = s−1) does not appear.
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We use Lemma 4.1 to finish the proof of (4.2). Substitution of the definitions (1.4)
of nI and the mJi into (4.5) shows that

∑

A⊂[s−1]

nImJ1 . . .mJr = (−1)s(|K| − 1)!2
s∏

j=1

1

Kj!(Kj − 1)!

s−1∏

j=1

1

Kj +Kj+1

· Σ,

where Σ is the expression occurring on the left-hand side of (4.6) with X = Y = 0.
Lemma 4.1 (or (4.7) with b = 0) shows that this vanishes. Thus (4.2) follows, and
hence also Theorem 1.2.

We turn now to the proof of Theorem 1.4. Recall that the scalar invariants W2N

are defined by (1.3). It will be convenient to introduce

W 2N = 22NN !(N − 1)!W2N , N ≥ 1

so that (1.8) takes the form

(4.8) (−1)NQ2N =
∑

|(I,b)|=N

n(I,b)M2I(W 2b)

and (1.9) becomes

W 2N =
∑

|(L,d)|=N

m(L,d)(−1)dP2L(Q2d).

Substitution of (4.8) for each (−1)dQ2d shows that (1.9) is equivalent to

W 2N =
∑

|(L,d)|=N

∑

|(I,b)|=d

m(L,d)n(I,b)P2LM2I(W 2b).

The term on the right-hand side with L = I = ∅ is W 2N , so it suffices to prove
∑

|(L,d)|=N

∑

|(I,b)|=d

m(L,d)n(I,b)P2LM2I = 0

for each fixed b such that 1 ≤ b < N . Substitution of (1.6) for each M2Ij rewrites
this as

(4.9)
∑

|(L,d)|=N

∑

|(I,b)|=d

∑

|J1|=I1,...,|Jr|=Ir

m(L,d)n(I,b)mJ1 · · ·mJrP2LP2J1 · · ·P2Jr = 0.

Fix K1, . . . , Ks with s ≥ 1 and each Kj ≥ 1 and consider the coefficient of
P2K1

· · ·P2Ks
in (4.9). We must have L = (K1, . . . , Kp) for some p, 0 ≤ p ≤ s.

Each |Ji| ≥ 1, although r = 0 is allowed corresponding to p = s. For p < s, the
choice of J ’s corresponds to a choice of subset A = {a1, . . . , ar−1} of [s − p − 1] =
{1, . . . , s − p − 1} (including the empty set) of cardinality r − 1, which we order by
1 ≤ a1 < a2 < . . . < ar−1 ≤ s− p− 1. Here

J1 = (Kp+1, . . . , Kp+a1), J2 = (Kp+a1+1, . . . , Kp+a2), . . . ,

Jr−1 = (Kp+ar−2+1, . . . , Kp+ar−1
), Jr = (Kp+ar−1+1, . . . , Ks).

(4.10)
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For p = s − 1, the only possibility for A is the empty set, in which case J1 = (Ks).
The J ’s determine I by I = (|J1|, . . . , |Jr|) as above. The coefficient of P2K1

· · ·P2Ks

is then

(4.11) m(K,b) +

s−1∑

p=0

m(L,|K|−|L|+b)

∑

A⊂[s−p−1]

n(I,b)mJ1 . . .mJr .

So Theorem 1.4 reduces to showing that this vanishes for all b ≥ 1 and all (K1, . . . , Ks)
with s ≥ 1.

We use Lemma 4.1 in the form (4.7) to evaluate the inner sum. Set K ′
j = Kp+j for

1 ≤ j ≤ s− p. Substitution of (1.4) for n(I,b) and the mJi shows that
∑

A⊂[s−p−1]

n(I,b)mJ1 . . .mJr

=(−1)s−p (|K ′|+ b− 1)!2

|K ′| b! (b− 1)!

s−p∏

j=1

1

K ′
j !(K

′
j − 1)!

s−p−1∏

j=1

1

K ′
j +K ′

j+1

· Σ
(4.12)

where

Σ =
∑

A⊂[s−p−1]

(−1)rI1 · · · Ir
∏

a∈A(K
′
a +K ′

a+1)∏r−1
i=1 (

∑i
k=1 Ik)(

∑r
k=i+1 Ik + b)

.

Replacement of s by s− p and Kj by K
′
j in (4.7) shows that

(4.13) Σ = − b|K ′|
|K ′| −Kp+1 + b

.

Substitute (4.13) into (4.12) and multiply by m(L,|K|−|L|+b). One obtains

m(L,|K|−|L|+b)

∑

A⊂[s−p−1]

n(I,b)mJ1 . . .mJr

=(−1)s+1 (|K|+ b)!(|K|+ b− 1)!

(b− 1)!2

s∏

j=1

1

Kj!(Kj − 1)!

s−1∏

j=1

1

Kj +Kj+1
· Rp

(4.14)

where

Rp =
Kp +Kp+1

(
∑s

i=pKi + b)(
∑s

i=p+1Ki + b)(
∑s

i=p+2Ki + b)
, 1 ≤ p ≤ s− 1

and

R0 =
1

(
∑s

i=1Ki + b)(
∑s

i=2Ki + b)
.

Empty sums are interpreted as 0.
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Set b = Ks+1 and substitute (4.14) into (4.11). After cancellation of factors in
common with m(K,b), one finds that the vanishing of (4.11) is equivalent to

s−1∑

p=1

Kp +Kp+1

(
∑s+1

i=p Ki)(
∑s+1

i=p+1Ki)(
∑s+1

i=p+2Ki)
=

1

Ks+1(Ks +Ks+1)
− 1

(
∑s+1

i=1 Ki)(
∑s+1

i=2 Ki)
.

This is proved by induction on s. For s = 1 the sum on the left-hand side is empty
and the right-hand side vanishes. Suppose the identity holds for s. Write

s∑

p=1

Kp +Kp+1

(
∑s+2

i=p Ki)(
∑s+2

i=p+1Ki)(
∑s+2

i=p+2Ki)
=

K1 +K2

(
∑s+2

i=1 Ki)(
∑s+2

i=2 Ki)(
∑s+2

i=3 Ki)

+
s∑

p=2

Kp +Kp+1

(
∑s+2

i=p Ki)(
∑s+2

i=p+1Ki)(
∑s+2

i=p+2Ki)

and use the induction hypothesis on the second term on the right-hand side to obtain
that the above equals

K1 +K2

(
∑s+2

i=1 Ki)(
∑s+2

i=2 Ki)(
∑s+2

i=3 Ki)
+

1

Ks+2(Ks+1 +Ks+2)
− 1

(
∑s+2

i=2 Ki)(
∑s+2

i=3 Ki)

=
1

Ks+2(Ks+1 +Ks+2)
+

1

(
∑s+2

i=2 Ki)(
∑s+2

i=3 Ki)

(
K1 +K2∑s+2

i=1 Ki

− 1

)

=
1

Ks+2(Ks+1 +Ks+2)
− 1

(
∑s+2

i=1 Ki)(
∑s+2

i=2 Ki)
.

This completes the proof of the vanishing of (4.11) and thus also of Theorem 1.4.
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[J2] A. Juhl, On the recursive structure of Branson’s Q-curvature, arXiv:1004.1784.
[J3] A. Juhl, Explicit formulas for GJMS-operators and Q-curvatures, arXiv:1108.0273.

Department of Mathematics, Princeton University, Princeton, NJ 08544

E-mail address : cf@math.princeton.edu

Department of Mathematics, University of Washington, Box 354350, Seattle, WA

98195-4350

E-mail address : robin@math.washington.edu

http://arxiv.org/abs/0710.0919
http://arxiv.org/abs/math/0303184
http://arxiv.org/abs/1004.1784
http://arxiv.org/abs/1108.0273

	1. Introduction
	2. Explicit Formulae
	3. Combinatorial Identities
	4. Recursive Formulae
	References

