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We study constraints imposed by two proposed string Swampland criteria on cosmology. These criteria 
involve an upper bound on the range traversed by scalar fields as well as a lower bound on |∇φ V |/V
when V > 0. We find that inflationary models are generically in tension with these two criteria. Applying 
these same criteria to dark energy in the present epoch, we find that specific quintessence models can 
satisfy these bounds and, at the same time, satisfy current observational constraints. Assuming the two 
Swampland criteria are valid, we argue that the universe will undergo a phase transition within a few 
Hubble times. These criteria sharpen the motivation for future measurements of the tensor-to-scalar ratio 
r and the dark energy equation of state w , and for tests of the equivalence principle for dark matter.
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1. Introduction

The landscape of string theory gives a vast range of choices 
for how our universe may fit in a consistent quantum theory of 
gravity. However, it is believed that this is surrounded by an even 
bigger Swampland, i.e., a set of consistent looking effective quan-
tum field theories coupled to gravity, which are inconsistent with 
a quantum theory of gravity [1]. For a recent review of the sub-
ject and references see [2]. The aim of this paper is to investigate 
the cosmological implications of two of the proposed Swampland 
criteria.

The two Swampland criteria whose consequences we will study 
are:

Criterion 1: The range traversed by scalar fields in field space is 
bounded by � ∼ O(1) in reduced Planck units [3]. More precisely, 
consider a theory of quantum gravity coupled to a number of 
scalars φi in which the effective Lagrangian, valid up to a cutoff 
scale �, takes the form

L = √|g|
[

1

2
R − 1

2
gμν∂μφi∂νφ j Gi j(φ)

− V (φ) + . . .

]
, (1)
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where we use reduced Planck units throughout. Note in particular 
that we go to the Einstein frame and use Gij(φ) in this frame to 
define a metric which we use to measure distances in the field 
space φi . Then it is believed that there is a finite radius in field 
space where the effective Lagrangian above is valid. In particular 
if we go a large distance D in field space, a tower of light modes 
appear with mass scale

m ∼ Mpl exp(−αD) (2)

which invalidates the above effective Lagrangian. Here α ∼ O(1). 
This means that any effective Lagrangian has a proper field range1

for |�φ| < �, where the expectation is that � ∼ O(1). There is by 
now a lot of evidence for this conjecture. See in particular [4–6]
for a recent discussion and extensions of this conjecture.

Criterion 2: There is a lower bound |∇φ V |/V > c ∼ O(1) in reduced 
Planck units in any consistent theory of gravity when V > 0. The sec-
ond Swampland criterion, which was recently conjectured in [7], 
is motivated by the observation that it appears to be difficult to 
construct any reliable dS vacua and by experience with string con-
structions of scalar potentials.

We will be applying these two criteria to periods of possible 
cosmic acceleration. In particular we revisit early universe infla-
tionary models in view of these constraints as well as study their 

1 Note that the proper field range is measured along the minimum loci of the 
potential for a given effective cutoff scale.
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implications for the present epoch (dark energy), and our imme-
diate future. Since the values of c and � are not precisely known, 
the best we can do is to formulate constraints in terms of these 
unknown constants.

We find that inflationary models are generically in tension with 
these two criteria depending on how strictly we interpret these 
constraints in terms of the proximity of {c, �} to 1. For example, 
among inflationary models that are not ruled out by current ob-
servations, plateau models require c � 0.02 and � � 5.

As for the present universe, the second Swampland criterion 
is clearly in conflict with �CDM cosmology because a positive 
cosmological constant violates the bound |∇φ V |/V > c > 0. How-
ever, quintessence models of dark energy [8] can be made consis-
tent with the two criteria. Aside from the inflationary constraints, 
considering only cosmological observations of the recent universe, 
we derive model-independent constraints on the values of {c, �}, 
c < 0.6 and c < 3.5 �. These values can be realized in concrete 
quintessence models. Moreover we find a lower bound on the de-
viation of today’s value of w from −1 given by (1 + w) � 0.15 c2, 
where w = p/ρ for the dark energy component of the universe.

Extrapolating these models to the future, we find that in a 
time of order tend� [ 3�

2c	0
φ

] H−1
0 the universe must enter a new 

phase. Here H0 is the current value of the Hubble parameter and 
	0

φ = 0.7 is the current density fraction of dark energy. So tend
could be viewed as “the end of the universe as we know it” and 
the beginning of a new epoch. The new epoch may entail the 
appearance and production of a tower of light states and/or the 
transition from accelerated expansion to contraction.

The organization of this paper is as follows: We first discuss 
constraints on early universe inflationary models and then discuss 
how the recent and present cosmology fits with the above crite-
ria. Finally we discuss the future of our universe in view of these 
criteria.

2. Past

Observational constraints on inflation [9–11], the hypothetical 
period of cosmic acceleration in the very early universe, are in ten-
sion with both Swampland criteria. The tension with Criterion 1 
(� � 1) has been noted previously [12–15], but the tension with 
Criterion 2 (|∇φ V |/V ≥ c ∼O(1)) has not been studied before.

Let us first briefly review some of the parameters of inflationary 
models relevant for these criteria. Consider single-field slow-roll 
inflation based on an action of the form shown in Eq. (1). In the 
slow-roll limit, the equation of state is

ε ≡ 3

2
(1 + w) ≡ 3

2

(
1 + p

ρ

)
≈ 1

2

( |∇φ V |
V

)2

, (3)

where p = 1
2 φ̇2 − V and ρ = 1

2 φ̇2 + V are the homogeneous pres-
sure and energy density, respectively.

The relation between ε and Ne , the number of e-folds remain-
ing before the end of inflation, is

ε ∼ 1

Nk
e
. (4)

The exponent k is equal to 1 for inflationary potentials in which 
V (φ) scales roughly as an exponential or power-law to leading or-
der in φ during inflation, which includes models with the fewest 
parameters and least fine-tuning; and equal to 2 for a special sub-
class of more fine-tuned “plateau models” in which V (φ) is nearly 
constant during inflation and ends inflation with a sharp cliff-like 
drop to a minimum. During the last Ne e-folds, the range of φ is 
roughly [16]
�φ ∼ Ne

√
2ε ∼ √

2N1−k/2
e . (5)

We begin by considering constraints on V (φ) during the last 
Ne ≈ 60 e-folds, the period probed directly by measurements of 
the cosmic microwave background. The exponential- and power-
law-like inflationary models are ruled out by recent observational 
limits on B-mode polarization that constrain the tensor-to-scalar 
fluctuation amplitude ratio r ≈ 16ε < 0.07 or ε < 0.0044 [17]. This, 
combined with measurements of the spectral tilt ns of the scalar 
density fluctuations, is incompatible with these inflationary mod-
els (which all have ε � 0.01). However, current constraints allow 
the more fine-tuned plateau models (with ε < 0.0005) [18].

We now turn to evaluating the two Swampland criteria for the 
past cosmic acceleration (inflation) which turns out to be difficult 
to satisfy for several reasons:

1. the period of acceleration must be maintained for many 
e-folds of expansion;

2. there are many different observational constraints to be si-
multaneously satisfied (on tilt, tensor-to-scalar ratio, non-
gaussianity, and isocurvature perturbations);

3. the empirical constraints are quantitatively tight.

Criterion 1: Based on Eq. (5), we see that the range of φ spanned 
during the last Ne = 60 e-folds is O(1) or greater. Plateau models 
have the least tension with Criterion 1, but, even in these cases, 
when factors of order unity are fully included, the range is � ≥ 5
in reduced Planck mass units. While the tension may be viewed 
as modest, we note that the range can be much larger if there are 
more than the minimal 60 e-folds of inflation.

Criterion 2: The current B-mode constraint ε < 0.0044 corre-
sponds to |∇φ V |/V < 0.09, in tension with the second Swampland 
criterion |∇φ V |/V > c ∼ O(1). Near-future measurements will be 
precise enough to detect values of r at the level of 0.01; failure 
to detect would require |∇φ V |/V � 0.035. The plateau models, 
favored by some cosmologists as the simplest remaining that fit 
current observations, require |∇φ V |/V � 0.02 during the last 60 
e-folds, which is in greater tension with the second Swampland 
criterion.

Hence, we see generically current observational constraints on 
inflation are already in modest tension with the first Swampland 
criterion and more so with the second Swampland criterion espe-
cially in the context of the plateau models, which are observation-
ally favored. Near-future experiments can further exacerbate the 
tension if they place yet tighter bounds on r.

Note that we have only considered thus far the tension with 
Criterion 2 during the last 60 e-folds. In practice, nearly all in-
flationary models in the literature include extrema or plateaus or 
power-law behavior in which |∇φ V |/V → 0 at one or more values 
of φ. These are forbidden by Swampland Criterion 2.

Variants of single-field slow-roll inflation do not provide any 
apparent relief and/or run into other observational constraints. DBI 
inflationary models replace the kinetic energy density of the in-
flaton with a Born–Infeld action [19]. In this case, the Swampland 
criteria apply by first taking the limit of small (∂μφ)2 and nor-
malizing fields so that the kinetic energy density is canonical. If 
(∂μφ)2 
 1 throughout inflation, the constraints above apply di-
rectly. In cases where (∂μφ)2 becomes order unity during inflation, 
the model runs into constraints on non-gaussianity.

For Higgs inflation [20], R2 (Starobinsky) inflation [21], pole-
inflation [22] and α-attractor models [23], evaluating the Swamp-
land criteria requires first redefining the metric and scalar fields 
such that the action is recast in the form of Einstein gravity plus 
a canonical kinetic energy density for the scalar field. In this form, 
they all correspond to plateau models which, as shown above, are 
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in modest tension with Criterion 1 and in significant tension with 
Criterion 2 at Ne = 60 (and in even greater tension for larger Ne

because |∇φ V /V | → 0).
Axion monodromy models [14], N-flation [24] and other mul-

tifield models were introduced to ensure that no field traverses a 
linear field distance from the origin greater than unity. However, 
as noted in the introduction, Swampland Criterion 1 is based on 
the total path length along the slow roll trajectory (more precisely, 
along a gradient flow trajectory) in the field space. The strategies 
are not sufficient to satisfy Criterion 1 if the total path length ex-
ceeds order unity, which is the situation in these cases.

The more serious tension, though, is nearly always with 
Swampland Criterion 2. Almost all inflationary constructions in-
clude extrema or plateaus in which |∇φ V |/V → 0 at one or more 
points in field space. It remains a challenge to find examples that 
satisfy observations and also satisfy |∇φ V |/V > c ∼ O(1). If one 
cannot be found, there are only a few options. Either the Swamp-
land criteria are wrong, which can be proven by a full construction 
of counterexamples; or inflation cosmology is wrong and some 
other mechanism accounts for the smoothness, flatness and den-
sity perturbation spectrum of the observable universe2; or perhaps 
both are deficient and theoretical and observational progress will 
point to new possibilities.

3. Present

Current data shows that the universe is dominated by dark en-
ergy. Criterion 2 already implies that this cannot be the result of 
a positive cosmological constant or being at the minimum of a 
potential with positive energy density, and so we must be deal-
ing with a scalar field potential that is rolling, i.e. a quintessence 
model. Furthermore, if there are generic string compactifications 
that predict a particular lower bound for |∇φ V /V |, this implies 
that the slope of the potential is naturally small when the dark 
energy is small, perhaps putting quintessence on a firmer theo-
retical footing, even without assuming the validity of the second 
Swampland criterion.

However in string theory scalar fields typically determine cou-
pling constants and at first this may appear to be in tension with 
the fact that, for example, the change in the fine structure con-
stant is � 10−6 out to redshift z = O(1) [25]. But as pointed out 
in [2] this simply means that the scalar fields should couple to 
some other fields other than the visible matter. In other words, this 
anticipates the existence of the dark matter sector to which they 
should be more strongly coupled. In string theory such a scenario 
would be realized by models where the standard model arises 
from a localized region of internal geometry (such as in F-theory 
model building), whereas dark matter could arise from some other 
regions. In this context the quintessence field would correspond to 
the volume of the other region where dark matter originates and 
thus may control the couplings in the dark matter sector.

Astrophysical observations that constrain the ratio of the dark 
energy density to the critical density (	φ(z)) and equation of state 
(w(z)) of dark energy as a function of redshift (z) can be used to 
test Criterion 2. One of the features of quintessence models is that 
not only is the value of V small (of the order of 10−120 in reduced 
Planck units) but its slope V ′ should also be small and again of 
order 10−120 (or less) in reduced Planck units. Intriguingly, Crite-
rion 2 gives at its boundary a value of V ′ of the same order as V . 
This relationship means that current experiments already impose 
bounds on the value of c in Criterion 2 and future experiments 
have the possibility of significantly tightening those bounds.

2 Alternative ideas include string gas cosmology and bouncing cosmologies.
We consider here current constraints from supernovae (SNeIa), 
cosmic microwave background (CMB) and baryon acoustic oscilla-
tion (BAO) measurements given in Ref. [26]. These require that:

• 1 + w(z) 
 2/3 for z < 1 (see Ref. [26] and Fig. 1);
• 	φ(z = 0) ≡ 	0

φ ≈ 0.7 [27]; and
• 	φ(z > 1) 
 1 in order to avoid suppression of large-scale 

structure formation.

While a model-by-model comparison to data would give the most 
precise bounds, the approach employed here is sufficiently accu-
rate for our purposes of obtaining bounds on the parameters �
and c that appear in the two Swampland criteria.

For a canonically normalized field φ, the field trajectory can be 
conveniently parameterized by the dynamical variables

x = φ̇√
6H

(6)

y =
√

V (φ)√
3H

(7)

where −1 < x < 1, 0 < y < 1. In terms of these variables,

	φ =
1
2 φ̇2 + V (φ)

3H2
= x2 + y2 (8)

1 + w = 2x2

x2 + y2
. (9)

The equations of motion in terms of x and y are (see [28] for a 
recent review),

dx

dN
=

√
6

2
λy2 − 3x + 3

2
x
[
(1 − wm)x2

+ (1 + wm)(1 − y2)
]

(10)

dy

dN
= −

√
6

2
λxy + 3

2
y
[
(1 − wm)x2

+ (1 + wm)(1 − y2)
]

(11)

where wm is the equation of state of the other components 
of the universe. Since we focus on the matter-dominated and 
dark energy-dominated epochs, wm � 0. Here λ(φ) ≡ |∇φ V |/V . By 
Swampland Criterion 2, λ(φ) ≥ c ∼ O(1). As we shall see below, 
the data puts an upper bound on c. To find this upper bound we 
proceed in two steps.

First, we consider the special case of exponential potentials 
with constant λ:

V (φ) = V 0eλφ (12)

The predictions of w(z) for a given λ depend in general on the 
initial conditions. These are fixed by the requirement that 	φ(z)
become negligible at z > 1, as needed for large-scale structure for-
mation. Therefore, in the far past we begin close to the repulsive 
fixed point (x, y) = (0, 0), and start rolling towards the fixed point 
at (x, y) = (λ/

√
6, 

√
1 − λ2/6), such that 	0

φ = 0.7. In Fig. 1(a), we 
plot the w(z) predictions from these trajectories for a range of val-
ues of λ. We compare these predictions with the current 2σ upper 
bounds on w(z) for 0 < z < 1 (black curve3) [26]. The comparison 
shows that the upper bound on λ is 0.6, somewhat less than unity.

3 The black curve is determined from Fig. 21 in Ref. [26] by finding the values 
of (w0, wa) all along the 2σ contour; plotting all w(z) of the form w(z) = w0 +
wa z/(1 + z); and finding the upper convex hull.
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Fig. 1. (a) The black curve shows the current observational 2σ bound on w(z) for 0 < z < 1 based on SNeIa, CMB and BAO data [26]. This is compared with the predicted 
w(z) for exponential quintessence potentials with different values of constant λ under the constraint that 	φ(z = 0) = 0.7 and assuming initial conditions x = y ≈ 0. From 
this we observe that the upper bound on λ is ∼ 0.6 (blue curve). (b) The blue curve (beginning lower left with arrows along it) shows the trajectory in the (x, y) plane 
corresponding to constant λ = 0.6, the upper bound allowed in Fig. 1(a), assuming initial conditions (x, y) = (0, 0). The current (x, y) is where the blue curve meets the 
green (thick curve moving left to right); the dashed blue curve illustrates the trajectory’s asymptotic behavior. Trajectories to the right of the blue curve have a larger w(z)
at 0 < z < 1 and, hence, violate the observational constraints in Fig. 1(a). As explained in the text, trajectories to the left of the blue curve extrapolate back in time, hit the 
y-axis at some finite y and then continue on to (x, y) = (−1, 0) or 	φ → 1. These trajectories disrupt matter domination and, hence, large-scale structure formation. Hence, 
the bound for constant λ, c < 0.6 in Fig. 1(a), is also the bound for general λ(φ) > c. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)
Second, a universal upper bound on c can be derived for general 
λ(φ). We claim and will shortly prove that the constant λ case 
with λ(φ) = c is the least constrained trajectory. From above, such 
a trajectory is ruled out if c is bigger than 0.6. It follows that every 
possible λ(φ) is ruled out if c is bigger than 0.6, leading to the 
bound c � 0.6.

We now provide the argument why the λ(φ) = c trajectory 
is the limiting case. Fig. 1(b) shows in blue the trajectory for 
the case λ = c = 0.6 which connects the fixed point at (x, y) =
(c/

√
6, 

√
1 − c2/6) to the repulsive fixed point at (x, y) = (0, 0). 

From Fig. 1(a), this trajectory fits observational constraints for 
0 < z < 1 and z > 1. Where the blue curve intersects the upper 
black line in the future is the stable fixed point; if the universe 
began at the repulsive fixed point in the past, the current position 
along the trajectory is where the blue curve meets the green one.

Note that trajectories are bounded by the condition

− x

y
<

dy

dx
< − x

y

⎛
⎜⎝1 − (1 − x2 − y2)(y2 − x2)√

2
3 cxy2 − x2(1 − x2 + y2)

⎞
⎟⎠ (13)

where we use the fact that the slope dy/dx for each trajectory at 
each point is a monotonic function of λ. Starting from any point in 
the x − y plot, we can use this condition to bound any trajectory 
that passes through that point if λ(φ) > c. Namely, draw trajecto-
ries through the point with λ(φ) = c and λ(φ) → ∞; these form 
a cone through which any other trajectory for general λ(φ) must 
pass. This is illustrated, for example, by the black lines with ar-
rows in Fig. 1(b) and the grid of gray lines. Since the blue curve is 
along one of the edges of this cone, it follows that any trajectory 
that passes through a point on the right side of the blue curve will 
stay to the right and cannot cross to its left in the future. Points 
to the right of the blue curve correspond to larger values of w(z)
(equation (9)), and hence all trajectories that are in this region are 
more constrained by data as shown in Fig. 1(a).
Similarly, starting from any point to the left of the blue curve 
and extrapolating to the past, the trajectory must remain to the 
left of the blue curve. These trajectories will intersect the y-axis at 
some finite value of y at some finite earlier time. On the y-axis, 
the kinetic energy density is zero, corresponding to a “turning 
point”. On this trajectory, the field is initially rolling uphill (x < 0); 
it stops at the turning point (x = 0, where the trajectory hits 
the y-axis); and then rolls down hill (x > 0). The kinetic energy 
density increases ∝ 1/a6 compared to matter ∝ 1/a3 or radiation 
∝ 1/a4 as a → 0 going back in time. Consequently, the kinetic en-
ergy density rapidly grows to dominate over all forms of energy 
the further back one extrapolates. The result is that any trajectory 
passing through a point on the left of the blue curve in Fig. 1(b) 
traces back to (x, y) = (−1, 0) or 	φ = 1 in the early universe. 
This corresponds to a kinetic energy rather than matter-dominated 
universe, a trajectory that disrupts large-scale structure formation, 
and hence is not allowed.

Therefore, we have shown that the blue curve in Fig. 1(b) is the 
least constrained viable trajectory. As argued above, this leads to 
the constraint c � 0.6.

One might argue that the point x = y = 0 is repulsive, so that 
the initial condition for the λ = c = 0.6 trajectory is fine-tuned. 
However, it can be realized without fine-tuning in a model with 
varying λ. As a simple example, consider a potential with two ex-
ponential terms

V (φ) = V 1eλ1φ/Mpl + V 2eλ2φ/Mpl (14)

such that λ ≈ λ1 � √
3 in the early universe and switches to 

λ ≈ λ2 = c = 0.6 at some recent point in the past. At early times 
when λ ≈ λ1 � 1, φ rolls downhill quickly converging to a scal-
ing solution in which 	φ ≈ 3/λ2

1 
 1, or (x, y) ≈ (0, 0). At late 
times when λ ≈ λ2 = c, the solution flows to dark energy domi-
nation and (x, y) → (c/

√
6, 

√
1 − c2/6). Together, these two stages 

approximate the boundary trajectory. The two exponential model 
was studied in detail in [29].
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The experimental bound we have found for single exponen-
tial potential with constant λ agrees reasonably with the analysis 
in [29] based on older data. A good analytical approximation for 
the limiting trajectory can be found,

x ≈ c√
6

(
1 − 1 − 	√

	
tanh−1(

√
	)

)
∼ 2

3

c 	√
6

(15)

where in the last term we have used a first order approximation 
that will be more convenient. This gives a lower bound on 1 + w
for today:

1 + w(z = 0) � 4

27
c2	0

φ (16)

The above derivation assumes that the net field excursion in 
φ up until the present is less than �, the maximum allowed by 
Criterion 1. Indeed for the limiting exponential potential we find

�φ = √
6
∫

xdN � 1

3
c 	0

φ (17)

Interestingly, this provides an observational restriction on the 
Swampland criterion, namely,

�� 1

3
c 	0

φ . (18)

4. Future

The Swampland criteria proposed above also have implications 
for the possible futures of our universe given current observational 
constraints on the dark energy density and the equation of state. 
The bound derived on the slope of the trajectory in equation (13)
implies that the value of x = φ̇/

√
6H increases in the immediate 

future.
There are three possible future fates for the universe:
If λ(φ) stays below 

√
3, x increases approaching the value 

λ/
√

6. Since the field keeps rolling, Criterion 1 is violated after 
a finite time. This would imply a breakdown of the effective field 
theory. The universe would enter a new phase in which a large 
number of previously massive states become light. This happens 
when,

�φ = √
6
∫

xdN = � or N <
�√

6x(N = 0)
(19)

⇒ N � 3�

2c 	0
φ

(20)

where N is the number of e-foldings. In other words, the new 
phase would begin within a few Hubble times into the future.

Alternatively, a contrived possibility is that λ(φ) grows very 
rapidly in the very near future before φ rolls significantly further 
downhill. In this case, the universe enters a new phase in which 
the field speeds up and w grows, ending the cosmic acceleration 
phase (w < − 1

3 ) before N ∼ 3�

2c	0
φ

e-folds have passed.

Finally, we can imagine a situation where the potential reaches 
zero or a negative value before N ∼ 3�

2c	0
φ

e-folds have passed. This 

clearly marks a different kind of new phase of the universe in 
which supersymmetry might be restored or the universe might en-
ter a phase of contraction.

Here we have enumerated the possible long-term futures of our 
universe given current observational and theoretical constraints. 
The fact that in all scenarios the universe survives in its current 
state at most for a time period of O(1) e-fold is a novel expla-
nation for the observed age of the universe being of order the 
current Hubble time. The bound on N implies there is a maxi-
mal age to the universe as we know it. The indicator that the end 
of the current phase is near is signaled by the onset of cosmic ac-
celeration as we have already witnessed in our universe. Observers 
cannot exist in a universe where dark energy dominates for a long 
time because the universe changes character first. A typical ob-
server would measure an age comparable to the lifetime of the 
universe today based on the Swampland analysis.

5. The role of observations

The Swampland criteria are based on experience to date in 
finding constructions that are consistent with a quantum theory 
of gravity. These suggest a maximal field excursion � ∼ O(1)

and minimum logarithmic slope |∇φ V |/V > c ∼ O(1). The “∼” in 
these conditions indicates there is some looseness, although no-
tably there do not exist rigorously proven examples in hand where 
c is as small as 0.6, as required to satisfy current observational 
constraints on dark energy. This is exciting because it means that 
experiments are already sensitive enough to put pressure on string 
theory and the Swampland.

Based on what we already know observationally about dark 
energy and what is shown here, there are clearly important chal-
lenges for theorists: find rigorous constructions with c ≤ 0.6 that 
are consistent with quantum gravity and not in the Swampland 
(for example, see [30–36] for an attempt to embed quintessence 
in string theory). For inflation, not only the bounds on {c, �}
are somewhat in tension with them being O(1) but also al-
most all current inflationary models studied in the literature have 
|∇φ V |/V → 0 at one or more values of φ.

The situation also provides an opportunity for observers and 
experimentalists: improving bounds on the dark energy equation 
of state, w(z) for 0 < z < 1 could push the limit on c down sig-
nificantly, further increasing the tension between observations and 
Criterion 2. Similarly, improved constraints on the tensor-to-scalar 
ratio r based on CMB observations will add to the tension between 
inflationary models and the Swampland criteria, perhaps pointing 
to other theories to explain the large-scale properties of the uni-
verse consistent with quantum gravity. Finally, we have motivated 
the possibility of a direct coupling of the quintessence dark en-
ergy field φ to dark matter. Since the quintessence field is rolling 
today, and perhaps picking up speed, it is worth searching for evi-
dence that the properties of dark matter (mass, couplings, etc.) are 
changing e.g. by looking for apparent violations of the equivalence 
principle in the dark sector.

6. The cosmological constant problem and quintessence

So far, we have studied what the observational implications of 
the Swampland criterion are. It is also worth commenting on how 
these criteria change our perspective on the cosmological constant 
problem and quintessence. If there are no de Sitter vacua, then the 
cosmological constant problem takes on a different character.

We can parametrize the scalar potential for V > 0 without loss 
of generality as

V (φ) = V 0 exp

⎛
⎝−

φ∫
0

dφ′

M(φ′)

⎞
⎠ (21)

such that |Mpl∇φ V /V | ≡ Mpl/M(φ), where we have restored ex-
plicit factors of Mpl for illustration. Then, assuming that the initial 
value of the potential is O(M4 ), we find that
pl
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φ∫
0

dφ′

M(φ′)
= �φ

〈
1

M(φ)

〉
= log

�

M4
pl

� 280 (22)

where � = (2 meV)4 is the value of the dark energy today. We see 
that for field excursions of O(Mpl), we need 〈M(φ)〉 ∼ 10−2 Mpl . 
Therefore, even though |Mpl∇φ V /V | < 0.6 today, it should have 
been larger in the earlier universe.

Intriguingly, 〈M(φ)〉 ∼ 10−2 Mpl points to an interesting scale, 
the GUT scale. While M(φ) is a scale in the dark sector, it may be 
related to MGU T naturally as they are both set by the geometry of 
the string compactification. This then leads to an expectation for 
dark energy today of the form

� = M4
pl exp

(
− #Mpl

MGU T

)
(23)

with # denoting the uncertainty in the field excursion up to the 
present, expected to be O(1) in Planck units. Thus, this line of 
reasoning leads to a relation between the cosmological constant 
and the GUT scale.
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