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Abstract

Semelparous organisms have a simple life cycle characterized by immediate death after reproduction. We assume that
semelparous life histories can be separated into a juvenile non-reproductive period followed by an adult period during
which reproduction is possible. We derive formulae for the optimal age and size at reproduction and for the optimal size of
the offspring (e.g., seeds). Our main contribution is to determine the conditions under which the optimal size of the
offspring does not depend on the optimal size at reproduction and vice versa.
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Introduction, Assumptions and Notation

‘‘Plants of any size have seeds that vary approximately 400-650-

fold between species’’, as authors in [1] point out; they note that

‘‘Sequoia sempervirens has a seed mass of 0.0037 gram.’’ Animal

offspring also vary widely in size. What evolutionary factors

determine the size of mature adults vs. the size of their progeny?

This question is the subject of a large body of literature. [2], [3],

[4], and [1] provide useful overviews of the literature on plants. An

early framework was proposed in [5] and expanded in [6]. [7]

developed a different perspective with a focus on mammals. Our

contribution is to build a biodemographic framework that unifies

predictions about adult size and offspring size in simple, precisely-

defined optimization models and to rigorously prove key

implications of these models. We achieve simplicity by focusing

on semelparous species, which reproduce once and die.

Evolutionary biologists have taken advantage of the simplicity of

the semelparous life history. For example, demographic models

have been developed to explore how stochasticity affects repro-

ductive delays (see [8]), how variation in growth shapes plasticity in

timing of reproduction (see [9]), and how the evolution of

reproductive delays interacts with pre-reproductive delays such as

seed-banks (see [10]). However, to date, no single analytical

framework providing dynamic insights into optimal life-histories of

semelparous species has been developed. There is a need for such

theory to separate the effects of complexities such as changing

predation regimes and resource limitation (see [11]) and stochastic

environments (see [8]) from patterns driven by the general

principles underlying demographic trajectories. Here we make a

start at filling this gap by providing an analytical framework that

unifies treatment of the two main axes of life-history variation in

such species: the optimal timing of reproduction and the optimal

offspring size. We focus on the simplest case of constant

environments and constant population size.

The life cycle of semelparous species can be viewed as a two-

phase process, driven by different mechanisms. Stage 1 is a

juvenile non-reproductive period, in which some individuals

survive to become adults. Adults can reproduce and, when they

do, they die. Hence stage 2 is the period of life in which individuals

seek to maximize their reproduction by weighing at each instant

the benefits of delaying reproduction further against the risk of

death associated with this delay. We assume size 1 is the milestone

between the two phases. Without loss of generality, we can further

assume that size 1 corresponds to adult age 0. Table 1 summarizes

the basic characteristics of stage 1 vs stage 2.

Let d be the duration of stage 1. Let a be the age of the

organism in stage 2, age 0 in stage 2 being the age when size 1 is

reached. Let j(a), m(a), and m(a) denote at age a the organism’s

size, its reproductive capacity, and the force of mortality,

respectively. By assumption, j(0)~1. We define reproductive

capacity as the expected number of offspring that reach size 1. Let

a denote the age at which reproduction occurs. Let n(a,i) be the

number of offspring produced, with each offspring (e.g., seed)

being the same size i. We consider 0viv1. Finally, let p(i),
0ƒp(i)v1, be the probability that an organism born at size i
survives to size 1. Note that reproductive capacity is given by

n(a,i)p(i).
Using subscripts to denote generations, we define parental size

as growing from i0 to j0 and offspring size as growing from i1 to

j1.

In this article we address three questions about semelparous

organisms. First, what is the optimal age (in stage 2) at

reproduction and what is the organism’s size at this age? Second,

what is the optimal number of offspring and what is the optimal

size of each offspring? Third and most importantly, does the

optimal size of an organism at reproduction ĵj0 depend on the

optimal size of its offspring îi1 (see Fig. 1)? Our first question is what

determines ĵj0, which is assumed to be equal to ĵj1. Our second

question is what determines îi0 which is assumed to be equal to îi1.
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Our third and most important question concerns the relationship

between ĵj0 and îi1. The assumptions we made about the separation

of the two stages imply that ĵj0 and îi0 are independent and,

similarly, ĵj1 and îi1 are independent. The question of interest is

whether ĵj0 and îi1 are independent. This formulation has not been

clearly developed in previous studies [12] and is a key

contribution.

Semelparous Strategies: Models and Results

Optimal Age and Size at Reproduction
Stage 2, which starts once seed size no longer affects the risk of

dying, is the stage of adult growth during which reproduction is

possible. If reproduction occurs only at age a in stage 2, if the

chance l(a) of surviving to a is constant over time and across

environments, and if m(a) and d are similarly constant, then the

net reproduction rate R for such semelparous species can be

expressed as

R~era ~ l(a)m(a), ð1Þ

where r is the rate of population growth, and m(a) measures

reproduction at age a; m(a) at any age a other than a is zero. This

implies that

e{ra l(a)m(a)~1 ð2Þ

[13, p189], an expression that follows directly from the Lotka

equation,

ð?
0

e{ra l(a)m(a) da~1: ð3Þ

Proof that r represents the growth rate in the Lotka equation is

not straightforward and depends on the assumption of stable

populations (see [14]), but (2) for semelparous species is true by

definition. The simplicity of (2) facilitates analytical insights into

optimal age at reproduction and optimal offspring size.

Solving (2) for r yields (see [13], p.189)

r~
ln ½l(a)m(a)�

a
: ð4Þ

The value of a that maximizes r is the optimal age at

reproduction, âa. It satisfies the condition

dr

da

����
a~âa

~0, ð5Þ

Inserting the expression for r from (4) into (5), using the

equation for the derivative to solve for a, and rearranging terms

yields the requirement that the optimal age at reproduction,

denoted by âa, must satisfy:

m’(âa){m(âa)~
ln ½l(âa)m(âa)�

âa
, ð6Þ

where m’(a)~ ½dm(a)=da�=m(a) and

m(a)~ ½{dl(a)=da�= l(a). Note that m’(a) is the relative rate of

improvement in reproductive capacity at age a, and m(a) is the

hazard of death (force of mortality) at age a. Substituting (4) into

(6) shows that

m’(âa){m(âa)~r(âa): ð7Þ

At equilibrium, r~0 and the optimal age at reproduction is

defined by a balance between the rate of growth in reproductive

capacity and the force of mortality,

m’(âa)~m(âa): ð8Þ

Note that in reality populations, especially semelparous

populations, might not be always at equilibrium. We will,

nevertheless, assume they are in order to illustrate the trade-off

mechanism in determining the optimal timing of reproduction.

From (8), reproduction should be delayed as long as the

reproductive benefits of further growth outweigh the risk of

mortality occasioned by delaying. The optimal age at reproduction

is the age at which the benefits of further growth are exactly offset

by the risk of dying. Note that d, the duration of stage 1, does not

appear in (8) and does not affect the optimal age (in stage 2) of

reproduction. If the population were growing or shrinking, then d
would matter, as it would affect time to reproduction; with earlier

times being favored in growing populations (see [15,16]); and later

Table 1. Life-Cycle Phases for Semelparous Species.

Stage Growth Mortality Reproduction

Stage 1 Yes (from i to 1) Yes No

Stage 2 Yes (from 1 onwards) Yes Yes

doi:10.1371/journal.pone.0057133.t001

Figure 1. Parent and offspring size notation.
doi:10.1371/journal.pone.0057133.g001
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times in shrinking populations (see [17]). In the rest of this article

we focus on the equilibrium case when r~0 and we will use ‘‘age’’

to refer to age in stage 2.

The optimal size at reproduction ĵj~j(âa) is the size of the

semelparous organism at the optimal age at reproduction. We

assume semelparous organisms grow until they reproduce, i.e. j(a)
is an increasing function of age (this might not always be the case

as shown in [18,19]). As a result, this optimal size can be

determined by

m’j(ĵj)
d ĵj

da
~m(ĵj), ð9Þ

which results directly from (8) by viewing it as a necessary

condition for the optimal size rather than the optimal age. That is,

at the optimal size, the increase in reproduction with an increase in

size multiplied by the change in size in an additional unit of time

(or age) must be counterbalanced by the risk of death during that

unit of time.

If environmental conditions worsen such that the rate of growth

in reproductive capacity at all ages decreases, when population

equilibrium is reached the new optimal âa1 is younger than âa. If

mortality increases, the optimal age is also younger, âa2. If both

occur simultaneously, the optimal age is even younger âa3.

Optimal Size at Reproduction in a Specific Model for
Stage 2

Both (7) and (9) are true in general, whatever functional forms

are used for m(a) and l(a). Specific functional forms can be used to

make more specific predictions. Mortality is a declining function of

size in many species, as larger individuals may be more robust to

threats such as droughts, or predation. For example, in

semelparous plants, the most commonly observed pattern of

mortality is declining with size (12 out of 12 species reviewed in

[20]). An appropriate model could therefore be

m(a)~
b

j(a)
zc, ð10Þ

where b and c are constants, and j(a) denotes size at age a. The

parameter b captures the causes of death that decline with size,

b~0 captures no size dependence, and c captures ubiquitous

causes of death that are independent of size. For many plants,

reproductive output scales approximately with biomass, so that

allometric relationships can be fitted related seed counts to size (see

[20,21] for a review of estimates for a range of species). As a result

reproductive output is generally an increasing function of size and

can be modelled as

m(a)~wj(a)g, ð11Þ

where w is a scaling parameter and g modulates whether

transforming size into reproductive output is an accelerating

(gw1) or saturating (gv1) function. In semelparous plants, growth

is generally a declining function of size, a function that has been

attributed to self-shading, or declining nitrogen content of older

leaves (reviewed in [20,22]). Accordingly, an appropriate model

would be

dj

da
~kj0:75{kj, ð12Þ

where the parameter k captures how the growth rate increases

with size, and k modulates the increase so that eventually size

reaches an asymptote. For illustration, we use the exponent 0:75,

following predictions from the fractal model of scaling (see [23]).

However, using a different exponent would not alter the main

conclusions of the article. This equation provides a fairly general

description of asymptotic growth. If size at age 0 is 1, we have

j(a)~
k

k
{

k

k
{1

� �
e
{k

4
a

� �4

, ð13Þ

where the asymptotic size is defined by (
k

k
)4.

Substitution of (10), (11), and (12) in (9) results in an expression

for the optimal ĵj that is explicitly independent of the scaling

parameter w

g

j
kj0:75{kj
� �

~
b

j
zc , ð14Þ

which reduces to

(gkzc)j{gkj0:75zb~0 ð15Þ

The latter is a quartic equation for j0:25 and its analytic solution

is given by Ferrari’s formula. Denoting

A~
gk

gkzc
B~

b

gkzc

C~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

16
A2Bz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

256
A4B2{

1

27
B3

r
3

s
,

we can express the positive root of the quartic equation (14) in

the following manner

j~{
A

4
z

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

4
z2Cz

2B

3C

r
z

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7A2

4
z2Cz

2B

3C
z

A3

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

4
z2Cz

2B

3C

r
vuuut :

As a result, j increases with A and decreases with B (see Fig. 2).

Therefore, the optimal size of reproduction ĵj will increase with

positive changes in the reproduction scale parameter g or the

determinant of asymptotic size
k

k
, as well as negative changes in

mortality parameters b or c.

These mathematical results aid biological insight. Because

optimal size does not depend on the parameter w, species suffering

proportional reduction in offspring production will, certibus

paribus, not vary in flowering size (see [24]). An example of this

Optimal Semelparity
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might be density dependence of seed establishment (see [20]).

Furthermore, if species’ relative ranking with respect to asymptotic

size k=k, scaling of reproductive output with size g, and mortality

parameters, b and c, are known, relative ranking in terms of

flowering size could be predicted.

Optimal Seed Size and Number
Let p(i) be the probability that a seed germinates and grows

until initial size no longer influences mortality, i.e. to a~0 and size

taken as j~1. Generally p(i) increases with seed size i. Let

reproductive output i.e., number of seeds produced, be denoted by

n(a,i) which is an increasing function of plant size (and age), and a

decreasing function of seed size. The net reproductive rate is then

R~p(i) l(a)n(a,i): ð16Þ

If the population is in equilibrium, maximizing r is generally

equivalent to maximizing R (see [25]). Further, in [24] it has been

shown that maximizing R provides the evolutionary stable strategy

if population regulation operates on offspring establishment. Such

density dependence characterizes many semelparous species (see

[20]). The optimal life history is therefore defined by the derivative

or relative derivative of R being equal to zero. Hence, the optimal

age at reproduction can be specified by

dR

da
R

~0~n0a(âa,i){m(âa) ð17Þ

where n’a(a,i)~ (dn(a,i)=da)=n(a,i) defines the rate of change

in the number of offspring produced at age a. Equation (17)

implies n’a(âa,i)~m(âa), which is similar to the result obtained in (8).

Note that optimal time at reproduction depends only on a in stage

2 and does not depend on time taken by a seed to grow to j~1
(see [12]). The optimal offspring size is specified by

dR
di
R

~0~n’i(a,̂ii)zp’(̂ii) ð18Þ

where p’(i)~ (dp(i)=di)=p(i) and n’i(a,i)~ (dn(a,i)=di)=n(a,i).
This implies p’(̂ii)~{n’i(a,̂ii). At equilibrium, optimal offspring

size is the size at which the benefits accrued through investing less

in each offspring and thereby producing more offspring are offset

by the risk of mortality for an offspring of that size.

Optimal Seed Size in a Specific Model for Stage 1
Specific functional forms can be used to deepen understanding.

The number of seeds n of size i produced at age a can be

determined by

Figure 2. Optimal seed size with respect to A and B.
doi:10.1371/journal.pone.0057133.g002
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n(a,i)~
wjg(a)

ib
ð19Þ

where parameter b captures both saturating and accelerating

functional forms of producing larger offspring. The probability of

reaching size j~1 can be specified by a concave function

p(i)~
i{i0
1{i0

� �c

, 0vcv1, ð20Þ

where i0 is the minimal possible seed size and c accounts for the

speed of reaching reference size j~1. As a result, the optimal

offspring size îi will be the solution of (18) i.e.

îi~
bi0

b{c
ð21Þ

Discussion

When is Optimal Seed Size îi Independent of Optimal

Adult Size at Reproduction ĵj
Eq. (21) implies that the optimal seed size îi does not depend on

the optimal plant size at reproduction ĵj. Using (18), it can be

similarly shown that optimal plant size at reproduction does not

depend on the optimal size of the seeds produced. This mutual

independence holds in general if the number of seeds of size i
produced at age a is proportional to the product of a function of

adult size and a function of seed size, i.e.

n(a,i)~C F (i)G(a), C:const ð22Þ

where C is a scaling factor. In this case

n’i~F ’i ð23Þ

does not depend on ĵj and neither does p’(i). This is also true for

n’a~F ’a ð24Þ

Eq. (22) is a necessary and sufficient condition, in our

framework, for the independence of the parent’s optimal size at

reproduction from the optimal seed size of its offspring. The

condition is not implausible, but it is also not trivial. For instance,

in (19) b might be a function of j: bigger plants might be more

efficient at producing large seeds than smaller plants are. Also in

(19), g might be a function of i: the relationship between plant size

and reproductive capacity may be modulated by seed size.

Note that the assumptions about a juvenile vs. an adult stage

imply that ĵj0 is independent of îi0 and ĵj1 is independent of îi1 (see

Fig. 1). To prove independence of optimal seed size and optimal

size at maturity, it is also necessary to show that ĵj0 and îi1 are

independent. Eq. (22) gives the condition for this.

The independence of two characteristics means that the optimal

value of either of them does not depend on the value of the other

characteristic. This causal independence is different from lack of

empirical correlation. For instance, suppose a species grows in two

environments, one unfavorable (perhaps because of poor soil or

lack of sunlight) and the other favorable. Then d, the time it takes

a plant to grow from seed to adult size, and a, the time it takes for

the plant to grow from adult size to size at reproduction and death,

might be correlated across the two environments: e.g., both times

might be long in the unfavorable environment and short in the

favorable one. The long time to develop, however, does not cause

the long time to mature: the unfavorable environment causes both

and the correlation is merely a statistical association. As explained

above, the duration d is irrelevant to the optimization problems we

addressed.

Conclusion

The simplicity of the semelparous life cycle aids formulating

general mathematical models that predict key features of life

histories. The analytical framework presented here unifies

predictions of timing of reproduction and offspring size. This

framework provides insights into how basic demographic features

shape the diversity of age trajectories across species and plasticity

within species in response to environmental cues. This permits

separation of these patterns from complications such as variation

in growth, both across individuals (see [20]) and through time (see

[26]). Variants of the models may also be relevant for other life-

history switches such as metamorphosis (see [27]).
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