Supplementary Information for
 Giant supercurrent states in a superconductor-InAs/GaSb-superconductor junction

Xiaoyan Shi*, Wenlong Yu, Zhigang Jiang, B. Andrei Bernevig, W. Pan, S.D. Hawkins, J.F. Klem

* Correspondence to: xshi@sandia.gov

This PDF file includes:

Materials and Methods

Figs. S1 to S5

Materials and Methods

The InAs/GaSb bilayer sample was grown by molecular beam epitaxy on a GaSb substrate. The thickness of GaSb and InAs quantum well layers was 5.0 nm and 10.0 nm , respectively. The bilayer was sandwiched by two AlSb barrier layers with several buffer layers deposited below and an InAs cap layer above. A mesa of the bilayer was defined by photolithography and wet chemical etching processes. Ammonium hydroxide solution and citric acid/hydrogen peroxide solution were used to selectively etch $\mathrm{AlSb} / \mathrm{GaSb}$ and InAs layers, respectively. $\mathrm{Au} / \mathrm{Ti}$ (200/10 nm thick) electrodes were deposited by an e-beam evaporator to connect the InAs/GaSb bilayer at the four corners of the mesa. A second photolithography patterning and wet etching were performed to expose the InAs layer in the center of the mesa. The sample was then immediately transferred to a sputtering machine after the wet etching, and superconducting Ta (240 nm thick) electrodes are directly sputtered on top of it to form a Ta-bilayer-Ta junction. Au wires were glued by silver epoxy to $\mathrm{Au} / \mathrm{Ti}$ electrodes and Ta electrodes for measurements. As a reference, a Hall bar sample was made from the same wafer. A gate was fabricated on the reference sample after covering the whole sample by a layer ($\sim 100 \mathrm{~nm}$) of atomic-layer-deposition-grown $\mathrm{Al}_{2} \mathrm{O}_{3}$. The carrier density, mobility and their dependence on the gate voltage were measured in this reference sample.

The dc I-V characteristics of the sample were measured with dc voltage or current sources and digital multimeters in a quasi-four terminal configuration as shown in Fig. 1(b), where I and V signals are sent/taken from the two Ta electrodes. For differential resistance measurements, a small ac current ($\sim 10 \mathrm{nA}, 13 \mathrm{~Hz}$) was summed with the dc current then feed to the junction, and the ac voltage response of the sample was measured by the standard lock-in technique.

Data in Fig. 1(c) were taken in a 3 He cryostat with base $T=0.3 \mathrm{~K}$. All other data shown here
were taken in two dilution refrigerators with base $T=90 \mathrm{mK}$ and 30 mK , respectively. The normalstate resistance of the junction varies slightly during different cool downs. For all measurements in magnetic field, the field direction was perpendicular to the sample surface.

Fig. S1: Differential resistance at $T=90 \mathbf{m K}$. (a) $\mathrm{d} V / \mathrm{d} I(V)$ in zero field. This is the same set of data as shown in Fig. 1(e). (b) Field dependence of $\mathrm{d} V / \mathrm{d} I(V)$. The same set of data is also shown in Fig. 2(c) as $\mathrm{d} V / \mathrm{d} I(I)$. A smaller field range is chosen to show details of the fluctuations in $\mathrm{d} V / \mathrm{d} I$ near zero field. Two hand-drawn dashed lines highlight the B and B^{\prime} peak positions. As shown, the voltage difference between two peaks, $\Delta_{B-B^{\prime}}$, increases as field increases in small fields.

Fig. S2: Evolution of peak separation in magnetic field $(T=90 \mathrm{mK}) . \Delta_{A-A^{\prime}}$ is the voltage separation for pairs A and A^{\prime}. It decreases monotonically as field increases (also shown in Fig. 2(d)). $\Delta_{A-A^{\prime}}, \Delta_{B-B^{\prime}}$, and $\Delta_{C-C^{\prime}}$ are totally suppressed by fields of $0.14 \mathrm{~T}, 1.1 \mathrm{~T}$, and 2.2 T , respectively. Solid lines are BCS fits for $\Delta_{A-A^{\prime}}$ and $\Delta_{C-C^{\prime}}$.

Fig. S3: Temperature dependence of $\mathbf{d} V / \mathrm{d} I(I)$ of the bilayer through a quantum point contact defined by Ta electrodes in zero magnetic field. (a-f) At low temperatures, strong hysteresis exists near dc $I=0$. Arrows represent current scan directions. As T increases, hysteresis decreases and vanishes at $T \approx 400 \mathrm{mK}$. The peak values at $I=0$ are shown for different temperatures in (g).

Fig. S4: $\mathbf{d} V / \mathbf{d} I(I)$ of the $\operatorname{InAs} / \mathrm{GaSb}$ bilayer through a quantum point contact defined by Ta electrodes at $T=30 \mathrm{mK}$. The measurement configuration is shown in the left inset. In all magnetic fields, $\mathrm{d} V / \mathrm{d} I(I)$ shows hysteresis near zero I, when the dc bias I scan direction (arrows in main plot) changes. Furthermore, the traces show weak field dependence, except the larger peak near dc $I=0$. The right inset shows the field dependence of the ac resistance R (or differential resistance at zero bias, $\left.\mathrm{d} V /\left.\mathrm{d} I\right|_{I=0}\right)$ for the larger peak.

Fig. S5: Quantum Hall measurement of the reference Hall bar sample at $T=0.3 \mathrm{~K}$. R_{\square} is the longitudinal sheet resistivity. $R_{x y}$ is the Hall resistance.

