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Optimal strong stationary times for random walks on the chambers

of a hyperplane arrangement

Evita Nestoridi
∗

Abstract

This paper studies Markov chains on the chambers of real hyperplane arrangements, a model
that generalizes famous examples, such as the Tsetlin library and riffle shuffles. We discuss cutoff
for the Tsetlin library for general weights, and we give an exact formula for the separation
distance for the hyperplane arrangement walk. We introduce lower bounds, which allow for
the first time to study cutoff for hyperplane arrangement walks under certain conditions. Using
similar techniques, we also prove a uniform lower bound for the mixing time of Glauber dynamics
on a monotone system.

1 Introduction

Hyperplane arrangement walks have been studied by many different authors. The eigenvalues and
eigenvectors for such walks have been characterized ([6], [8], [4], [22]), while a coupling argument
[4] gives upper bounds on the total variation distance that are not always sharp and there are no
lower bounds. We introduce a strong stationary time, which can be used to give both upper and
lower bounds for the separation distance mixing time. In many cases, this strong stationary time
is optimal and leads to a proof of existence of cutoff. This is the first time that lower bounds and
cutoff are discussed in the setting of hyperplane arrangement walks.

In this paper, we denote by A a central hyperplane arrangement, that is a finite collection of
hyperplanes in Rn that pass through the origin. The hyperplanes of A cut Rn in finitely many
connected, open components, called chambers. A chamber can be expressed as a vector with
m = |A| coordinates, by keeping track of whether it is on the (+) or (−) half space of each
hyperplane. Similarly we can express every face as a vector with m coordinates, where each
coordinate is either +, − or 0, where 0 indicates that the face lies on the hyperplane. Denote by C
be the set of chambers and F denote the set of faces.

Let w be a probability measure on F such that for every hyperplane H ∈ A there is an F with
w(F ) > 0 and F * H. Given such a w, we study the following process on C: from C ∈ C, choose F
according to w and move to FC, that is the unique chamber neighboring F which is the nearest to
C (in the sense of crossing the smallest number of hyperplanes). Algebraically, FC is the chamber
whose coordinates agree with the non-zero coordinates of F , while the rest are determined by C.
This action F ×C → C extends naturally to an associative product F ×F → F . Let T be the first
time that the product of the faces picked is a chamber. The main theorem of this paper provides
tools for obtaining upper and lower bounds for the mixing time and studying cutoff for this Markov
chain.
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Theorem 1. Assume that a group G acts on Rn preserving the hyperplane arrangement A and
acting transitively on the set of chambers. If the weights w are G-invariant then

s(t) = P(T > t)

for every t, where s(t) is the separation distance of the walk at time t.

Theorem 3.3 of [15] discusses lower bounds and upper bounds for P(T > t) and it gives cutoff for
cases such as when all faces with positive weight have at most M non-zero coordinates, where
M = mo(1), and b =

∑

F*Hi
w(F ) is independent of i.

To discuss cases where a face with large number of non-zero coordinates might be collected, just as
in the case of riffle shuffles, assume that there are b and d bounded away from 1 so that for every
i, j we have that

b =
∑

F*Hi

w(F ) and
∑

F*Hi∪Hj

w(F ) = d. (1)

If d = 0 then discussing cutoff for the hyperplane arrangement walk under the assumptions of
Theorem 1 is merely a coupon collecting problem. The following proposition discusses cutoff for
the cases that Theorem 1 applies to.

Proposition 2. Let A be a central hyperplane arrangement that satisfies the assumptions of The-
orem 1 and equation (1) with b bounded away from one, b ≤ 1+d

2 and 0 < d ≤ b2. Then the random
walk on the chambers of A exhibits cutoff with respect to the separation distance at time log 1

1−b
m

with window 1
b .

Equation (1) holds if for example the G-action is 2-transitive on the hyperplanes. The assumptions
of Proposition 2 hold for the riffle shuffles, which is introduced in Section 3, since b = 1

2 and d = 1
4 .

It can also be applied for the case of a non-local random walk on the hypercube as explained on
Section 4.

To give explicit bounds for the separation distance mixing time in the general case or to say whether
there is cutoff, one needs to study a complicated coupon collector problem. Coupon collecting with
different weights has been studied in special cases by Diaconis [9], Fill [16] and Stadje [23].

We study specifically the Tsetlin library: pick a book i with probability wi and move it to the front.
This is a very well studied Markov chain mainly because of its use in dynamic file maintenance
and cache maintenance ([14], [17], [21]). Fill [16] has already studied the separation distance for
this model and has proven cutoff for special cases of weights. We use poissonization to prove the
following new cutoff result:

Theorem 3. For the Tsetlin Library with weights wi, let t∗ be the unique solution to
∑n

i=1 e
−wit∗ =

1
2 . If t∗ mini{wi} → ∞ and t∗mini{w2

i } is bounded for all n, then

(a) If t = t∗ + c 1
mini{wi}

, then

s(t) ≤ 1− e−
e
− c

2

2 +
4mini{w2

i }t∗ + 2cmini{wi}
c2

,

where c > 0.
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(b) If t = t∗ − 2c 1
mini{wi}

, then

s(t) ≥ 1− e−
e
c
2

2 − 4min{w2
i }t∗ − 2cmin{wi}

c2
− 1

c
,

where 0 < c < t∗ mini{wi}
2 .

where s(t) is the separation distance.

In section 4, we prove a similar result for the nearest random walk on the hypercube with general
weights. The following theorem discusses a general lower bound for the separation distance.

Theorem 4. For every central hyperplane arrangement, we have that

P(T > t) ≤ s(t),

where π(D) is the stationary measure and s(t) is the separation distance.

The technique used in the proof of Theorem 4 can be used in many other applications of broader
interest. For example, section 7 gives a uniform lower bound for the mixing time of Glauber
dynamics on monotone systems. A system (Ω, S, V, π) consists of a finite set S of spins, a V set of
sites, the set of configurations Ω := SV and a positive probability distribution on Ω which will serve
as the stationary measure for the Glauber dynamics. If S is totally ordered then SV is endowed
with the coordinate-wise partial order. Following the notation of Peres and Winkler [20], let σs

u

denote the configuration obtained from σ by updating its value at u to s. Let σ•
u denote the set of

possible configurations occurring by updating the value of σ at u. A system (Ω, S, V, π) is called
monotone if whenever σ ≤ τ are two configurations in Ω, then

{

π(σs
u)

π(σ•
u)

}

s∈S

�
{

π(τ su)

π(τ•u)

}

s∈S

,

where � indicates that

{

π(τsu)
π(τ•u )

}

s∈S

stochastically dominates

{

π(σs
u)

π(σ•
u)

}

s∈S

.

We introduce a short proof that generalizes the uniform lower bound for the separation distance
and total variation mixing times proven by Ding and Peres in the special case of the Ising model
[12].

Theorem 5. Let (Ω, S, V, π) be a monotone system, with |V | = n number of sites and Ω ⊂ SV .
Then for the Glauber dynamics on Ω, if t = n log n− cn, then

s(t) ≥ 1− e−ec

and if t = 1
2n log n− cn, then

d(t) ≥ 1

4
− 1

4
e−ec ,

where c > 0 and d(t) is the total variation distance at time t.

Remark 6. In the appendix of [11], Ding and Peres provided an alternative proof of the uniform
lower bound for the Ising model that could be generalized in the case of monotone systems.
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1.1 Literature and organization of the paper

Bidigare, Hanlon and Rockmore (BHR) [6] defined the walk on C and characterized its eigenvalues.
Brown and Diaconis [8] proved that the transition matrix of this Markov chain is diagonalizable and
they reproved the BHR result. They also found a necessary and sufficient condition on w so that
the walk has a unique stationary distribution. This condition is that w separates the hyperplanes of
A, namely that for every H ∈ A there is a face F * H such that w(F ) > 0. Under this assumption,
they provide a stochastic description for the stationary measure π: sample without replacement
from w and apply these faces in reverse order to any starting chamber (this way the first chosen
face is the last to be applied). In this paper, w is assumed to be separating, so there exists a notion
of convergence to this unique distribution. Athanasiadis and Diaconis have a similar discussion
in [4], where they use purely combinatorial methods as well as a coupling argument. Their upper
bounds are introduced for the total variation distance. When applied to examples though, these
upper bounds are not sharp. Then Brown [7] generalized this coupling for the case of semigroups.
Pike has studied the eigenvectors of the process in [22].

Some important examples can be found in sections 3 and 4. Section 5 presents the proof of Theorem
4. Finally, section 6 contains the proofs of Theorems 1 and Proposition 2. Section 7 discusses how
the techniques of this paper can be used in monotone systems, such as the Ising model and presents
the proof of Theorem 5.

2 Preliminaries

2.1 Strong stationary times and cutoff

Denote by Ct
x0

the tth configuration of the walk that starts at x0, that is the chamber the walk is
on after t steps of running the process. Define the separation distance to be

s(t) = max
x0∈C

(

1−min
x∈C

P
(

Ct
x0

= x
)

π(x)

)

.

To bound the separation distance of a Markov chain, Diaconis and Aldous [2] introduced the
following definition.

Definition 7. Fix x0 ∈ C. A strong stationary time is a stopping time τ such that for every A ⊂ C
and t ≥ 0 it holds that

P
(

Ct
x0

∈ A|τ ≤ t
)

= π(A),

where Ct is the state that the Markov Chain is at time t and π is the stationary measure.

Aldous and Diaconis [2] proved the following theorem which is the main link between strong sta-
tionary times and separation distance:

Lemma 8. If τ is a strong stationary time then for t > 0,

s(t) ≤ P(τ > t) .

This paper studies cutoff with respect to the separation distance. The sequence of walks on the
chambers of hyperplane arrangement An will be said to exhibit cutoff at tn with window wn = o(tn)
if and only if

lim
c→∞

lim
n→∞

s(tn − cwn) = 1 and lim
c→∞

lim
n→∞

s(tn + cwn) = 0,

where n is the dimension of Rn.
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2.2 The rigorous definition of the product

This section presents the rigorous setup of the hyperplane arrangement theory. It defines the
chambers, the faces and the product algebraically.

Any face F can be written in the following form:

F =
⋂

i∈I

H
σi(F )
i ,

where σi(F ) ∈ {+,−, 0}, H+
i corresponds to the right open half-space determined by Hi (and

respectively H−
i for the left one) and H0

i = Hi. Notice that σi(F ) 6= 0 for all i if and only if F is a
chamber. The faces form a semigroup under the following associative product:

Definition 9. If F,G are two faces then

FG =
⋂

i∈I

H
σi(FG)
i ,

where

σi(FG) =











σi(F ), if σi(F ) 6= 0

σi(G), otherwise.

Notice that Ct
x0

= F t . . . F 1x0, where F t if the face picked at time t. Brown [7] explains that
multiplication of faces satisfies both the “idempotence” and the “deletion property”, that is if F
and G are two faces then

FF = F and FGF = FG (2)

3 Braid Arrangement and card shuffles

Many shuffling schemes can be viewed as Markov chains on the chambers of the braid arrangement.
The braid arrangement consists of the hyperplanes

xi = xj. (3)

It is clear that the chambers are in one to one correspondence with the elements of Sn. The faces
are exactly the ordered block partitions of [n]. For example,

{1, 2, 3}{4, 5}{6, 7, . . . n}

corresponds to

x1 = x2 = x3 < x4 = x5 < x6 = x7 = . . . = xn

One general card shuffling scheme studied in this section is the ”pop shuffles”: consider all ordered
block partitions of [n] = {1, 2, . . . n} and assign weights to them. In this shuffling scheme one picks
an ordered block partition A1, A2, . . . Am according to the weights and remove from the deck the
cards indicated by A1 and put them on the top, keeping their relative order fixed. Then remove
the cards indicated by A2 and put them exactly below the A1 cards, keeping their relative order
fixed and, so on. This is exactly the hyperplane arrangement walk.

Proposition 2 can be applied in this case, since G = Sn acts transitively on the chambers. Assuming
that the weights satisfy (1), the following walks exhibit cutoff.
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Studying cutoff for the Tsetlin Library. Let wj denote the positive weight assigned to the
jth card. Consider the following Markov Chain on Sn: start from a state x in Sn. With probability
w(j) remove card j and place it on top. The stationary distribution is the Luce model, which is
described as sampling from an urn with n balls without replacement, picking ball j with probability
w(j).

The eigenvalues of this process were discovered independently by Donnelly [14], Kapoor and Rein-
gold [18], and Phatarfod [21]. Brown and Diaconis [8], Athanasiadis and Diaconis [4] also present
the eigenvalues of the Tsetlin Library as an example of a hyperplane walk. Fill gives an exact
formula for the probability of any permutation after any number of moves in [16] and discusses
cutoff for specific types of weights (see Theorem 4.3 of [16]).

Lemma 10 (Fill, [16]). For the Tsetlin Library with weights w(i), let T be the first time we have
touched n− 1 cards. Then

s(t) = P(T > t) .

Theorem 3 is one of the main results of this paper that is not a special case of Theorem 1.

Proof of Theorem 3. Let Tn be the first time that we have picked all cards.

(a) Let Xi(t) be the number of times that card i has been picked at time t. Let t = t∗+
c

2mini{wi}

and Yi be independent random variables following Pois(wit). So Y =
∑

i Yi ∼ Pois(t). Now
(X1(t), . . . ,Xn(t)) at time t have the same joint distribution as (Y1, . . . , Yn)|

∑

i Yi = t namely
they both follow a multinomial distribution:

P

(

(Y1, . . . , Yn) = (a1, . . . , an)

∣

∣

∣

∣

∣

∑

i

Yi = t

)

=

e−t
∏

(wit)ai∏
ai!

e−tt
t

t!

= t!
∏

i

wai
i

ai!

= P((X1(t), . . . ,Xn(t)) = (a1, . . . , an))

for every non-negative integers a1, . . . an whose sum is t. Then

s(t) = P(T > t) ≤ P(Tn > t) =

1− P(Xi (t) ≥ 1,∀i) = 1− P

(

Yi ≥ 1,∀i
∣

∣

∣

∣

∣

∑

i

Yi = t

)

≤ 1−
∑

k≤t

P

(

Yi ≥ 1,∀i
∣

∣

∣

∣

∣

∑

i

Yi = k

)

P

(

∑

i

Yi = k

)

(4)

= 1− P

(

∀i Yi ≥ 1,
∑

i

Yi ≤ t

)

≤ 1− P(Yi ≥ 1,∀i) + P

(

∑

i

Yi > t

)

, (5)

where (4) holds because P(Yi ≥ 1,∀i|∑i Yi = k) is increasing on k. Since t = t∗ +
c

2mini{wi}
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and t = t∗ +
c

mini{wi}
, we have that

(5) = 1−
∏

(1− e−wit) + P





∑

i Yi − t√
t

>

c
2mini{wi}

√

t∗ +
c

2mini{wi}





. 1− e−
∑n

i=1
e
−wi

(

t∗+
c

2mini{wi}

)

+
4mini{w2

i }t∗ + 2cmini{wi}
c2

(6)

≤ 1− e−
e
− c

2

2 + o(1), (7)

where (6) is because of Chebychev’s inequality and in 7, we used the fact that
∑n

i=1 e
−wit∗ = 1

2 .

(b) To prove the lower bound, we use again that P(T > t) behaves similarly to P(Tn > t). This
is illustrated by the following inequality:

P(T > t) ≥ P

(

Tn > t+
c

mini{wi}

)

− P

(

Tn − T ≥ c

mini{wi}

)

.

Let t = t∗ − c
2mini{wi}

and let Yi be a random variable following Pois(wit). Then again

Y =
∑

i Yi ∼ Pois(t) and using Markov’s inequality, we have that

P(T > t) ≥ P

(

Tn > t+
c

mini{wi}

)

− P

(

Tn − T ≥ c

mini{wi}

)

≥ 1− P

(

Xi

(

t+
c

mini{wi}

)

≥ 1,∀i
)

− 1

c

= 1− P

(

Yi ≥ 1,∀i
∣

∣

∣

∣

∣

∑

i

Yi = t+
c

mini{wi}

)

− 1

c

= 1−
∞
∑

k=1

P

(

Yi ≥ 1,∀i
∣

∣

∣

∣

∣

∑

i

Yi = t+
c

mini{wi}

)

P

(

∑

i

Yi = k

)

− 1

c

≥ 1− P

(

Yi ≥ 1,∀i,
∑

i

Yi ≥ t+
c

mini{wi}

)

− P

(

∑

i

Yi < t+
c

mini{wi}

)

− 1

c

> 1− P(Yi ≥ 1,∀i)− P





∑

i Yi − t√
t

< −
c

2mini{wi}
√

t∗ − c
2mini{wi}



− 1

c

& 1− e−
e
c
2

2 − 4t∗ min{w2
i } − 2cmin{wi}
c2

− 1

c

Inverse Riffle Shuffles. In inverse riffle shuffles, as presented by Aldous and Diaconis [2], one
marks each card with zero or one with probability 1/2, then moves the ones marked with zero on
top, preserving their relative order. This corresponds to sampling among the two-block ordered
partitions {c1, c2, . . . , ci}{[n] \ {c1, c2, . . . , ci}}.
Although Bayer and Diaconis [5] prove that the optimal upper bound for the total variation mixing
time is 3

2 log2 n, yet work done by Aldous and Diaconis [2] and Assaf, Diaconis and Soundararajan
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[3] proves that the separation distance mixing time is 2 log2 n. Several other metrics have also been
studied: [3] have studied the l∞ norm as well, while Stark, Gannesh and O’Connell [24] studied
the Kullback-Leibler distance.

As discussed in Athanasiadis and Diaconis in [4] there is a generalization of this card shuffling,
namely marking the cards with a number in {0, 1, . . . , a − 1} according to the multinomial dis-
tribution. Then move the ones marked with zeros on top, keeping their relative order fixed, and
continue with the ones marked with 1 etc. This is a generalization of a strong stationary argument
of Aldous’ and Diaconis’ in [2], giving an upper bound for the general inverse riffle shuffle of the
form 2 loga n, while Proposition 2 guarantees the existence of cutoff as explained thoroughly in
Section 6. Following Proposition 2, we prove that the generalized riffle shuffles has cutoff for the
separation distance at 2 loga n with constant window.

k to top. A natural generalization of random to top is to pick k cards at random and move
them to the top, keeping their relative order fixed. This random walk is generated by the uniform
measure on faces of the form

{c1, c2, . . . , ck}{[n] \ {c1, c2, . . . , ck}}

This is a new example of card shuffling that falls in the category of hyperplane arrangement walks.
Notice that the mixing time for k and n − k are the same. If 1 < k ≤ n

2 then b = k
n and

d = k2

n2 − k(n−k)
n2(n−1) satisfy the conditions of Proposition 2 and, therefore, the walk exhibits cutoff

with respect to the separation distance at 2 log n
n−k

n with window n
k .

Random to top or bottom. Consider the card shuffling where a card is chosen at random and is
moved to the top or the bottom with probability 1/2. This is again a random walk on the chambers
of the braid arrangement. The faces used are of the form {{c}, {[n] \ {c}}} and {{[n] \ {c}}, {c}}
each one having weight 1/2n. Theorem 1 says that the first time all cards have been touched is an
optimal strong stationary time. Therefore, there is cutoff for the separation distance at n log(n)
with window n. Theorem 3 holds if we assign weights to the cards. For some calculations see the
work of Diaconis [9].

4 Boolean Arrangement and hypercube walks

The Boolean arrangement consists of the hyperplanes xi = 0, 1 ≤ i ≤ n in Rn. Each chamber is
specified by the sign of its coordinates, in other words they are the 2n orthants in Rn. In other
words each chamber corresponds to a vertex of the n−dimensional hypercube. The faces are in
bijection with {−, 0,+}n. The projection FC of a chamber C on a face F is a chamber who adopts
all the signs non-zero coordinates of F and the rest of the coordinates have the signs of C. Under
the assumptions of Proposition 2, the following examples exhibit cutoff since G = (Z/2Z)n acts on
the chambers transitively.

The weighted nearest neighbor walk on the hypercube. If the only positively weighted
faces are the e±i , whose ith coordinate is± and the rest are zero, then the Markov Chain corresponds
to the weighted nearest neighbor random walk on the hypercube, which corresponds to choosing a
coordinate and switching it to ±. Denote the weight of e±i by w±

i and assume they are all positive.

8



Lemma 11. If w+
i = w−

i , then T , the first time that all coordinates have been picked, is an optimal
strong stationary time.

Proof. If w+
i = w−

i , then the random walk is symmetric and therefore the stationary measure is
the uniform measure on (Z/2Z)n. For t ≥ n we have that

P
(

Ct
x0

= x
∣

∣ T = t
)

=
n
∏

i=1

w
x(i)
i

w+
i + w−

i

=
1

2n
(8)

for all x ∈ (Z/2Z)n, where x(i) denotes the ith coordinate of x. The first equality in (8) holds
because we only need to keep track of whether we chose + or − the last time the ith coordinate
was picked.

This means that T is a strong stationary time. Lemma 8 and Theorem 4 say that

s(t) = P(T > t)

which finishes the proof.

The following proposition discusses cutoff for the nearest neighbor random walk on the hypercube
for the case where w+

i = w−
i .

Proposition 12. Assume that w+
i = w−

i and let wi = w+
i + w−

i . Let t∗ be the unique solution
to
∑n

i=1 e
−wit∗ = 1

2 . If t∗mini{wi} → ∞ and t∗mini{w2
i } is bounded for all n, then the nearest

neighbor random walk on the hypercube exhibits cutoff.

Proof. The proof is similar to Theorem 3.

A special case has been studied by Aldous [1] and Diaconis and Shashahani [10]. They studied the
case where w±

i = 1
2n and they have proved the cutoff for the total variation distance mixing time

at n
2 log n+ cn.

A non-local walk on the hypercube. Consider the following walk on the hypercube: let
1 < k ≤ n

2 . Pick k coordinates at random and flip a fair coin for each one of them to determine

whether to turn them into ones or zeros. Then, b = k
n and d = k2

n2 − k(n−k)
n2(n−1)

and, therefore,

Proposition 2 says that the walk exhibits cutoff at log n
n−k

n with window n
k .

5 The proof of Theorem 4

Proof of Theorem 4. Fix t and choose a chamber D so that

P
(

Ct
x0

= D
∣

∣ T ≤ t
)

≤ π(D),

Let x0 be the chamber that occurs if we flip all coordinates of D. This is possible because all
hyperplanes pass through the origin. Let T be the first time that the product of the faces picked
is a chamber then for t ≥ a we have that

Ct
x0
(D) = P

(

Ct
x0

= D
∣

∣ T ≤ t
)

P(T ≤ t) ≤ π(D)P(T ≤ t) .

9



Therefore,

s(t) ≥ 1− P
(

Ct
x0

= D
)

π(D)
≥ 1− P(T ≤ t) = P(T > t) ,

giving that s(t) ≥ P(T > t) for all t > 0, proving Theorem 4.

6 Cutoff cases-Reflection arrangements

In this section, assume that a group G acts on Rn preserving the hyperplane arrangement A so
that the action restricted on the chambers is transitive. Assume that the weights are G−invariant
At the end of this section, we prove that under a few more assumptions, the walk exhibits cutoff.
As mentioned in page 9 of Brown and Diaconis [8] the stationary measure is the uniform measure
on the chambers. Let T be the first time that the product of the faces picked is a chamber. We
can rewrite Theorem 1 as

Lemma 13. Let A be a hyperplane arrangement. If the weights are G−invariant then T is a strong
stationary time.

Proof. Let ℓ be the number of chambers of A. To prove that

P
(

Ct
x0

= C
∣

∣ T = t
)

= π(C)

for every t and x0, C ∈ C, consider at first the case t = 1 and remember that w(c) denotes the
weight of a chamber C when viewed as a face.

P
(

C1
x0

= C
∣

∣ T = 1
)

=
w(C)

∑

D∈C w(D)
=

1

ℓ
.

Because of the symmetry condition, we have that

P
(

C2
x0

= C
∣

∣ T ≤ 2
)

=

∑

Fi1
Fi2

=C w(Fi1)w(Fi2)
∑

D∈C

∑

Fi1
Fi2

=D w(Fi1)w(Fi2)
=

1

ℓ

and inductively, because of the weight invariant action of G.

P
(

Ct
x0

= C
∣

∣ T = t
)

=
1

ℓ
.

Proof of Theorem 1. Theorem 4 says that

s(t) ≥ P(T > t)

and Lemmas 13 and 8 say that
s(t) ≤ P(T > t)

and therefore we have that
s(t) = P(T > t) .

Having established that s(t) = P(T > t) we can now prove Proposition 2, which talks about cutoff.

10



Proof of Proposition 2. Let t = log 1

1−b
m+ c1b then

s(t) = P(T > t) = P(∃Hi ∈ A : ∀F picked by time t, F ⊂ Hi) ≤ m (1− b)t ≤ e−c.

So limc→∞ limn→∞ s(t) = 0.

To get a lower bound, we need to solve the following coupon collector problem: we are trying m
different coupons, where m is the number of hyperplanes in A. Picking a face F with probability
wF corresponds to picking the coupons that correspong to the non-zero coordinates of F . Let X
be the random variable that describes this coupon collecting in one step. Let Xt denote the set of
coupons picked by time t. Let t = log 1

1−b
m− c1b , then

E
[

|[m] \Xt|
]

= m(1− b)t ≈ ec

and
E
[

|[m] \Xt|2
]

=
∑

i,j /∈Xt

P
(

i /∈ Xt and j /∈ Xt
)

=
∑

i,j /∈Xt

(1− P(i or j ∈ X))t =

m(1− b)t +m(m− 1)(1− 2b+ d)t.

Therefore, the variance is

Var
[

|[m] \Xt|
]

= m(1− b)t +m(m− 1)(1− 2b+ d)t −m2(1− b)2t

≤ m(1− b)t +m(m− 1)(1− b)2t −m2(1− b)2t ≤ ec,

because 0 ≤ 1− 2b+ d ≤ 1− 2b+ b2. Chebychev’s inequality gives that if t = 1
b log 1

b
m− c1b then

s(t) = P(T > t) = P
(

|[m] \Xt| ≥ 1
)

≥ 1− ec

(ec − 1)2

and therefore limc→∞ limn→∞ s(t) = 1. This finishes the proof that the walk has cutoff at log 1

1−b
m

with window 1
b .

7 A uniform lower bound for monotone systems

This section presents a uniform lower bound for Glauber dynamics in any monotone spin system,
as defined in the introduction, generalizing the result of Ding and Peres for the Ising model [12].

Let T be the first time we have picked all sites of V . Let x be the configuration where all sites of V
are assigned with the biggest value of S and let y be the configuration where all sites are assigned
with the smallest value of S. Let Xt is the configuration of the Glauber dynamics after t steps and
let π denote the stationary measure. To prove Theorem 5, we will need the following lemma:

Lemma 14. At any time time t, we have that

P
(

Xt = y
∣

∣ X0 = x, T ≤ t
)

≤ π(y).

Proof. Lemma 2.1 of Peres and Winkler [20] says that since y is the smallest element in the order-

ing,
P(Xt=y | X0=x,node v was selected)

π(y) is the smallest value of
P(Xt=· | X0=x,node v was selected)

π(·) .

Inductively, this gives that
P(Xt=y | X0=x,T≤t)

π(y) is the smallest value of
P(Xt=· | X0=x,T≤t)

π(·) . This value

has to be less than or equal to one because both P
(

Xt = ·
∣

∣ X0 = x, T ≤ t
)

and π are probability
measures. This finishes the proof.
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Proof of Theorem 5. Notice that

P t(x, y) = P
(

Xt = y
∣

∣ X0 = x, T ≤ t
)

P(T ≤ t) .

Therefore, s(t) ≥ 1− P(Xt=y | X0=x,T≤t)P(T≤t)

π(y) . Using Lemma 14 we get that

s(t) ≥ P(T > t) .

Just as in Theorem 1.24 of [13], if t = n log n− cn then

s(t) ≥ 1− e−ec .

For the second part, equation (6.12) of [19] gives that if t = n
2 log n− cn then

d(t) ≥ 1

4
s(2t) ≥ 1

4
− 1

4
e−ec .
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