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We report the magnetic structure and electronic properties of the honeycomb antiferromagnet
NaNi2BiO5.66. We find magnetic order with moments along the c axis for temperatures below Tc1 =
6.3(1)K and then in the honeycomb plane for T < Tc2 = 4.8(1)K with a counterrotating pattern and
an ordering wave vector q = ( 1

3
, 1

3
, 0.15(1)). Density functional theory and electron spin resonance

indicate this is high-spin Ni3+ magnetism near a high to low spin transition. The ordering wave
vector, in-plane magnetic correlations, missing entropy, spin state, and superexchange pathways are
all consistent with bond-dependent Kitaev-Γ-Heisenberg exchange interactions in NaNi2BiO6−δ.

I. INTRODUCTION

The discovery of the exactly solvable Kitaev model
with a spin liquid ground state [1] has attracted much at-
tention to the realization and consequences of anisotropic
bond dependent exchange interactions on the honeycomb
lattice [2]. In the last decade various 4d and 5d electron
systems have been found to exhibit Kitaev interactions
including α-RuCl3 [3–6] and the iridates [7–13]. How-
ever, none of these exhibits the zero field Kitaev spin
liquid so it would be useful to find more ions which dis-
play bond-dependent Kitaev interactions so that the pa-
rameter space of materials in which to search for a spin
liquid phase can be expanded. In addition, there have
been some intriguing predictions of exotic quasiparticles
for S > 1/2 Kitaev models [14, 15], but high-spin Ki-
taev materials are lacking. Here we present an experi-
mental realization of the magnetic Kitaev-Γ-Heisenberg
[16] exchange for high-spin Ni3+ on a honeycomb lat-
tice, producing the associated conterrotating spiral or-
der.The resulting magnetism is commensurate in the
honeycomb plane and also modulated along the c-axis
with a wave vector component 0.15(1) c∗ that is indis-
tinguishable from 1/6 c∗. Furthermore the magnetism
is characterized by strong quantum fluctuations. By
demonstrating that 3d transition ions such as Ni can ex-
hibit anisotropic bond-dependent exchange, this discov-
ery opens up a whole new class of materials to the search
for a Kitaev spin liquid.

Recently, Seibel et al. discovered and reported
NaNi2BiO6−δ which features magnetic Ni ions on a hon-
eycomb lattice [17] (Figure 1). The space group is
P31m, with lattice parameters a = b = 5.225(3) and
c = 5.732(5) at temperature T = 2 K. Thermogravimet-
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Figure 1. Crystal structure of NaNi2BiO6−δ from ref. [17].

ric analysis indicates that δ = 0.33 which corresponds
to 1/18 oxygen vacancy. A Curie-Weiss fit to high tem-
perature susceptibility data yields a Weiss temperature
of ΘCW = −18.5 K and an effective moment of 2.21(1)
µB/Ni [17]. Zero-field heat capacity measurements ver-
sus T (Fig. 2) shows two peaks that indicate second-order
phase transitions at Tc1 = 6.3(1) K and Tc2 = 4.8(1) K.
The strong magnetic field dependence of these peaks
shows these transitions are magnetic in nature.

Here we report the magnetic structure and properties
of NaNi2BiO6−δ based on heat capacity, electron spin
resonance, density functional theory, and neutron scat-
tering. We argue that the counterrotating magnetic or-
der that we have discovered results from dominant bond-
dependent Kitaev exchange within the honeycomb lat-
tices of NaNi2BiO6−δ, a first example for a Ni based
magnet.
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Figure 2. Low temperature heat capacity of NaNi2BiO6−δ.
(a) Plot of measured heat capacity. The inset shows two
transitions at Tc1 = 6.3(1) K and Tc2 = 4.8(1) K. (b) Entropy
obtained from integrating C/T (extrapolated to zero using a
T 3 fit). Note that the lattice contribution to the specific heat
has not been subtracted.
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Figure 3. ESR data for NaNi2BiO6−δ, measured between
290 K and 10 K. The inset showns an example of a two
Lorentzian derivative curve fit to the data. Figure 4 shows
the data extracted from these fits.

II. EXPERIMENTS AND CALCULATIONS

We measured the heat capacity of NaNi2BiO6−δ for
2K< T < 44K using a Quantum Design PPMS [18] (Fig.
2). Note that the transition temperatures Tc1 and Tc2 are
associated with the inflection points in heat capacity—
see Appendix A2 for details. We estimated the overall
change in entropy (magnetic and structural) by comput-
ing ∆S =

∫
Cm
T dT (extrapolating to C = 0 at T = 0

using a cubic T -dependence).
We collected the X-band electron spin resonance (ESR)

data shown in Fig. 3 on 200 mg of loose powder using a
Bruker EMX spectrometer [18]. The powder was sealed
in a quartz tube filled with argon gas to avoid contact
with air. Magnetic field scans for temperatures between
10 K and 290 K were performed at 9.440 GHz, with and
without the sample so we can display and analyze differ-
ence data that reflect ESR from the sample. Two reso-
nances are visible in the data, so we analyzed the ESR
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Figure 4. Data extracted from two Lorentzian derivative fits
to ESR data in Fig. 3. (a) Temperature dependence of the
effective g factor, where the red triangles represent the sharp
feature (peak 1), and the blue circles represent the broad fea-
ture (peak 2). (b) Total integrated intensity of each compo-
nent. (c) Lorentian FWHM of each resonance. One standard
deviation error bars are smaller than the symbol sizes.

data by fitting to two Lorentzian derivative curves, with
the results shown in Fig. 4. There is a small resonance
feature at g = 2.0 (the small jog at 0.33 T in the 100 K
to 10 K data), but we did not consider it in our anal-
ysis. The lack of temperature dependence and the tiny
integrated intensity (0.005(1)% of the broad resonance)
suggests this feature is from contaminants in the sample
chamber.

To understand the valence state of Ni, we used den-
sity functional theory to compute the band-structure
and partial density of states (PDOS) of NaNi2BiO6−δ
and NaNi2BiO5.66, using the OPENMX ab-initio package
[19, 20]. The details of these calculations are discussed
in Appendix B.

Finally, we performed a neutron scattering experiment
on NaNi2BiO6−δ using MACS at the NCNR with 4.49 g
loose powder of anhydrous NaNi2BiO6−δ loaded in a
sealed aluminum can under 1 atm helium at room tem-
perature. (Multiple attempts have failed to produce size-
able single crystals of this material.) The monochroma-
tor was set to double focusing with a pre-monochromator
aperture of 360 mm x 360 mm. The data are shown in
Fig. 6. We measured the momentum (Q) dependence
of elastic (Ei = Ef = 5 meV, h̄ω = 0) and inelastic
(Ei = 4.1 meV, Ef = 3.7 meV, h̄ω = 0.4) scattering
for temperatures between 1.8 K and 20 K. We also mea-
sured the full excitation spectrum at T = 1.8 K (below
both heat capacity peaks), T = 5K (in between the heat
capacity peaks), and at T = 10K (above both heat capac-
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ity peaks). We converted the ratio of detector to monitor
count rates to absolute values of the partial differential
scattering cross section

d2σ

dΩdE0
= N

kf
ki

(γr0

2
gf(Q)

)2
2S(Q, ω), (1)

by normalizing to the (001) nuclear Bragg peak in ac-
cord with Ref. [21]. Here γr0 = 0.5390 × 10−12 cm,
g ≈ 2 is the g-factor for Ni, f(Q) is the magnetic form
factor for Ni [22] and S(Q, ω) is the spherically-averaged
dynamic correlation function. Empty can measurements
were subtracted from the data presented in Fig. 6(a) and
Fig. 6(c)-(e) with a self-shielding factor of 0.93. The hor-
izontal line of diminished intensity at h̄ω = 1.3 meV in
panels (c)-(e) is is associated with removal of the incident
beam beryllium filter for Ei > 5 meV (h̄ω > 1.3 meV).
This causes a slight offset in intensity for a small range
of Ei near the filter edge that is probably related to
higher order Bragg diffracted neutrons that reach the
sample when the Be filter is removed and then trans-
fer h̄ωλ/2 = 4Ei − Ef = 4h̄ω + 3Ef to the sample in a
high energy inelastic scattering process.

III. RESULTS AND ANALYSIS

A. Heat Capacity and Entropy

Bearing in mind that we do not separate magnetic and
lattice based entropy here, the heat capacity data reveals
much less entropy recovered across the phase transitions
than one would expect for complete magnetic order. If
we assume that the oxygen deficiency produces a 2:1 mix-
ture of low-spin Ni3+ (S = 1/2) and Ni2+ (S = 1) (as
suggested in ref. [17]), the total magnetic entropy would
be ∆S = R(2/3 ln(2) + 1/3 ln(3)). However, the entropy
recovered between 2 K and 10 K is only 41% of this en-
tropy [see Fig. 2(b)]. As we shall show below, the ac-
tual orbital configuration of Ni is intermediate between
S = 3/2 and J = 1/2. This suggests entropy between
R ln(4) and R ln(2) —which makes the discrepancy with
the measured change in entropy across the phase tran-
sition even larger. Such missing entropy is common in
quasi-2D materials due to short-range 2D correlations de-
veloping at higher temperatures [23, 24]. Unfortunately
no non-magnetic analogue to NaNi2BiO6−δ is available,
so we are unable to determine how much additional mag-
netic entropy is recovered at higher temperatures (see
Appendix A 1 for details). Nonetheless, it is clear that
the change in entropy across the second order phase tran-
sitions is significantly less than the full entropy of a local
moment per site.

It was recently theoretically shown that the high-spin
Kitaev model has a a finite T entropy plateau upon cool-
ing [15, 25]. The phenomenon of missing entropy is seen
in the Ni2+ honeycomb compounds Na3Ni3SbO6 and
Li3Ni3SbO6 [26], consistent with the predicted 1

2R ln(3)
incipient entropy plateau of the S = 1 Kitaev model

[15, 25]. For the S = 3/2 Kitaev model, the expected
entropy plateau is at 1

2R ln(2) with bond anisotropy and
1
2R ln(4) for the isotropic case [25]. The entropy re-
covered over the transition in NaNi2BiO6−δ is close to
1
2R ln(2), the value predicted for the J = 1/2 Kitaev
model. (The plateau is smeared out at least partly due
to phonon specific heat.) The precise value notwithstand-
ing, reduced change in entropy associated with the phase
transitions in NaNi2BiO6−δ is consistent with quasi-2D
order and correlations at higher temperatures, possibly
the incipient entropy plateau of the Kitaev model.

B. Electron Spin Resonance and Density
Functional Theory

To examine the origins of magnetism in NaNi2BiO6−δ
we use electron spin resonance, which provides informa-
tion about the nature and anisotropy of local moments in
insulating solids. Figures 3 and 4 show the high tempera-
ture X-band ESR spectrum, which has a sharp resonance
at g = 2.07 and a broad resonance at g = 1.42. Upon
cooling, the sharp resonance looses spectral weight and
shifts to lower field (higher effective g-factor) while the
broad resonance grows stronger and shifts to higher fields
(lower effective g-factor). The overall signal intensity fol-
lows a Curie-Weiss law [Fig. 4(b)] consistent with typical
transition ion behavior [27]. A fit to the ESR intensity
data above 20 K yields ΘCW = −20(4) K, in agreement
with magnetic susceptibility measurements.

Generally, broad resonances are associated with high-
spin (S > 1/2) ions that are subject to crystal field split-
ting while sharper resonances are associated with pure
S = 1/2 ions [27]. The effective g-factors of the two
resonances are consistent with this: The broad ESR res-
onance has an effective g factor of g = 1.42, suggesting a
high-spin state. Meanwhile, the sharp resonance has an
effective g = 2.07, consistent with S = 1/2 magnetism.
The puzzle is reconciling this with the stoichiometry and
structure of NaNi2BiO6−δ. It was originally suggested
that NaNi2BiO6−δ has 2/3 S = 1/2 (Ni3+) and 1/3 S = 1
(Ni2+) [17]. Naively therefore, one might associate the
broad resonance with the S = 1 Ni2+ sites and the sharp
resonance with S = 1/2 Ni3+ sites. However, the sharp
resonance carries only 10-15% of the spectral weight at
high temperatures, which does not square with the ma-
jority spins being S = 1/2. Even more puzzling is the
fact that the sharp S = 1/2 resonance nearly vanishes
at low temperatures. This suggests some kind of ther-
mal depopulation and is very difficult to reconcile with
a fixed ratio of Ni2+ and Ni3+ set by the oxygen con-
tent. To understand these two ESR resonances we turn
to density functional theory.
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Figure 5. Electron orbital energies for Ni3+ in NaNi2BiO6−δ,
calculated based on the point charge model using PyCrys-
talField [28]. The level splitting with a full octahedron has
S = 1/2 in the low-spin case or S = 3/2 in the high-spin case.
SOC is neglected.

Density Functional Theory

We found Bi s and O p-orbitals form covalent bonds
(see the partial density of states (PDOS) in Appendix
B Figs. A3 and A4). For 1/18 missing oxygens in
NaNi2BiO5.66, electron charge is redistributed between
Bi and O so as to quarter fill the Ni eg-orbitals and fill
the t2g-orbitals. In other words, all Ni ions are trivalent
Ni3+ with the 3d7 electron configuration. This behav-
ior is independent of the strength of spin-orbit coupling.
Thus, we propose that all Ni ions are Ni3+ and not a
mixture of Ni3+ and Ni2+ as previously proposed [17].
When Hubbard U and Hund’s coupling are included in
LDA+SOC+U, the systems develops a local moment for
any finite U, indicating that Hund’s coupling is strong
enough to favor the high spin state S = 3/2 (Figure 5).

A natural way to produce a thermally depopulating
sharp S = 1/2 ESR resonance is if the Ni3+ high-spin
and low-spin states are close in energy (see Fig. 5). If the
S = 3/2 state is ∼ 10 meV lower in energy than the S =
1/2 state, the Ni3+ ions would have equally populated
S = 3/2 and S = 1/2 at 300 K (with a ESR spectrum
ratio of sharp/total = 16.6%). For temperatures below
100 K, however, the sharper S = 1/2 resonance would
shrink and the broad S = 3/2 resonance would grow
with the typical Curie-Weiss behavior. This is precisely
what we observe.

To test this hypothesis, we compare to experimental
quantities: the effective moment from susceptibility µ =
2.21(1) µB/Ni, the relative weights of the ESR signals
(ESR signal is proportional to S(S + 1), see eq. 2.55 in
ref. [27]), and allowing for thermal depopulation of one of
the resonances. The results are in Table I, which clearly
favors the high-spin Ni3+ hypothesis.

The situation is complicated by the presence of spin
orbit coupling. The spin (S = 3/2) and orbital (L = 1)
angular momentum states of octahedrally coordinated
Ni3+ 3d7 are subject to atomic spin-orbit coupling (SOC
λNi3+ = 34 meV [27]) enhanced by covalent bonding
with the Bi ions (see section IV and ref. [29]). This can
lead to an effective J = 1/2 singlet at low temperatures
[30]. To examine this, we computed a PDOS using den-
sity functional theory including single-ion Ni3+ spin orbit
coupling and a trigonal distortion of the oxygen octahe-

Table I. Predicted effective moment and relative weight of
the sharp ESR signal for a 2:1 mixture of S = 1/2 Ni3+ and
S = 1 Ni2+ ions and uniform S = 3/2 Ni3+ with thermally
populated S = 1/2. Effective moment is calculated using the
g factors from ESR measurements. The experimental values
are on the right, and they agree best with a uniform Ni3+

state.

Ni3+ S = 1
2

S = 1
2
, 3
2

Exp.
Ni2+ S = 1 none

µeff (µB) 1.829 2.298 2.21(1)
ESR sharp

total
43% 16.6% 13(2)%

dra. These calculated results indicate an intermediate
state between J = 1/2 and S = 3/2 due to the interplay
between trigonal distortion and SOC. This intermediate
state is in-between the limit Htrigonal >> HSOC where
the S basis is valid and the limit Htrigonal << HSOC

where the J basis is valid, making the ground state eigen-
ket not easily expressible in either form. Computing 〈Jz〉
for a single ion using a Kanamori Hamiltonian gives val-
ues between 0.8 and 1.2, depending on SOC—neither 3/2
nor 1/2 (see Appendix C). Thus, the ground state is not
simply S = 3

2 but a mixed S = 3/2, J = 1/2 state. This
may explain the unusual temperature-dependent g-factor
for the broad resonance.

In the end, the ESR data combined with DFT cal-
culations are evidence for uniform Ni3+ with a mixed
S = 3/2, J = 1/2 state. Our observation through ESR
of thermal depopulation of the low spin state in favor of
the high spin state conforms with their energetic prox-
imity: Ni3+ has previously been found both in the low
spin [31–33] and in the high spin state [34, 35], depending
upon the ligand environment. Significantly, the high-spin
Ni3+ and orbital coupling to Bi paves the way for bond-
dependent anisotropic interactions, as we shall explain
below.

C. Neutron Scattering

The temperature-dependent elastic neutron scattering
data in Fig. 6(b) show new Bragg peaks appearing at low
temperatures. The onset temperature matches Tc1 and
Tc2 determined from heat capacity data, indicating that
these anomalies mark magnetic phase transitions. The
inelastic h̄ω = 0.4 meV scattering data in panel (a) show
an increase in paramagnetic diffuse scattering for T >
Tc1, Tc2, and in particular for wave vector transfer Q near
the 0.81 Å−1 magnetic peak. The integrated intensity
of this inelastic peak, shown versus temperature in Fig.
9(d), is highest at 7 K, and then gradually diminishes
upon warming.

While it may look like the intensity of the peak in in-
elastic scattering near the 1.1 Å−1 nuclear Bragg peak in
Fig. 6(a) is enhanced above the transition, Gaussian fits
to the Q-dependent intensity at each temperature show
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Figure 6. Neutron scattering cross section for NaNi2BiO6−δ.
(a) Inelastic temperature scan at Ei = 4.1meV, Ef = 3.7meV
(h̄ω = Ef − Ei = 0.4 meV). (b) Elastic temperature scan
(Ei = Ef = 5.0 meV, h̄ω = 0), revealing magnetic Bragg
peaks that emerge below the transition temperatures. High T
data were subtracted to isolate T -dependent magnetic diffrac-
tion. The strong feature at 1.1 Å−1 is remnants of a sub-
tracted nuclear Bragg peak. (c-e) Inelastic neutron scattering
data at 1.8 K, 5 K, and 10 K.

the integrated intensity of the peak is independent of
temperature near Tc. The apparent temperature depen-
dence is actually in a Q-independent diffuse background
that presumably then has a magnetic origin.

The fixed temperature full-spectrum scans in Fig. 6(c)-
(e) provide more information about the the magnetic
excitations. The data in Fig. 6(e) resemble powder-
averaged inelastic scattering from spin waves with a
bandwidth ≈ 2 meV, which is the bandwidth esti-
mated from the Curie-Weiss temperature: 3kB

(S+1)ΘCW =

1.91 meV for S = 3/2. (A derivation of this equation,
which does not deal with the mixed S=3/2, J=1/2 state
case, is given in Appendix E.) The spin-wave-like ex-
citations and the appearance of low temperature Bragg
peaks show the transitions around 5 K are to long-range
ordered magnetism.

The 10 K data in Fig. 6(c) shows that spin correla-
tions persist at temperatures well above the upper phase
transition. This is consistent with expectations for a frus-
trated quasi-two-dimensional magnet and with an incip-
ient entropy plateau above Tc1.

The dynamic magnetic moment can be computed from
the inelastic spectral weight per formula unit using

〈m2〉 =
3µ2

B

∫∫
(1 + e−E/kBT )[S(Q,E)]Q2dQdE∫

Q2dQ
(2)

integrated from 0.3 meV to 2.5 meV and from 0.5 Å−1
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Figure 7. Ordering wave vector of NaNi2BiO6−δ. (a) Plot
of elastic neutron scattering at 2 K and 10 K, showing the
appearance of additional Bragg peaks at low temperatures.
The five strongest temperature-dependent Bragg peaks are
indicated with pink vertical bars. (b) Plot of theoretically
predicted magnetic peaks (green lines) from Qi = τi±q with
q = (1/3, 1/3, `), where ` varies along the y axis. The hori-
zontal yellow line shows ` = 0.154 which correctly indexes the
observed Bragg peaks. The vertical pink dashed lines show
smaller Bragg peaks also indexed by q = (1/3, 1/3, 0.154).

to 1.9 Å−1, where detailed balance has been employed.
We find 〈m2〉 = 3.3(7) µ2

B/Ni ion at 1.8 K, 3.6(7) µ2
B/Ni

at 5 K, and 4.1(8) µ2
B/Ni at 10 K. (Comparison to total

moment estimates is made below.) These values ought
to be taken cautiously because inelastic spectral weight
from phonons was not excluded from the integrals. That
being said, the phonon scattering at 1.8 K and at low
Q is relatively weak (phonon intensity varies as ∝ Q2),
making in particular the result at 1.8 K reliable.

Magnetic Structure:

Using the elastic scattering data from NaNi2BiO6−δ,
we can determine the low T magnetic structure. The
first step is to identify the wave vector characterizing the
magnetic order. We compared the wave vectors of the five
strongest temperature-dependent Bragg peaks to those
calculated from |Qi| = |Gi ± q|. Here Gi are nuclear
Bragg peaks and q is a symmetry-allowed ordering wave
vector in the P 3̄1m space group [36]. The error bars in
experimental peak locations (represented visually by the
widths of the vertical bands in Fig. 7) were determined
from the range of fitted Gaussian peak locations for elas-
tic data at temperatures below 4K. Visual comparisons,
as in Fig. 7(b), allowed us to identify the correct mag-
netic wave vector q. The only symmetry allowed ordering
wave vector that can account for the five strongest mag-
netic Bragg peaks is q = ( 1

3 ,
1
3 , 0.15(1)). As Fig. 7 shows,

this ordering wave vector also correctly indexes weaker
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magnetic Bragg peaks at 1.49 Å−1 and 1.85 Å−1. This
wave vector means the magnetic unit cell encompasses
three nuclear unit cells in the ab plane, and has a char-
acteristic wave length of c/0.154(11) = 6.5(5)c = 37(3)
Å along the c axis. While the c-component of the mag-
netic wave vector could be incommensurate, it is experi-
mentally indistinguishable from the commensurate value
of 1/6.

The next step in determining the magnetic struc-
ture was fitting the neutron scattering intensity data to
symmetry allowed structures with the given magnetic
wave vector via Rietveld refinement. We used group-
theoretical analysis to generate the irreducible represen-
tations ("irreps") of the little space group, which are
shown in Table II. These irreps were computed by hand
via the method outlined by Ref. [37] (see Appendix F
for these calculations), and were cross-checked with the
program SARAh [38]. There were originally four basis
vectors in the two-dimensional irrep Γ3 treating the two
magnetic ions in the unit cell separately. The basis vec-
tors of Γ3 were combined so as to preserve the equivalency
of the two Ni sites. This site-equivalency is necessary to
permit a second transition at Tc2 (see Appendix F for
details). We refined the elastic scattering data at 5 K
(below the first transition) and at 2 K (below the sec-
ond transition) using the Fullprof software package [39]
after subtracting the average of high temperature data
acquired for temperatures between 12K amd 20K to iso-
late the temperature-dependent Bragg peaks. The space
groups and their respective best fit χ2 values are listed
in Table II, and the refinements are shown in Fig. 8. In
accord with the DFT results, we carried out the refine-
ments assuming only one type of magnetic ion, and the
resulting model fits the data quite well.

In refining the magnetic structure at 5K, we used just
one irrep at a time because the sample has only been
cooled through one second-order phase transition at 5K.
Γ3 yielded the best fit. For the 2K data we fit to combi-
nations of Γ3 (the 5 K irrep) with Γ1 and Γ2 and found
both combinations fit the 2K data equally well (right two
columns in Table II). To test this two-stage order, we
repeated the refinements allowing multiple irreps at all
temperatures. As Fig. 8(e)-(f) show, the relative weights
of Γ1 and Γ2 refine to zero above Tc2, meaning that only
Γ3 is present for Tc1 < T < Tc2.

The refined magnetic structure for temperatures be-
tween Tc1 and Tc2 [Fig. 8(d)] has all spins aligned along
the c axis, with the moment size modulated versus dis-
placements within the basal plane and along the c axis.
This implies that some spins fluctuate more than oth-
ers within this finite T ordered phase. In the magnetic
structure below Tc2 [Fig. 8(c)] every spin gains a coun-
terrotating ab plane component (where the two Ni spins
in the unit cell rotate in opposite directions versus dis-
placement) while the amplitude of the c-axis component
continues to increase upon cooling. Thus we conclude
that Tc1 = 6.3(1) K is associated with ordering the c-
component of spins while the in-plane spin components

only order for T < Tc2 = 4.8(1) K.
Although neutron diffraction cannot distinguish in-

plane spin structures based on Γ1 and Γ2, symmetry
analysis identifies the one based on Γ2 as the correct
low temperature structure. This is because the addi-
tion of Γ1 would not reduce the symmetry of the sys-
tem, and therefore could not result in a phase transi-
tion at Tc2. Meanwhile, Γ2 breaks a mirror-plane that
is present in the Γ3 structure so its appearance must be
associated with a phase transition (see Appendix F for
details). Therefore, we can identify Γ2 as the proper in-
plane magnetic structure. Γ2 has ferromagnetic in-plane
bond-dependent correlations (see Fig. 10). Although
the magnetic structure breaks inversion symmetry, the
counter-rotation precludes a definite handedness as seen
in spiral incommensurate ferroelectrics [40], so we do not
expect ferroelectricity in this compound.

The peak widths in the refined model in Fig. 8 were de-
fined by the nuclear peak refinement (see Appendix F 3),
but the magnetic Bragg peaks are slightly wider than
the peaks from the refined model. This indicates the
magnetic correlation length is less than the correlation
length of the nuclear structure. We can quantify this by
fitting the 0.81 Å−1 peak with a convolution of a Gaus-
sian (with peak width defined by the nuclear phase) and
a Lorentzian profile, where the inverse of the Lorentzian
HWHM is the magnetic correlation length. Using this
method, we infer a magnetic correlation length of 152±16
Å. (See Appendix F 3 for details.) It is noteworthy that
the spin correlations extend well beyond the correlation
length anticipated for oxygen vacancies, consistent with
uniform Ni3+.

At T = 1.8 K, the refined ordered moments have a
fixed in-plane magnitude while their c axis component
is spatially modulated [see Fig. 8(c)]. The overall size
of the ordered moments range from 1.43 µB/Ni to 0.32
µB/Ni, with a mean value of 0.96µB/Ni. These values are
taken from refinements which allow the magnetic peak
width to be larger than the nuclear peak width so that all
the elastic magnetic diffraction is accounted for. Adding
this to the fluctuating moment from the inelastic sum-
rule analysis above, we find that the total magnetic neu-
tron scattering corresponds to a mean squared moment
of m2

total = m2
static + m2

dynamic = 4.2(7) µ2
B/Ni, which

is slightly less than m2
χ = 5.11(4) µ2

B/Ni inferred from
high-T susceptibility data through Curie-Weiss analysis.
We also find that m2

dynamic

m2
total

= 78(4)% of the magnetism
remains dynamic within the ordered phase (T = 2 K).

Theoretically, the neutron spectral weight from elas-
tic magnetic scattering is proportional to 〈S〉〈S〉 and the
total magnetic scattering is proportional to 〈S · S〉 [41],
so that the ratio for dynamic vs total magnetic spectral
weight for a fully static spin configuration is 〈S

2〉−〈S〉2
〈S2〉 =

1
S+1 . So theoretically, with S = 3/2 spins 1

3/2+1 = 2
5

of the magnetic spectral weight should be dynamic in
NaNi2BiO6−δ. Our measured ratio m2

dynamic

m2
total

= 78(4)%
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Table II. Irreducible Representations and associated basis vectors (BVs) for space group P 3̄1m and propagation vector q =
( 1
3
, 1
3
, 0.154). The χ2 values gauge the quality of a Rietveld refinement to the 1.8K data using the FullProf suite. Refinements

to the 1.8 K data cannot distinguish between Γ1 and Γ2, but symmetry considerations preclude Γ1 and Γ3 leaving Γ2 as the
only option consistent with the data.

IRs ψν component Ni1 Ni2 χ2(5 K) BVs χ2(1.8 K) BVs χ2(1.8 K) BVs
Γ1 ψ1 Real (1.5 0 0) (0 -1.5 0) 14.1 9.6 0.202

Imaginary (−
√
3

2
−
√

3 0) (
√

3
√

3
2

0)
Γ2 ψ2 Real (1.5 0 0) (0 1.5 0) 14.1 9.7 0.183

Imaginary (−
√
3

2
-
√

3 0) (-
√

3 −
√
3
2

0)
Γ3 ψ3 Real (1.5 0 0) (0 -1.5 0) 5.8 0.0

Imaginary (
√
3

2

√
3 0) (-

√
3 −

√
3
2

0)
ψ4 Real (0 0 3) (0 0 -3) 0.314 0.366 0.337

Imaginary (0 0 0) (0 0 0)

0 0.5 1.0 1.5 2.0
Q (Å )

0

50
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c

(a)  2K - High T

(c) <  
 +

0 0.5 1.0 1.5 2.0
Q (Å )
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Figure 8. Magnetic refinement of NaNi2BiO6−δ. (a) Refinement of 2 K elastic neutron scattering data with high temperature
data (12 K-20 K) subtracted. The slight increase with Q in the background difference intensity level away from magnetic
Bragg peaks can result from the change in the Debye Waller factor with T . This produces a Q2 dependence of the difference
intensity for low Q. The resulting magnetic structure, shown in panel (c), has an in-plane component to the spins (Γ2 + Γ3).
(b) Refinement of 5 K neutron data with high temperature data subtracted. The magnetic structure, shown in panel (d), has
all spins aligned along the c axis (Γ3). Panels (e) and (f) show the temperature dependence of refined irrep weights of Γ3 in
combination with Γ1 and Γ2, respectively. The red vertical lines indicate Tc1 and Tc2. In both cases, Γ3 (c-axis magnetism)
is associated with Tc1, and Γ1 or Γ2 (in-plane magnetism) with Tc2. Note that symmetry considerations described in the text
indicate Γ2 + Γ3 is the correct description of the low T state. Error bars indicate one standard deviation.

is twice this, indicating the effects of a mixed S = 3/2,
J = 1/2 state, possibly combined with frustration pro-
ducing a more dynamic state than anticipated for a long
range ordered or maximally frozen S = 3/2 spin system.

IV. DISCUSSION

NaNi2BiO6−δ has a larger magnetic unit cell and a
more complex magnetic ground state than related Ni
honeycomb compounds [26, 42]. As we shall now show,

the in-plane spin structure is particularly interesting, and
points to bond dependent magnetic interactions.

Two-step longitudinal to transverse polarized long-
wavelength magnetic ordering has been seen in other
materials with easy axis anisotropy and competing in-
teractions such as TbMnO3 [43] and Ni3V2O8 [44],
and Nagamiya provided a theoretical description of this
phenomenon [45]. Association of the transitions in
NaNi2BiO6−δ with this mechanism is supported by re-
ports of a Ni2+ easy-axis anisotropy along c in the
honeycomb compounds Na3Ni2SbO6 and Li3Ni2SbO6
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[26], which have similar Ni ligand environments to
NaNi2BiO6−δ. With an easy-axis anisotropy, one would
expect low energy structure in the spin-wave spectrum
at energy transfer of Tc1 − Tc2 = 1.5 K, or 0.13 meV.
However, our neutron experiment does not resolve the
spectrum below 0.25 meV, so we could not detect such
structure.

One puzzling aspect of the magnetic order is the
temperature-dependent elastic scattering [see Fig. 9(a)-
9(c)], which does not follow the typical single-exponent
order-parameter curve for a second order transition. The
magnetic Bragg diffraction intensity increases linearly as
temperature decreases between Tc1 and Tc2, and then
flattens off and decreases slightly at the lowest tempera-
tures. This low-temperature decrease in elastic intensity
is accompanied by an enhancement of inelastic fluctua-
tions, revealed by the small upturn in Fig. 9(d). This
indicates a weakening of the counter-rotating spin order
as might occur near a transition to a different phase. We
leave this feature to be explored in future studies.

The observed ordering wave vector q = ( 1
3 ,

1
3 , 0.154±

0.011) is unusual for honeycomb compounds; in fact un-
precedented to our knowledge. The (1/3, 1/3) in-plane
wave vector is difficult to stabilize on the honeycomb lat-
tice, and suggests a highly frustrated set of exchange
interactions. (1/3, 1/3) honeycomb order is found in
phase diagrams of isotropic exchanges only in the "spiral
phase" when (J1− 2J2)/(J2−J3) = 0.5 exactly [46]. We
consider this possibility unlikely because (i) it is stabi-
lized in a vanishingly small region of parameter space,
and (ii) the spiral phase in-plane structure is co-rotating,
and does not match the counterrotating NaNi2BiO6−δ in-
plane structure. A better explanation for the (1/3, 1/3)
structure, as we will explain shortly, is bond-dependent
exchange interactions.

The long wavelength modulation along the c axis re-
quires competing interactions along c. The exchange
pathways for the first, second, and third nearest inter-
plane neighbors are Ni-O-Na-O-Ni, which we expect to
have J ∼ 0.1 meV (by comparison to the same exchange
pathway in NaNiO2 [33]). At the mean-field level, it is
not possible to stabilize long-wavelength c-axis order with
isotropic exchanges between only adjacent planes (see
Appendix G). An inter-plane Dzialoszynski-Morya (DM)
exchange D · (Si×Sj) is allowed in this crystal structure
and would also tend to produce c-axis modulation (see
Appendix H for details), but it only acts on in-plane mo-
ments and would not stabilize the intermediate temper-
ature collinear magnetic structure. The c axis modula-
tion requires a mechanism which stabilizes both ordered
phases with the same wave-vector. Some possible mech-
anisms are (i) weak next nearest plane exchange compet-
ing with the nearest-plane exchange [44], (ii) an inter-
plane biquadratic exchange J(Si · Sj)2 competing with
a ferromagnetic Heisenberg interplane exchange, or (iii)
exchange disorder from oxygen deficiencies in some cases
might be able to favor a modulated state [47]. Any of
these could produce the observed long-wavelength mod-
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Figure 9. Temperature dependence of magnetic peaks, ex-
tracted from Gaussian fits. (a)-(c) Order parameter curves for
three elastic magnetic peaks. (d) and (e) respectively show
the area and FWHM of the h̄ω = 0.5 meV inelastic peak at
0.815 Å−1. (d) has the same units as (a-c). Red vertical lines
indicate Tc2 and Tc2 from heat capacity. Error bars indicate
one standard deviation.

ulation along c.
We also note that in the quasi-2D hydrate ver-

sion of NaNi2BiO6−δ (NaNi2BiO6−δ · 1.7H2O with H2O
molecules in-between the planes) the transition tempera-
ture as determined by heat capacity (Tc = 5K) is isimilar
to the 5.6 K average of Tc1 and Tc2 for anhydrate though
there is a single broad transition for the hydrate [17].
This suggests that inter-plane interactions are not very
significant and the ordered magnetism is quasi-2D even
for the anhydrate. According to the Mermin-Wagner the-
orem, magnetic order in a 2D system requires anisotropic
interactions.

Perhaps the most intriguing aspect of the magnetic
order is the counterrotating in-plane structure, shown
in Fig. 10. The out-of-plane magnetic correlations
are clearly antiferromagnetic, indicating an antiferromag-
netic nearest neighbor exchange—but the in-plane cor-
relations evidence a subtle sub-dominant interaction at
play. This in-plane structure is unusual because the
the mean field component of isotropic exchange inter-
actions average to zero for such structures. Specifically,∑
〈ij〉〈Si〉 · 〈Sj〉 = 0 for nearest neighbor, next-nearest

neighbor, and all further neighbor spin pairs forming a
(1/3, 1/3) counterrotating spin state on the honeycomb
lattice. This can be proved as follows: Fig. 10 shows the
angles between nearest-neighbor spins are always 0◦ 120◦
and 240◦. Thus, for nearest neighbor exchange on any
site,

∑
〈ij〉〈Si〉 · 〈Sj〉 = cos 0◦ + cos 120◦ + cos 240◦ = 0.

Extending this analysis to further neighbors is straight-
forward and yields the same result. (This result holds
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NaNi2BiO6 Γ2 & Γ3

Figure 10. In-plane magnetic structure of NaNi2BiO6−δ below
4K as described by IR Γ2. The lightly-shaded structures in the
background show how the spins in subsequent planes within
one chemical unit cell are aligned.

for other layers where the spins are rotated about the
c axis as shown in the lightly-shaded structures in Fig.
10.) This means the magnetic structure that we provide
evidence for cannot be stabilized by isotropic exchange
interactions at the mean-field level. This condition holds
for each bond even if the three-fold axis is broken and the
three bond directions have different interaction strengths,
as in Na3Ni2SbO6 [26], because

∑
〈ij〉〈Si〉 · 〈Sj〉 = 0 for

each of the three distinct bond directions considered as
groups. Confirming this conclusion is the fact that this
structure is not found in theoretical phase diagrams for
isotropic exchange interactions on the ideal honeycomb
lattice [46, 48, 49]. In-plane Dzyaloshinskii-Moriya (DM)
interactions are forbidden on the Honeycomb lattice be-
cause the midpoint between magnetic ions is a point of
inversion [50]. This leaves two possibilities: either oxygen
vacancy disorder influences the magnetic interactions in
such a way as to stabilize this structure (DM interactions
are allowed on bonds with oxygen vacancies), or there
must be more exotic anisotropic interactions at play.

Certain anisotropic exchange interactions are possi-
ble through bond-dependent orbital interactions. In
NaNi2BiO6−δ, the (1/3, 1/3) in-plane magnetic structure
is consistent with two theoretical models: (i) a Kitaev-Γ-
Heisenberg (KΓH) exchange with a negative Kitaev and
off-diagonal Γ terms producing a 120◦ ordered structure
[16, 51], and (ii) a different bond-dependent exchange
called a 120◦ compass model exchange [52, 53] (this inter-
action is analogous to the Kitaev bond-dependent inter-
action, but the Ising-like exchange directions are coplanar
and 120◦ apart). Both these models produce the observed
in-plane structure on the honeycomb lattice [54–56], and
either case implies strong bond-dependent exchange in
NaNi2BiO6−δ.

A similar modulated counterrotating magnetic or-
der was observed in honeycomb α-Li2Ir03 with order-
ing wave vector q = (0.315(9), 0, 0) [57], or q =
(0.156(5), 0.156(5), 0) ≈ (1/6, 1/6, 0) expressed in the

97.9o

Figure 11. Ni-O-Ni exchange pathways in NaNi2BiO6−δ. The
Ni-O-Ni bond angle is 97.9(4)◦ leading to anisotropic ex-
change perpendicular to the ligand-ion plane (shown by the
red, green, and blue arrows) plus an isotropic term.

NaNi2BiO6−δ reciprocal lattice. In this case, the spin
structure is attributed to a Kitaev-like Hamiltonian with
different couplings on the vertical and zig-zag bond direc-
tions [8, 57, 58]. Although α-Li2IrO3 and NaNi2BiO6−δ
share a 1/3 counterrotating structure, there are impor-
tant differences. First, NaNi2BiO6−δ has two magnetic
phase transitions and α-Li2IrO3 has one. Second, the
counterrotating structures are different and the α-Li2Ir03

spin structure is inconsistent with theoretical predic-
tions from the KΓH or 120◦ compass model. Third,
α-Li2Ir03 does not have three-fold rotation symmetry
about its magnetic sites, and its structure requires ei-
ther Kz 6= Kx,Ky or an additional Ising term on the Kz

bonds to stabilize the counterrotating order [57]. Mean-
while, NaNi2BiO6−δ can be explained by a Hamiltonian
that preserves the three-fold axis.

The c-axis component of the magnetic wave vector for
NaNi2BiO6−δ is indistinguishable from ` = 1/6. Curi-
ously, the ( 1

3 ,
1
3 ) 120◦ ordered structure in Fig. 10 has

a six-fold degeneracy in its ground state: the spins can
be rotated 60◦ (opposite directions for the two Ni sites)
and the structure is related by a global translation and
rotation of the axes (i.e., energetically equivalent). This
six-fold degeneracy will give rise to a local minimum when
` = 1/6 such that the system explores all the degenerate
in-plane states, which may play a part in stabilizing the
magnetic order with a wave-vector close to ` = 1/6.

The microscopic origin of the bond-dependent ex-
change in NaNi2BiO6−δ cannot be determined from the
data and calculations reported here, but we present some
possibilities: In the case of large spin orbit coupling and
a 90◦ ion-ligand-ion bond, the nearest neighbor exchange
is an Ising-like anisotropic exchange oriented perpendic-
ular to the plane formed by the superexchange pathway
[59]. This effect emerges also for ions with intermediate
spin-orbit coupling, such as Ru3+ in RuCl3 [5, 60], due
to direct overlap of d orbitals [60]. Such bond-dependent
effects are not limited to Ir and Ru; they have been pre-
dicted also for high-spin d7 ions [30, 61], which are elec-
tronically equivalent to high-spin Ni3+. In addition, the
orbital mixing of the O ligands with the heavy Bi ion
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produces the effect of strong Ni spin orbit coupling [29],
enhancing the Ni bond-dependent interactions.

In NaNi2BiO6−δ, the situation is imperfect with a
97.9(4)◦ Ni-O-Ni bond (shown in Fig. 11), so that other
exchange terms are present: the nearest neighbor ex-
change can be written J‖S1 ‖S2 ‖ + J⊥S1⊥S2⊥ (‖ and
⊥ denote the directions in and perpendicular to the
Ni-O-Ni plane) and J⊥ > J‖. The resulting exchange
anisotropies, shown in Fig. 11, are rotated 38.5◦ out of
the plane so that the anisotropy directions are 94.3(5)◦
apart (θ′ = 94.3(5)◦ in the nomenclature of ref. [62]),
making this exchange very close to the celebrated Kitaev
model where θ′ = 90◦. According to recent theoretical
work [62], 87◦ < θ′ < 94◦ is the range of Kitaev spin liq-
uid behavior, so that NaNi2BiO6−δ may be right on the
boundary between Kitaev and 120◦ compass behavior.
(However, this boundary is almost certainly shifted in
the presence of non-Kitaev exchange as in this material.)
The in-plane structure can be explained on either side of
the θ′ critical point, but given the presence of Heisenberg
and of off-diagonal exchange, it may be more appropriate
to associate this material with the KΓH model.

Interestingly, both components of the mixed spin-
orbital state support Kitaev interactions and 120◦ order.
For S = 3/2, it is a bond-dependent Kitaev interaction
with a tiny Γ due to three holes in d-orbitals, i.e., d7 [29].
For J = 1/2, it is again a bond-dependent Kitaev inter-
action with a small Γ [30]. Either way, Kitaev is a dom-
inant interaction, so we fully expect the mixed S = 3/2,
J = 1/2 to have dominant Kitaev exchange.

If this is true, we can expect to find the exotic quasi-
particles of the Kitaev model in NaNi2BiO6−δ. It has
been shown theoretically that the Kitaev model for half-
integer spin (including S = 3/2 and J = 1/2, the com-
ponents of the mixed state) has Majorana fermion exci-
tations [14], and it is believed that the Kitaev entropy
plateau is associated with a plaquette valence-bond state
[25]. This suggests that the region above the ordering
transition where the Q−E dependence of magnetic neu-
tron scattering is distinct from that in the ordered state
[Fig. 6(c)] could be associated with emergent Majorana
physics.

V. CONCLUSION

We have acquired and analyzed heat capacity, ESR,
and neutron scattering data on NaNi2BiO6−δ, and all
evidence points toward Kitaev-like bond-dependent ex-
change in this compound. Heat capacity shows missing
entropy consistent with an incipient entropy plateau of
a high-Spin Kitaev model. ESR data and DFT calcula-
tions indicate Ni3+ is in a mixed S = 3/2, J = 1/2 state

with a thermally populated low spin S = 1/2 state. All
this comports with theoretical predictions for d7 Kitaev
exchange in the honeycomb geometry. Neutron scatter-
ing indicates a two-stage magnetic order with substan-
tial short ranged magnetic correlations in the paramag-
netic phase, and inelastic scattering shows strong quan-
tum fluctuations within the ordered phase. The observed
magnetic structure has unusual counterrotating in-plane
correlations, which are not favored by isotropic inter-
actions but are favored by bond-dependent exchange.
The special ligand environment and in-plane structure
inferred from diffraction data is consistent with the 120◦
phase of the KΓH model.

These results are significant firstly because bond-
dependent interactions in Ni have not previously been
documented; conventional wisdom says its weaker spin-
orbit coupling would render bond-dependent effects too
weak to impact magnetism [59]. But in NaNi2BiO6−δ,
the effect is significant possibly as a consequence of co-
valent bonding of superexchange mediating oxygen or-
bitals with Bi orbitals that are subject to strong spin-
orbit coupling. This raises the possibility of discovering
Kitaev-like spin-liquid phases in 3d transition metal ox-
ides with edge sharing six-fold coordination. Secondly,
the observation of Kitaev physics in a mixed S = 3/2,
J = 1/2 compound raises the possibility in such materi-
als of observing new kinds of quasiparticles which have
been predicted for high-spin Kitaev models [14, 25, 29].
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Appendix A: Heat Capacity

1. Magnetic Entropy from Phonon Subtraction

No nonmagnetic analogue to NaNi2BiO6−δ is cur-
rently available to measure the phonon specific heat
and isolate the magnetic contribution to heat capacity
in NaNi2BiO6−δ. Therefore, we attempted to estimate
the magnetic entropy by subtracting a phonon back-
ground calculated using the Debye equation for heat ca-

pacity cv = 9nkB

(
T

ΘD

)3 ∫ ΘD/T

0
x4exdx
(ex−1)2 [63]. Here n and

ΘD were fitted using the ten highest temperature data
points (under the assumption that specific heat is lat-
tice only by 40 K), which gave values of n = 2.90(6)
per unit cell and ΘD = 206(2) K. The results are shown
in Fig. A1, and indicate that between 2 K and 40 K
the entropy only reaches 65% of the originally proposed
∆S = R(2/3 ln(2) + 1/3 ln(3)) [see Fig. A1(b)].

In the Dulong-Petit limit n should be 5 (the number of
atoms per Ni). Our fitted value is 2.90(6). This discrep-
ancy is a sign that the Debye estimate for heat capacity is
unrealistic. Therefore, we do not have much confidence in
the entropy computed from this background subtraction,
and leave the presence of high temperature magnetic en-
tropy as an open question.
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Figure A1. Low temperature heat capacity of NaNi2BiO6−δ.
(a) Plot of measured heat capacity (black) and calculated
phonon background (green). The blue data show the mea-
sured heat capacity minus the calculated background ∆C,
which is an estimate of the magnetic contribution to heat ca-
pacity. The inset shows two transitions at Tc1 = 6.3 K and
Tc2 = 4.8 K. (b) Entropy obtained from integrating heat ca-
pacity (extrapolated to zero using a T 3 fit).

2. Identifying phase transitions

The transition temperatures Tc1 and Tc2 are identi-
fied with the inflection point in the heat capacity peaks
(where d2C

dt2 changes sign). Theoretically, a second or-
der phase transition has a lambda discontinuity in the
value of heat capacity, where the transition tempera-
ture is right at the discontinuity. Experimentally, these
lambda anomaly peaks get smeared out in temperature

because heat capacity is measured over a finite temper-
ature range, because thermal equilibrium is not perfect,
and because of slight sample inhomogeneities, etc. If one
imagines a perfect lambda anomaly broadened in tem-
perature, the transition temperature is no longer at the
discontinuity peak (because the discontinuity is broad-
ened), but can be reliably identified by the inflection
point where the second derivative with respect to tem-
perature changes sign (see Fig. A2). This is what we
have identified as the critical temperature in our heat
capacity data.
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Figure A2. (a) Simulated lambda anomaly in heat capacity
convoluted with Gaussian profiles of varying widths to simu-
late experimental broadening. (b) Transition temperature Tc
extracted from the peak maximum (triangles) and the inflec-
tion point on the high-temperature side (circles). At all levels
of broadening, the inflection point is a much better indicator
of Tc.

Appendix B: Density Functional Theory

We determined the valence of Ni by computing the
partial density of states (PDOS) of NaNi2BiO6, and
NaNi2BiO5.66 using the OPENMX ab-initio package.
OPENMX [20] is a density functional theory code based
on the linear combination of psudo-atomic orbitals for-
malisim [19]. The exchange-correlation potential used
is the Perdew-Burke Ernzerhof generalized gradient ap-
proximation [64]. An energy cutoff of 400 Ry is used for
real-space integrations and a 8×8×8 k grid samples the
Brillouin zone. (k is momentum with h̄ = 1.)

For NaNi2BiO6 (Fig. A3), there is one band with
mainly Bi s-orbital character deep below the Fermi en-
ergy around -10.5 eV, while one O p-orbital band ap-
pears above the Ni eg-orbitals, leading to 1/4-filling
of the Ni eg-orbitals (d7). To understand the valence
of Ni in NaNi2BiO5.66, we first triple the unit cell
of NaNi2BiO5.66 and remove one oxygen to simulate
Na3Ni6Bi3O17. The PDOS of Na3Ni6Bi3O17 (Fig. A4)
shows three Bi s-orbitals near -10.5 eV, but only two
O p-orbitals above the eg-bands, and one p-orbital be-
low the eg-bands. This charge redistribution maintains
quarter filled eg-orbitals of Ni and leads to the same d7

configuration as NaNi2BiO6. Note that the eg-bands are
heavily mixed with O p-orbitals near the Fermi energy,
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Figure A3. PDOS of NaNi2BiO6. The left panel shows the
band structure and the right panel shows the density of states
for the various orbitals.

Figure A4. PDOS of Na3Ni6Bi3O17, which simulates
NaNi2BiO5.66. The left panel shows the band structure and
the right panel shows the density of states.

suggesting that indirect hopping paths are important in
determining a microscopic spin model.

To investigate the single-ion orbital state of Ni3+, we
projected the density of states to the J = 1/2 and
S = 3/2 basis, shown in Fig. A5. We find that the
J = 1/2 and S = 3/2 are not well separated, and thus
NaNi2BiO6−δ appears to be in an intermediate state be-
tween J = 1/2 and S = 3/2. Treating the trigonal dis-
tortion is smaller than SOC, a microscopic spin model of
KJΓ model for J = 1/2 is dervied in ref. [59], and the ob-
served spiral order is found in the regime of ferromagnetic
Kitaev and small Γ term, with a small antiferromagnetic

Figure A5. PDOS of NaNi2BiO6 projected into the J = 1/2
and S = 3/2 basis, showing that they are not well separated.
The left panel shows the band structure and the right panel
shows the density of states.

Γ′ term induced by the trigonal distortion.

Appendix C: Local moment computation

To understand the size of local moment of d7 electrons
in 3d systems with comparable strengths of SOC and
trigonal crystal field splitting (CFS), we consider a site
of d-orbitals surrounded by an octahedral environment.
The on-site Hamiltonian is modelled by the Kanamori
interaction[65], the CFS and the SOC:

H = U
∑
α

nα↑nα↓ +
U ′

2

∑
α6=β,
σ,σ′

nασnβσ′

−JH
2

∑
α6=β,
σ,σ′

c†ασc
†
βσ′cβσcασ′ + JH

∑
α6=β

c†α↑c
†
α↓cβ↓cβ↑

+∆oct

∑
α∈eg,
σ

nασ + ∆trig

∑
α,β∈t2g,

σ

c†ασ(Dtrig)αβ cβσ

+λl · s , Dtrig =

0 1 1

1 0 1

1 1 0

 (C1)

where the density operator nασ is given by c†ασcασ, and
c†ασ is the creation operator with α orbital and spin σ.
U and U ′ are the intra-orbital and inter-orbital density-
density interaction respectively, and JH is the Hund’s
coupling for the spin-exchange and pair-hopping terms.
∆oct > 0 is the octahedral CFS strength separating eg
and t2g orbitals and ∆trig is the subleading CFS due to
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Figure A6. Local moment calculation for Ni3+ d7 as a func-
tion of φ. The left panel shows the effective moment project-
ing out the eg orbitals, and the right panel shows the total
moment including eg orbitals.

trigonal distortion, where ∆trig > 0 describes compres-
sive distortion. Operators l and s respectively denote
angular momentum and spin for orbital α and spin σ,
and λ denotes the strength of SOC.

We diagonalize the Hamiltonian (C1) for the d7 case.
We parametrized ∆trig = Acosφ, λ = Asinφ, with A =
50 meV, φ ∈ [0, π/2], while fixing the rest of the pa-
rameters to U = 6 eV , U ′ = U − 2JH , JH = 1.0 eV ,
∆oct = 1.5 eV . The resulting total J and decomposed
total S and L moments are shown in Fig. A6.

In the limit of λ → 0 (φ = 0) and ∆trig � ∆oct, a
S = 3/2, L = 0 configuration is selected as the ground
state for both cases, as expected. On the other hand,
when the trigonal distortion is introduced, the effective〈
Jeff
z

〉
moment saturates to a value of J = 1/2. However,

when eg orbitals are included, the total moment
〈
J total
z

〉
varies from 0.8 to 1.2 depending on the ratio of trigonal
CFS and SOC, indicating an intermediate value between
S = 3/2 and J = 1/2.

Appendix D: Nuclear Refinements

In addition to the neutron experiment on the MACS
spectrometer, we acquired neutron diffraction data on the
same sample using the BT1 powder diffractometer at the
NCNR. We used 18.9 meV neutrons with 60’ collimation
before the monochromator and 20’ collimation after the
sample, measuring for 8.5 hours at 1.5 K, 6 hours at
4.8 K, and 6 hours at 28 K. These measurements cover a
much larger Q range than the MACS measurements with
better Q-resolution, for a more complete determination
of the nuclear structure.

Before refining the magnetic structure, we refined the

Table A3. Refined nuclear positions for NaNi2BiO6−δ, P 3̄1m.

atom type label x y z S.O.F.
Na Na1 1/3 2/3 1/2 1
Ni Ni1 1/3 2/3 0 1
Bi Bi1 0 0 0 0.912
Bi Bi2 0 0 0.114 0.080
O O1 0.344(4) 1.0 0.180(1) 0.944

nuclear structure using both the MACS and BT1 neutron
diffraction data sets. The refinements are shown in Fig.
A7. Both these data sets were taken below Tc2, and thus
the refinements include the q = ( 1

3 ,
1
3 , 0.154) magnetic

phase. The refinement in panel (a) includes a nuclear
phase with Bragg peaks located as indicated by the up-
per vertical green lines, and a magnetic phase indicated
by the lower row of vertical green lines. The refinement to
the BT1 data set in panel (b) includes the nuclear phase
(topmost vertical green lines), an additional NiO powder
phase with 1.5% of the refined intensity of the nuclear
phase (second row of green lines), aluminum peaks from
the sample can (third row of green lines), and the mag-
netic phase (fourth row of green lines). The BT1 data do
not show the magnetic structure as clearly as the MACS
data—only the peak at 0.81 Å−1 is visible at 1.5 K—
but the BT1 data include many more nuclear peaks and
provide a better view of the nuclear structure.

The refined nuclear model, given in Table A3, dis-
played in Fig. 1 of the main text, and described in
detail in Ref [17], provides a reasonable fit. However,
some small peaks are not accounted for, most noticeably
a weak Bragg peak at Q = 1.3 Å−1. It is unclear what
causes these deviations, whether there exists a nuclear
supercell associated with oxygen vacancies or an addi-
tional phase in the sample. Be that as it may, none of
the unindexed peaks are temperature-dependent, which
means that the magnetic signal from temperature sub-
traction is reliably from NaNi2BiO6−δ alone. This mag-
netic signal can be indexed by a single ordering wave vec-
tor and fit to a consistent model based on the proposed
NaNi2BiO6−δ chemical structure.

Appendix E: Relating Neutron Bandwidth to Curie
Temperature

Based on a spin HamiltonianHspin = −
∑
〈ij〉 JijSi ·Sj

where J represents bond energies, the Curie temperature
(the temperature at which spontaneous magnetization
occurs in the mean field approximation) is [63]

ΘCW = zJ
S (S + 1)

3kB
. (E1)

This is the same Curie temperature which appears in the
Curie-Weiss law χ = C

T−ΘCW
.
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Figure A7. Nuclear refinement of NaNi2BiO6−δ. (a) Refine-
ment of unsubtracted MACS data at 2 K, which was used to
define the peak widths and intensities of the magnetic peaks
in the magnetic refinement. The vertical green lines show the
peak locations from the nuclear and magnetic phases. Fea-
tures for Q < 0.3−1 arise from instrumental direct beam back-
grounds. (b) Refinement of BT1 data, showing fits to much
higher Q peaks. This refinement includes the nuclear phase,
a NiO powder phase, aluminum from the sample can, and the
magnetic phase.

Meanwhile, the expression for a spin wave disper-
sion for collinear antiferromagnetic order is ε(k) =

zJS
√

(1 + ha)2 − γ(k)2 (see for example Lovesey eq.
9.245 [66]), where ε(k) is the dispersion relation (deter-
mining the measured h̄ω in spectroscopy), z is the co-
ordination number, J is the exchange interaction, ha is
the single ion anisotropy, and γ(k) = 1

z

∑
δ e

ik·δ where
δ lists the nearest neighbors. h̄ω is maximal when γ
is minimal, which in the honeycomb lattice goes to zero
when k = (0, 4πa

3
√

3
), a being the nearest neighbor distance.

Thus, h̄ω is maximal at

ε(k)max = zJS. (E2)

By combining eq. E1 with E2, we can solve for ε(k)max
and relate the curie temperature to the neutron scatter-
ing bandwidth:

ε(k)max =
3kB

(S + 1)
ΘCW . (E3)
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Figure A8. Comparison between the magnetic refinements
using Γ1 + Γ3 (grey line) and Γ2 + Γ3 (orange line). The dif-
ferences between the two structures are too subtle to differen-
tiate using the neutron diffraction data from our experiments.

Table A4. Character table for P 3̄1m with propagation vector
k10.

h1 h3 h5 h20 h22 h24

χaxial 3 0 0 -1 -1 -1
χperm 2 2 2 0 0 0
χmag 6 0 0 0 0 0

Appendix F: Magnetic Refinements

1. Irrep Decomposition

Here we summarize our analysis to generate basis vec-
tors of the P 3̄1m space group with the ordering vector
q = ( 1

3 ,
1
3 , 0.154).

Space group P31m (also written D1
3d in Schoenflie no-

tation) has 12 point symmetry operations. Half of them
preserve k = ( 1

3 ,
1
3 , 0.15) up to a reciprocal lattice vec-

tor, which is an ordering vector of type k10 in Kovalev’s
notation, yielding a group Gk of the propagation wave
vector with the following point operations:

Gk = {hi|t} =



h1 (x, y, z)

h3 (−y, x− y, z)
h5 (−x+ y,−y, z)
h20 (y, x, z)

h22 (−x,−x+ y, z)

h24 (x− y,−y, z)

.

where the unit vectors (100), (010), and (001) are along
the a, b, and c axes respectively. Generating the per-
mutation, axial, and magnetic representations yields a
character table in Table A4. In single valued representa-
tions, there are three irreducible representations listed in
Kovalev’s tables [36], shown in Table A5.

Given their dimensionality, Γ1 and Γ2 have one basis
vector and Γ3 has two basis vectors. To find the basis
vectors, we project onto the test functions: φ1 = (1 0 0),
φ2 = (0 1 0), φ3 = (0 0 1). Using the projection equation
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Table A5. Irreducible representations for P 3̄1m with propa-
gation vector k10. ε = ei

2π
3 = −0.5 +

√
3
2
i.

k10 h1 h3 h5 h20 h22 h24

Γ1 1 1 1 1 1 1
Γ2 1 1 1 -1 -1 -1

Γ3

(
1 0

0 1

) (
ε 0

0 ε2

) (
ε2 0

0 ε

) (
0 1

1 0

) (
0 ε

ε2 0

) (
0 ε2

ε 0

)

[37]

ψλαν =
∑
g∈Gk

Dλ
ν ∗ (g)

∑
i

e−iq·agiδi,giΓ
g
axialφα (F1)

we have, throwing away all the zero pairs of basis vectors,
the set of basis vectors listed in Table A6.

As is immediately clear, this procedure yields more
than two basis vectors for Γ3 which therefore cannot be
orthogonal. Thus, we must combine them into two pairs
of linear combintions. Two of the basis vectors describe
one triangular Ni sub-lattice site and two describe the
other equivalent Ni lattice, the two together forming the
honeycomb structure. The sets of basis vectors are iden-
tical except for a sign change, but they describe the two
lattice sites separately. Linear combinations that link
the two sublattices take the form ψnet = xψ4 + (1−x)ψ6

(where 0 ≤ x ≤ 1), and the diffraction pattern is inde-
pendent of x. The existence of two phase transitions,
however, requires that site equivalency be enforced. A
value of x = 1/2 would result in Pm symmetry, but
any value other than 1/2 would result in P1 symmetry
(only the identity operation)—which has no symmetry
elements beyond translations. This precludes a second
order phase transition to a lower-symmetry state that
does not modify the magnetic wave vector. We do have
an additional phase transition at Tc2, so a point group
symmetry must remain for Tc2 < T < Tc1. Therefore, we
neglect the possibility of spontaneous sublattice symme-
try breaking and set x = 1/2. This results in the basis
vectors listed in Table I of the main text. The in-plane
120◦exchange bond-dependent correlations are described
by the one-dimensional irrep Γ2 which is not subject to
these considerations.

2. In-plane Structure and Symmetry

As noted in the text, there are two combinations of
irreducible representations that fit the low temperature
phase of NaNi2BiO6−δ: Γ1 + Γ3 (with antiferromagnetic
120◦exchange in-plane correlations) and Γ2 + Γ3 (with
ferromagnetic 120◦exchange in-plane correlations). The
two different predicted diffraction patterns are shown in
Fig. A8, with peak widths fit to the magnetic peaks.
There are subtle differences between the patterns, but the
differences are so small that we are unable to distinguish
between them with neutron diffraction. Therefore, we

Table A6. Original irreducible representations and associated
basis vectors for space group P 3̄1m and ordering wave vector
q = ( 1

3
, 1
3
, 0.154).

IRs ψν component Ni1 Ni2
Γ1 ψ1 Real (1.5 0 0) (0 -1.5 0)

Imaginary (−
√
3

2
−
√

3 0) (
√

3
√

3
2

0)
Γ2 ψ2 Real (1.5 0 0) (0 1.5 0)

Imaginary (−
√
3

2
-
√

3 0) (-
√

3 −
√
3

2
0)

Γ3 ψ3 Real (0 0 0) (0 -1.5 0)
Imaginary (0 0 0) (-

√
3 −

√
3

2
0)

ψ4 Real (0 0 3) (0 0 0)
Imaginary (0 0 0) (0 0 0)

ψ5 Real (1.5 0 0) (0 0 0)
Imaginary (

√
3

2

√
3 0) (0 0 0)

ψ6 Real (0 0 0) (0 0 -3)
Imaginary (0 0 0) (0 0 0)

look to symmetry considerations to determine the correct
ground state.

Second order phase transitions are directly associated
with symmetry breaking. This means that for in-plane
spin ordering to account for the phase transition that we
observe at Tc2, the in-plane spin structure must break
a symmetry operation of the intermediate temperature
phase. This allows us to identify the in-plane spin order
for T < Tc2.

The ψ4 structure of the intermediate temperature
(Tc2 < T < Tc1) phase, when site-equivalency is enforced,
has only two valid symmetry operations from the group
of the propagation vector Gk: h1 (identity) and h20 (re-
flection about [110]). Meanwhile, Γ1 preserves all Gk
symmetries (h1, h3, h5, h20, h22, and h24), Γ2 preserves
all the 3-fold rotation symmetries but no mirror planes
(h1, h3, and h5), and the Γ3 in-plane structure ψ3 pre-
serves only the identity and the (110) mirror plane (h1

and h20). A Γ1 + Γ3 structure would have h1 and h20

symmetry, resulting in no broken symmetries. A Γ2 + Γ3

structure would have only h1 symmetry, resulting in a
broken symmetry. A ψ3 + ψ4 structure would have h1

and h20 symmetry, resulting in no broken symmetries.
The only in-plane structure that breaks a symmetry of
the intermediate temperature phase is Γ2. This means
the T < Tc2 magnetic structure of NaNi2BiO6−δ must
form a reducible representation of Gk based on irreps
Γ2 + Γ3. The corresponding spin structure is depicted in
Fig. 7(c) of the main text.

3. Correlation Length

The peak widths of the nuclear Bragg peaks in Fig. A7
are smaller than the magnetic Bragg peaks widths in the
temperature-subtracted data. This indicates the mag-
netic correlation length is less than that of the underlying
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Figure A9. Profile fits to the 0.81 Å−1 magnetic Bragg peak,
with the data in red, the original Gaussian fit with the with
the width defined by the nuclear peaks in black, and the best
fit convoluted profile in blue. (a) shows fits to MACS data,
and (b) shows fits to BT1 data. The insets show reduced χ2

of a convoluted profile fit vs magnetic correlation length.

crystal structure. To determine the magnetic correlation
length, we fit the the strongest magnetic Bragg peak (at
0.81 Å−1) with a convolution of a Gaussian (with peak
width defined by the nuclear phase) and a Lorentzian pro-
file, as shown in Fig. A9. The inverse of the Lorentzian
HWHM is the magnetic correlation length, which has a
best fit value 97 ± 7 Å, indicated by the minimum in
reduced χ2 of the convoluted profile fit in Fig. A9.

The 0.81 Å−1 peak is at (000) + q peak, where q is
the magnetic propagation vector ( 1

3 ,
1
3 , 0.154 ± 0.011).

The remainder of the magnetic Bragg peaks are much
weaker and the fits are consequently less reliable, but the
results are consistent: fitting the MACS data for 1.22
Å−1 [(001) − q], 1.61 Å−1 [(110) − q], and 2.12 Å−1

[(100) + q] peaks simultaneously yielded a correlation
length of 116±30 Å, which agrees with the fit of the 0.81
Å−1 peak to within uncertainty. These peaks are 27◦,
85◦, and 86◦ from the c axis respectively, which means
the first is associated mostly with c axis correlations and
the last two are associated with in-plane correlations. If
we treat the (001) − q peak (mostly along the c axis)
separate from (100) +q and (110)−q (mostly in-plane),
we find a correlation length of 57 ± 9 Å for (001) − q
and a correlation length of 160± 70 Å for the (100) + q
and (110)− q peaks. This indicates a correlation length

three times smaller along the c-axis than in the plane,
consistent with a quasi-2D magnetic material.

We carried out the same analysis on the 0.81 Å−1 peak
from the BT1 data in Fig. A9(b), and found a correla-
tion length of 152 ± 16 Å. We consider this value to be
more reliable than the MACS data because the BT1 nu-
clear peak width is defined by many peaks and is well
constrained, but the nuclear peak width for the MACS
data is defined only by three peaks (see Fig. A7) and is
underconstrained.

Appendix G: Luttinger Tisza Analysis

As noted in the text, the magnetic ordering wave vec-
tor of q = ( 1

3 ,
1
3 , 0.154 ± 11) is unusual for the hon-

eycomb lattice, both because of the c axis modulation
and the in-plane ( 1

3 ,
1
3 ) order. To explore whether such

a magnetic ordering wave vector can be stabilized by
Heisenberg interactions at the mean-field level, we used
Luttinger-Tisza theory [67]. While this method has its
limitations and does not consider emergent interactions
resulting from thermal or quantum fluctuations, it does
give a basic picture of what orders are readily stabilized.

We began with the Fourier transform of the Heisenberg
Hamiltonian for helical order:

H(q) =
1

2

∑
νµ

Jνµ(q)Sqν · S∗qµ (G1)

where ν and µ sum over sites within the paramagnetic
unit cell and

Jνµ(q) =
∑
∆R

Jνµ(∆R)eiq·∆Rνµ . (G2)

With two nickel sites per unit cell, the Hamiltonian can
be written as a 2 × 2 matrix whose smallest eigenvalue
is the minimum energy. Although Jνµ is complex, when
summing over all atoms in the unit cell the eigenvalues of
the matrix are always real. With this equation, one can
find the ordering wave vector q which minimizesHspin for
a given set of J(∆R)—i.e., we identify the the magnetic
wave vector stabilized by a given set of interactions.

To search for a set of exchange constants which sta-
bilize q = ( 1

3 ,
1
3 , η), we systematically defined a series

of exchange constants and found the wave vector q min-
imizing H(q)spin. We used a L-BFGS-B minimization
routine [68], always with ( 1

3 ,
1
3 , 0.154) as the starting q.

In our analysis we considered five exchange interac-
tions: two in-plane, and three out-of plane interactions
(Fig. A10). The super-exchange paths of all three out
of plane interactions involve the same number of atoms:
Ni-O-Na-O-Ni (Fig. A10), which indicates their strength
could be comparable. Including both Ni sites in the
Hamiltonian ensured that Hspin is always real. We set
J1 = 1 (nearest neighbor exchange), and let the other
interactions vary from -1 to 1, and J2 from -2 to 2.

As a rough cross-check, we compared our Luttinger-
Tisza results to more sophisticated calculations of the
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Figure A10. Exchange constants considered in the Luttinger
Tisza analysis of NaNi2BiO6−δ. J1 and J2 are in-plane inter-
actions while J3, J4, and J5 are out-of-plane interactions.

J3

J4

J5

Figure A11. Out-of-plane exchange pathways in
NaNi2BiO6−δ. The first (green), second (purple), and
third (blue) nearest inter-honeycomb-plane exchange path-
ways all follow a Ni-O-Na-O-Ni pathway, which means they
could be of comparable strength.

honeycomb phase diagram [46, 48]. In our calculations
the transition from (0,0) to (1/2, 1/2) occurs at J2/J1 =
0.17 when all other interactions are zero. In refs. [46, 48],
the transition is closer to J2/J1 = 0.2, though there is an
intermediate disordered phase in between that does not
appear in the Luttinger-Tisza analysis.

A selection of results of this analysis are shown in Figs.
A12 and A13. Most of the exchange parameter space con-
sidered stabilizes commensurate order, but never ( 1

3 ,
1
3 )

in-plane order. The boundaries between phases [for ex-
ample between ( 1

2 ,
1
2 , 0) and ( 1

2 ,
1
2 ,

1
2 )] sometimes show

incommensurability, but "zooming in" and increasing the
resolution of the parameter search shows the incommen-
surate regions exist only on the boundaries. No finite
regions of parameter space stabilize q = ( 1

3 ,
1
3 , η) order,

much less the observed η ≈ 1/6. The failure to account
for the observed magnetic order with a Heisenberg model
suggests that the exchange Hamiltonian NaNi2BiO6−δ is
not isotropic and this concords with the analysis pre-
sented in the main text that the counterrotating state is
not favored by conventional bond independent exchange
interactions.

Appendix H: Anisotropic exchange and c-axis
modulation

The qc = 0.154 long-wavelength order along the c axis
can be explained by invoking anisotropic exchanges. The
Dzyaloshinskii-Moriya (DM) exchangeD·(S×S) appears
when there is not inversion symmetry at the midpoint be-
tween sites [50]. This is the case for inter-plane exchange
on the NaNi2BiO6−δ lattice, because the honeycomb lat-
tice itself lacks inversion symmetry at the magnetic sites.
The three-fold rotation symmetry about this bond fur-
ther constrains D to be along the c-axis, and the mirror
symmetry between the two Ni sites inverts the DM vec-
tor between the two sites as shown in Fig. A14. So for
NaNi2BiO6−δ, we can use symmetry to identify the di-
rection of D precisely.

This DM exchange, when in competition with an inter-
plane ferromagnetic Heisenberg exchange, produces a
long-wavelength (generally incommensurate) spiral order
along the c-axis. It also produces counter-rotating spiral
spins on the two different Ni sites (due to the flipped
DM vector on the different sites), just as observed in
the neutron diffraction refinements. If the DM vector is
around 1.5 times as strong as the inter-plane Heisenberg
exchange (which we expect to be around 0.1 meV from
comparisons with Ni2O3), we produce exactly the ob-
served ` ≈ 1/6 ordering vector with the correct in-plane
structure. However, the fact that the c-axis wave vec-
tor is the same in the intermediate-temperature collinear
phase suggests that something beyond the DM interac-
tion is at play because the DM exchange only acts upon
in-plane moments.

Another possibility is the biquadratic exchange Jbq(Si ·
Sj)

2, which can produce long-wavelength order when
competing with a bilinear Heisenberg exchange Jbl(Si·Sj)
of the opposite sign. Specifically, the wave vector is

` =
2π

cos−1(−Jbl2Jbq
)
, (H1)

but this requires that |Jbq| > 0.5|Jbl|, which may or may
not be realistic for NaNi2BiO6−δ.
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Figure A12. Ordering wave vectors stabilized by isotropic exchange interactions J2, J3, J4, and J5 (defined in Fig. A10) relative
to J1, as calculated by Luttinger Tisza theory. Each panel shows a range of J3/J1 and J4/J1 values for specific values of J2/J1
and J5/J1. The ordering vector is indicated by the colorscale to the right. η refers to an wavelength other than 1, 1/2, or 1/3,
which only appears on the boundaries between other phases.

/

210
1

2
/

-1 -0.5 0 0.5 1

/

-1

-0.5

0

0.5

1

/
2 1 0 1 2 /-1 -0.5 0 0.5 1

/

-1

-0.5

0

0.5

1

( , , )

( , , 0)

( , , 1/2)

(0, 0, )

(0, 0, 0)

(0, 0, 1/2)

(1/2, 1/2, )

(1/2, 1/2, 0)

(1/2, 1/2, 1/2)(a) (b)

Figure A13. 3D plot of ordering wave vectors stabilized by isotropic exchange interactions J2, J3, and J4 relative to J1 with
J5 = 0, as calculated by Luttinger Tisza theory. (a) and (b) show two views of the same data set. The ordering vector
is indicated by the colorscale to the right. Note that incommensuarate order (ordering vectors with η) only appears on the
boundaries between other phases.
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Figure A14. Magnetic propogation vector q = ( 1
3
, 1

3
, `) sta-

bilized by various values of D/J : ratio of inter-plane DM
exchange to inter-plane Heisenberg exchange. The observed
` = 0.154 order means that D/J = 1.5(2). The inset shows
the DM vectors as constrained by the symmetry of the lattice.


