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1 Introduction

There is a history of attempts to match gauge theory [1–3] and string theory [4–6] results

for the leading terms in the strong coupling expansion of the expectation value of the 1
2

BPS circular Wilson loop (WL) in N = 4 SYM theory (see [7–13]). The precise matching

was recently achieved for the ratio of the 1
2 and 1

4 BPS WL expectation values [14, 15] (see

also [16, 17] for a discussion of similar matching in the ABJM theory [18]). However, the

direct computation of the string theory counterpart of the expectation value of the indi-

vidual WL, that non-trivially depends on the normalization of the path integral measure,

still remains a challenge.

In the SU(N) N = 4 SYM theory the Maldacena-Wilson operator defined in the

fundamental representation is given by W = trPe
∫

(iA+Φ) (note that we do not include the

usual 1/N factor in the definition of W). Then for a circular loop one finds at large N

with fixed ’t Hooft coupling λ [1, 2]: 〈W〉 = N 2√
λ
I1(
√
λ). Expanding at strong coupling,

〈W〉 = Nλ−3/4
√

2
π e
√
λ + . . .. This result should be reproduced by the AdS5 × S5 string

perturbation theory with the string tension T =
√
λ

2π = R2

2πα′ , where here and below R

denotes the AdS radius. It was suggested in [2] that the pre-factor λ−3/4 ∼ T−3/2 may have

its origin in the normalization of three ghost 0-modes on the disk (or the Mobius volume).

This proposal, however, is problematic for several reasons. First, the effective tension

T has its natural origin in the string action but should not appear in the diffeomorphism

volume or the volume of residual Mobius symmetry. Furthermore, the T−3/2 factor (which
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would be universal if related to the Mobius volume) would fail to explain the result for

the 1
2 BPS circular WL [19] in the U(N)k × U(N)−k ABJM theory, where the tension is

T = 1
2

√
2λ (with λ = N

k ) while the gauge theory (localization) prediction [20–22] for the 1
2

BPS Wilson loop in fundamental representation is 〈W〉 = N(4πλ)−1eπ
√

2λ+ . . .. Note that,

as above, in our definition we do not divide the Wilson loop operator by the dimension of

the representation.1

Another indication that the explanation of the prefactor should be different is that, in

general, one expects that the string counterpart of the large N term in 〈W〉 should be the

open-string partition function on the disk, which should contain an overall factor of the

inverse power of the string coupling (corresponding to the Euler number χ = 1), i.e.

〈W〉 = Zstr =
1

gstr
Z1 +O(gstr) , Z1 =

∫
[dx] . . . e−T

∫
d2σ L , (1.1)

where 1
gstr

provides the required overall factor of N . The fact that it is natural to define

the WL expectation value without the usual 1/N factor, and to include the 1/gstr factor

in its string theory counterpart, was also emphasized in [23].

In the N = 4 SYM case we have [1, 2]

gstr =
g2

YM

4π
=

λ

4πN
, λ = g2

YMN , T =

√
λ

2π
, 〈W〉 =

N

λ3/4

√
2
π e
√
λ + . . . , (1.2)

while in the ABJM case [18, 22]2

gstr =

√
π (2λ)5/4

N
, λ =

N

k
, T =

√
2λ

2
, 〈W〉 =

N

4πλ
eπ
√

2λ + . . . . (1.3)

Our central observation is that both expressions for 〈W〉 in (1.2) and (1.3) can be universally

represented as

〈W〉 = W1

[
1 +O(T−1)

]
+O(gstr) , W1 =

1

gstr

√
T

2π
e−Γ̄1 e2πT , (1.4)

where Γ̄1 is a numerical constant. Below we will argue that (1.4) should be the expression

for the leading semiclassical result for the disk string path integral for a minimal surface

in AdS3 ending on a circle at the boundary (thus having induced AdS2 geometry) in the

AdSn × M10−n string theory with tension T and coupling gstr. In (1.4) the exponent

e2πT = e−Icl comes from the value of the classical string action Icl = VAdS2 T = −2πT .

1Our normalization of W in the 1
2

BPS case corresponds in the localization calculation of [21, 22] to

computing the matrix model expectation value 〈Str
(
eiµi 0

0 e
−iνj

)
〉. Note that [22] defines the Wilson loop

expectation value by including an extra overall factor of gCS ≡ 2πi
k

. Denoting by 〈W〉loc the expectation

value given in [22], we find that the strong coupling limit of the 1
2

BPS Wilson loop in the ABJM theory

is 〈W〉 = 1
g
CS
〈W〉loc = 1

g
CS

1
2
eπ
√

2λ+iπB = k
4π
eπ
√

2λ = N
4πλ

eπ
√

2λ, where we fixed the phase as B = 1
2
.

2Here the AdS4 radius is R = (2π2λ)1/4
√
α′ with T = R2

2πα′ . The shift λ → λ − 1
24

+ . . . in the string

tension [22, 24, 25] is irrelevant to the one-loop order (as discussed in [26], at the leading order we do not

expect renormalization of the relation for the string tension).
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The constant Γ̄1 comes from the ratio of one-loop determinants of string fluctuations near

the minimal surface, and is found to be (see [6, 7, 9] and section 2 below)

AdS5 × S5 : Γ̄1 =
1

2
ln(2π) , AdS4 × CP 3 : Γ̄1 = 0 . (1.5)

Including also the n = 3 case of AdS3×S3×T 4 string theory, one finds for AdSn×M10−n

with n = 3, 4, 5 that Γ̄1 = 1
2(n−4) ln(2π) (see (2.21) below), and so in general W1 in (1.4) is

W1 =
1

(
√

2π)n−3

√
T

gstr
e2πT . (1.6)

Using (1.5) one can check that the expression in (1.4) or (1.6) is in remarkable agreement

with the gauge-theory expressions in (1.2) and (1.3).

As we explain below, it will also follow from our argument that at higher genera

(disk with p handles with Euler number χ = 1 − 2p) the
√
T factor in (1.4) should be

replaced by (
√
T )χ, i.e. the corresponding term in the partition function should have a

universal prefactor

〈W〉 =
∑

χ=1,−1,...

cχ

(√
T

gs

)χ
e2πT

[
1 +O(T−1)

]
. (1.7)

This is indeed consistent with the structure of 1/N corrections found on the gauge theory

side in [2] and in [22] (see section 5).

It remains to understand the origin of the simple prefactor
√

T
2π in (1.4). In general,

the expression for such a prefactor in the path integral is very sensitive to the definition of

path integral measure which is subtle in string theory. In section 3 below we will provide an

explanation for the presence of the
√
T factor starting from the superstring path integral in

the static gauge [6] (see also appendix A.1) but we will not be able to determine the origin

of the remaining 1√
2π

constant from first principles. This is already a non-trivial result:

since the presence of this constant is fixed by the comparison with the SYM theory, we

then have the string theory explanation for the ABJM expression in (1.3) (or vice-versa).

In section 4 we shall provide another consistency check of the universal expression for

the string partition function (1.4) by considering the analog of the familiar soft dilaton

insertion relation and dilaton tadpole on the disk.

In section 5 we will emphasize the fact that the universal prefactor in the disk partition

function ∼
√
T

gstr
in (1.4) has a natural generalization (1.7) to higher orders which is consistent

with the structure of the 1/N corrections found on the gauge theory side. We will make

some concluding remarks about some other WL examples in section 6.

It is interesting to note that the factor
√

T
2π in (1.4) looks exactly like the one associ-

ated with just one bosonic zero mode (in the standard normalization of the path integral

zero-mode measure, i.e. 1√
2π~

, ~−1 = T , as was used in a similar context in [14, 15]).3

3Here we assume that the path integral measure for a scalar field is normalized so that the gaussian

integral has a fixed value
∫

[dx] exp[− 1
2~ (x, x)] = 1, i.e. [dx] =

∏
σ
dx(σ)√

2π~ . Then the factor of string tension

T = ~−1 appears both in the measure and in the action and cancels out in the one-loop determinant

expression apart from possible 0-mode contribution.
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In appendix A.2 we will discuss a possible origin of this zero-mode factor, assuming one

starts with the disk path integral in conformal gauge where there is an extra factor con-

taining the ratio of the ghost determinant and the determinant of the two “longitudinal”

string coordinates subject to “mixed” Dirichlet/Neumann boundary conditions, and thus

admitting conformal Killing zero modes discussed in appendix B.

2 One-loop string correction in static gauge

consider a circular WL surface with AdS2 induced geometry, which resides in an AdS3

subspace of AdSn ×M10−n, specifically:

(i) n = 5: AdS5 × S5; (ii) n = 4: AdS4 × CP 3; (iii) n = 3: AdS3 × S3 × T 4.

The string is point-like in the internal compact directions, satisfying Dirichlet bound-

ary conditions. In general, the planar WL expectation value is given by the string path

integral with a disk-like world sheet ending on a circle at the boundary of AdS space,

〈W〉 = e−Γ, Γ = Γ0 + Γ1 + Γ2 + . . .. Here Γ0 = −2πT is the classical string action (propor-

tional to the renormalized AdS2 volume VAdS2 = −2π) and Γ1 = O(T 0) is given by sum

of logarithms of fluctuation determinants (in which we include possible measure-related

normalization factors).

We shall discuss the computation of the one-loop correction Γ1 ≡ Γ
(n)
1 in the above

AdSn × M10−n cases following the heat kernel method applied in the AdS5 × S5 case

in [6] and [9]. In this n = 5 case the general form of the static-gauge string one-loop

correction is [6]

Γ
(5)
1 =

1

2
log

[det(−∇2 + 2)]2 det(−∇2 +R(2) + 4) [det(−∇2)]5

[det(−∇2 + 1
4R

(2) + 1)]8
(2.1)

=
1

2
log

[det(−∇2 + 2)]3 [det(−∇2)]5

[det(−∇2 + 1
2)]8

. (2.2)

Here we assumed that the AdS radius R is scaled out and absorbed into the string tension

T = R2

2πα′ so that all operators are defined in the induced AdS2 metric with radius 1 and

curvature R(2) = −2. We will come back to the radius dependence in section 3 below.

In (2.1) we isolated the contribution of one special transverse AdS5 mode that, in general,

is different from the other two: this is the AdS3 mode transverse to the minimal surface

(the other two transverse modes are transverse to AdS3), see [6, 27]. In the present case of

the minimal surface being AdS2 we have R(2) = −2 so that its mass is actually the same

as of the other two transverse AdS5 modes.

Similar expression (2.1) is found in the conformal gauge [6], provided the contribution

of the two “longitudinal” modes cancels as in flat space [28] against that of the ghost de-

terminant and Mobius volume factor (modulo the 0-mode part of the longitudinal operator

and related definition of path integral measure, see appendix A.1 for further discussion).

In the less supersymmetric cases with AdS5 → AdSn and n = 4, 3 there are less

massive bosonic AdS directions and part of the fermions are massless, i.e. we get the
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following generalization of (2.1)

Γ
(n)
1 =

1

2
ln

[det(−∇2 + 2)]n−3 det(−∇2 +R(2) + 4) [det(−∇2)]10−n

[det(−∇2 + 1
4R

(2) + 1)]2n−2 [det(−∇2 + 1
4R

(2))]10−2n
(2.3)

=
1

2
ln

[det(−∇2 + 2)]n−2 [det(−∇2)]10−n

[det(−∇2 + 1
2)]2n−2 [det(−∇2 − 1

2)]10−2n
(2.4)

The fermion masses are controlled by the superstring kinetic term with a projection matrix

in the mass term. In the AdS3×S3×T 4 case [6] there are 4 massless fermion modes (which

are partners of T 4 bosonic modes) and 4 massive ones. In the AdS4×CP 3 case one finds [29]

that there are 2n− 2 = 6 massive and 10− 2n = 2 massless fermionic modes.

Let us first discuss the divergent part of (2.3) assuming the standard heat-kernel

regularization separately for each determinant contribution. The UV divergent part of

Γ1 = 1
2 log det(−∇2 +X) where −∇2 +X is a scalar Laplacian is given by (Λ→∞)

Γ1,∞ = −B2 log Λ , B2 =
1

4π

∫
d2σ
√
g b2 , b2 =

1

6
R(2) −X . (2.5)

Here we ignore boundary contributions (they contain a power of IR cutoff and are absent

after renormalization of the AdS2 volume or directly using the finite value for the Euler

number of the minimal surface).

In the case of (2.2) we then find that in the total combination all 1
6R

(2) terms cancel

out (due to balance of bosonic and fermionic d.o.f.) and the constant mass terms also

cancel between bosons and fermions so that we are left only with contributions of R(2)

terms from one special bosonic mode and the fermionic modes

b
(5)
2,tot = −R(2) − 8

(
− 1

4
R(2)

)
= R(2) ,

B
(5)
2,tot =

1

4π

∫
d2σ
√
g R(2) = χ =

1

4π
(−2π)(−2) = 1. (2.6)

For general n the corresponding UV divergent part of (2.3) is given by the straightforward

generalization of (2.6). Again, all 1
6R

(2) terms in (2.5) cancel out as do the constant mass

terms and we find

b
(n)
2,tot = −(n− 3)2− (R(2) + 4)− (2n− 2)

(
− 1

4
R(2) − 1

)
− (10− 2n)

(
− 1

4
R(2)

)
= R(2) , (2.7)

B
(n)
2,tot =

1

4π

∫
d2σ
√
g R(2) = χ = 1 . (2.8)

The total result (coming again just from the R(2) terms in single bosonic mode and 8

fermionic modes) is thus universal, i.e. n-independent.

Moreover, the same result B2 tot = χ for the coefficient of the UV divergence is found for

fluctuations near any minimal surface (not even lying within AdS3) that has disk topology

(see [6, 30]): if X is a “mass matrix”, the contribution of 8 transverse bosons is b2b =

8 · 1
6R

(2) − trX −R(2) while of 8 fermions is b2f = 8 · 1
12R

(2) + trX so that b2 tot = R(2).
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Note that in general the Seeley coefficient is B2 = ζ(0)+n0 where ζ(0) is the regularized

number of all non-zero modes and n0 = nb − 1
2nf is the effective number of all 0-modes

(assuming fermions are counted as Majorana or Weyl). In the present static gauge case

there are no obvious normalizable 0-modes (cf. remark below (B.10)), but we observe that

the result (2.8) is formally the same as what would come just from one “uncanceled”

bosonic mode.

The universality of (2.8) strongly suggests that the mechanism of cancellation of this

total “topological” UV divergence should also be universal. One may absorb it into the def-

inition of the superstring path integral measure or cancel it against other measure factors

as discussed in the conformal gauge in [6].4 An alternative is to use a special “2d super-

symmetric” definition of the one-loop path integral in the static gauge (see below): the

cancellation of UV divergences is, in fact, automatic if one uses a “spectral” representation

for the total Γ1 rather than heat kernel cutoff for each individual determinant.

Let us now turn to the finite part of the one-loop effective action in (2.4). We will

follow [9] which completed the original computation in [6] of Γ1 in (2.19) based on expressing

the determinants in (2.2) in terms of the well known [37–41] heat kernels of the scalar and

spinor Laplacians on AdS2. Γ
(n)
1 in (2.3) contains the contributions of the following AdS2

fields: (i) n− 2 scalars with m2 = 2; (ii) 10− n scalars with m2 = 0; (iii) 2n− 2 Majorana

fermions with m2 = 1; (iv) 10− 2n Majorana fermions with m2 = 0. We will temporarily

set the AdS2 radius to 1 and discuss the dependence on it later. Let us first use the

heat-kernel cutoff for each individual determinant in (2.3), i.e.

1

2
ln det ∆ = −1

2
VAdS2

∫ ∞
Λ−2

dt

t
K(t) , VAdS2 = −2π . (2.9)

The trace of heat kernel K(t) for a real scalar and a Majorana 2d fermion may be written as

K(t) =
1

2π

∫ ∞
0

dv µ(v) e−t(v
2+M) , (2.10)

µb(v) = v tanh(πv) , M =
1

4
+m2 ;

µf (v) = −v coth(πv) , M = m2 . (2.11)

4To recall, the UV divergences do not cancel automatically even in the bosonic string theory in flat space.

The combination of D scalar Laplacians and the conformal ghost operator ∆gh = P †P gives (with all modes

counted) [35] B2 = 1
4π

∫
d2σ
√
g(D

6
R(2)−( 2

6
R(2)+R(2)) = 1

6
(D−8)χ. Assuming, following [36], that there are

extra powers of the UV cutoff in the Mobius volume one divides over and in the integrals over moduli, the net

result is that one should add to the above B2 an extra δtopB2 = −3χ = dim kerP †−dim kerP , thus getting

B2 = 1
6
(D−8−18)χ = 1

6
(D−26)χ. A similar argument applies to the NSR string where B2 = 1

4
(D−10)χ. In

the present D = 10 GS superstring case there is an extra conformal anomaly/divergence from the Jacobian

of rotation from GS fermions to 2d fermions (see [31–34]); this effectively amounts to adding 3 extra massless

fermion contributions for each 2d fermion contribution (or, equivalently, multiplying the 1
6
R(2)− 1

4
R(2) part

of each fermion contribution to b2 by 4); this gives δ1B2 = −3× 8× 1
4π

∫
d2σ
√
g( 1

6
R(2) − 1

4
R(2)) = 2χ.

In the conformal gauge the divergences from the determinant of the ghost operator (∆gh)ab = −gab∇2 −
Rab cancel against those of the determinant of operator ∆long for 2 longitudinal scalars. As in the bosonic

case, one should also add δtopB2 = −3χ as explained above. Summing these contributions with (2.8) gives

B2 tot = B
(n)
2,tot + δ1B2 + δtopB2 = χ+ 2χ− 3χ = 0 .
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Here in µf we already accounted for the negative sign of the fermion contribution, so the

total K is just the sum of the bosonic and fermionic terms. The associated ζ-function is

ζ(z) = − 1

Γ(z)

∫ ∞
0

dv µ(v)

∫ ∞
0

dt tz−1 e−t(v
2+M) = −

∫ ∞
0

dv
µ(v)

(v2 +M)z
. (2.12)

For example, for AdS2 scalars ζ(0) = B2 = −1
2b2 = 1

6 −
1
2m

2. The total value of ζ(0) is

found to be 1, i.e. the same as in (2.8). In general, the one-loop correction is

Γ1 =
∑ 1

2
log det ∆ = −ζtot(0) log Λ + Γ̄1 , Γ̄1 ≡ −

1

2
ζ ′tot(0) , ζtot(0) = 1 . (2.13)

For the derivative of the scalar ζ-function one finds (A is the Glaisher constant)

ζ ′b(0,M) = − 1

12
(1 + ln 2) + lnA−

∫ M

0
dxψ

(√
x+

1

2

)
, (2.14)

ζ ′b

(
0,

9

4

)
= −25

12
+

3

2
ln(2π)− 2 lnA ,

ζ ′b

(
0,

1

4

)
= − 1

12
+

1

2
ln(2π)− 2 lnA , (2.15)

while for the massive fermion

ζ ′f (0,M) = −1

6
+ 2 lnA+

√
M +

∫ M

0
dxψ(

√
x) , (2.16)

ζ ′f
(
0, 1
)

=
5

6
− ln(2π) + 2 lnA , ζ ′f

(
0, 0
)

= −1

6
+ 2 lnA . (2.17)

The total contribution to the finite part Γ̄
(n)
1 in (2.13) corresponding to (2.3) then found

to have a simple form

Γ̄
(n)
1 = −1

2

[
(n− 2)ζ ′b

(
0,

9

4

)
+ (10− n)ζ ′b

(
0,

1

4

)
+ (2n− 2)ζ ′f (0, 1) + (10− 2n)ζ ′f (0, 0)

]
=

1

2
(n− 4) ln(2π) . (2.18)

Γ̄
(5)
1 =

1

2
ln(2π) , Γ̄

(4)
1 = 0 , Γ̄

(3)
1 = −1

2
ln(2π) . (2.19)

In the AdS5×S5 case (n = 5) the computation of the corresponding determinants was also

carried out using different methods in [7, 8] with the finite part of the resulting expression

for Γ̄
(5)
1 being as in (1.5), (2.19). Note that the finite part (2.18) happens to vanish in the

AdS4 × CP 3 case (n = 4).

It is interesting to note that there exists a special definition of Γ1 in (2.3) that automat-

ically gives a UV finite one-loop result. Instead of computing separately each determinant

let us use (2.9) and sum up the corresponding spectral integral expressions under a common

integral over v in (2.10). Interchanging the order of t- and v- integrals and first integrat-

ing over t we see that this integral is finite, i.e. the proper-time cutoff is not required.

Using (2.10)–(2.11) we then get for (2.4)

Γ̄
(n)
1 =

1

2

VAdS2

2π

∫ ∞
0

dv v

(
tanh(πv)

[
(n− 2) ln

(
v2 +

9

4

)
+ (10− n) ln

(
v2 +

1

4

)]
− coth(πv)

[
(2n− 2) ln(v2 + 1) + (10− 2n) ln(v2)

])
, (2.20)
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where
VAdS2

2π = −1. Remarkably, the integral over v here is convergent at both v = 0 and

v =∞ (i.e. in the UV). In general, given the structure of the eigenvalues in (2.10)–(2.11),

one can see that convergence of the representation (2.20) in the UV requires the sum rule∑
b(m

2
b + 1

4) −
∑

f m
2
f = 0, which is satisfied for the spectra in our problem. Evaluation

of (2.20) gives then a finite result equal to the one in (2.18), i.e.

Γ̄
(n)
1 =

1

2
(n− 4) ln(2π) . (2.21)

This prescription of not using proper-time cutoff for individual log det terms, i.e. first com-

bining the integrands and then doing the spectral integral, may be viewed as a kind of “2d

supersymmetric” regularization. Indeed, the balance of the bosonic and fermionic degrees

of freedom in (2.4) suggests hidden AdS2 supersymmetry [6].5 Then the prescription of

combining the spectral integrands of the determinants together may be viewed as a re-

sult of a “superfield” computation manifestly preserving 2d supersymmetry. Note however

that, even though the integral in (2.20) is finite, a dependence of Γ1 on a normalization

scale reappears on dimensional grounds if one restores the dependence on the radius R

inside the logarithms, as explained in the next section. This leads to an explanation of the

T -dependent prefactor in (1.4) and (1.7).

3 Dependence on AdS radius: origin of the
√
T prefactor

Let us now explain the presence of the
√
T = R√

2πα′
prefactor in the string one-loop

partition function (1.4). As the definition of quantum string path integral (in particular,

integration measure) is subtle and potentially ambiguous our aim is to identify the one

that is consistent with underlying symmetries and AdS/CFT duality.

In the previous section we ignored the dependence of the one-loop correction on the

AdS radius R. Let us now discuss how the string path integral may depend on it. Let

us start with the classical string action in AdSn of radius R. One possible approach is to

rescale the 2d fields so that the factor of R2 appears in front of the action6

I =
1

2
T0

∫
d2σ
√
g Gmn(x) ∂axm∂ax

n + . . . (3.1)

=
1

2
T

∫
d2σ
√
g Ḡmn(x̄) ∂ax̄m∂ax̄

n + . . . , T = R2T0, T0 =
1

2πα′
. (3.2)

Using either (3.1) or (3.2) the expression for one-loop correction will depend also on the

assumption about the path integral measure. If the measure is defined covariantly the final

result should be the same.

5One implication is the vanishing of the corresponding vacuum energy in AdS2 observed in [6] in the

case of the strip parametrization ds2 = 1
cos2 ρ

(dt2 + dρ2), ρ ∈ (−π
2
, π

2
). To recall, the contributions of a

scalar with mass m2
b and a fermion with mass m2

f to the AdS2 vacuum energy are [6] Eb(m
2) = − 1

4
(m2 + 1

6
)

and Ef (m2) = 1
4
(m2 − 1

12
) so that for the spectrum in (2.3) we get Etot = (n− 2)Eb(2) + (10− n)Eb(0) +

(2n− 2)Ef (1) + (10− 2n)Ef (0) = (n− 2)(− 1
2
− 1

24
) + (10− n)(− 1

24
) + (2n− 2)( 11

48
) + (10− 2n)(− 1

48
) = 0.

6For example, starting with ds2 = dr2 + e2r/Rdxidxi we get ds2 = R2(dr̄2 + e2r̄dx̄idx̄i). Note that after

the rescaling the tension T and coordinates x̄m are dimensionless.
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Let us consider the path integral defined by (3.1) in terms of the original unrescaled

coordinates xm of natural dimension of length, so that Gmn(x) is dimensionless and depends

on the AdS scale R. The string σ-model path integral may be defined symbolically as (cf.

footnote 3)

Z =

∫ ∏
σ,m

√
T0

2π

√
G(x(σ)) [dxm(σ)] . . .

× exp

[
− 1

2
T0

∫
d2σ
√
g Gmn(x) ∂axm∂ax

n + . . .

]
. (3.3)

Expanding near the minimal surface ending on the boundary circle we will get the induced

AdS2 metric depending on the same curvature scale R as Gmn. Then rotating the fluctu-

ation fields to the tangent-space components x̃r and also rescaling them by
√
T0 (so that

they will be normalized as |x̃|2 =
∫
d2σ
√
g x̃rx̃r) we will find that the 1-loop contribution

from a single scalar is Z1 = (det ∆)−1/2 where ∆ = −∇2 + . . . depends on the induced

AdS2 metric and has canonical dimension of (length)−2 with eigenvalues scaling as R−2.

In the heat kernel representation Γ1 = − logZ1 = 1
2 log det ∆ = −1

2

∫∞
Λ−2

dt
t tr exp(−t∆)

the parameter t and the cutoff Λ−2 will now have dimension of (length)2 and we will get

instead of (2.13) (cf. (2.5), (2.8))

Γ1 = −ζtot(0) log(RΛ) + Γ̄1 , ζtot(0) = χ = 1 (3.4)

As discussed in section 2, the UV divergence is expected to be cancelled by an extra

“universal” contribution log(
√
α′Λ) from the superstring measure (see footnote 4). We

assume that this universal contribution (depending only on the Euler number of the world

sheet but not on details of its metric) may only involve the string scale
√
α′ but not the

AdS radius. As a result, Γ1 fin = −χ log R√
α′

+ Γ̄1. The argument of log is thus ∼ (
√
T )χ,

i.e. we get

Z ∼ e−Γ1 →
(√
T
)ζtot(0)

= (
√
T )χ =

√
T . (3.5)

This explains the origin of the
√
T factor in the disk partition function (1.4).

As was noted below (2.8), the coefficient of the UV divergent term in (3.4) is, in fact,

the same for all minimal surfaces with disk topology and thus the dependence of the string

partition function on the scale R or effective tension T through the
√
T factor in (3.5)

should be universal. This means, in particular, that the factors 1/gs and
√
T in (1.4)

will cancel in the ratio of expectation values of different Wilson loops with disk topology.

Moreover, the fact that the power of T in (3.5) is controlled by the Euler number χ implies

that at higher genera, for a disk with p handles, we should find that 〈W〉 includes the

universal prefactor (
√
T/gstr)

χ as in (1.7). This is in precise agreement with the large N

expansion of the localization results both in N = 4 SYM and ABJM cases, as we explain

in more detail in section 5.

The result of adding the above universal counterterm log(
√
α′Λ) is equivalent to just

defining the one-loop partition function to be UV finite by first combining all the contri-

butions using the spectral representation (2.20). There we set R = 1 and to restore the
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dependence on the radius R of the AdS2 metric we need to add the mass scale factor R−2

under the logs in (2.20) (cf. (2.9), (2.10)). To make the argument of the logs dimensionless

we also need to introduce some normalization scale ` (i.e. log det ∆ → log det(`2∆) or,

equivalently, add ` factor in the path integral measure). Then we find that Γ
(n)
1 in (2.20)

depends on R via the same ζtot(0) = 1 term as in (2.13), (3.4), i.e. via an extra contribution

(to be added to (2.21))

δΓ
(n)
1 =

1

2

VAdS2

2π
8 log(R−2`2)

∫ ∞
0

dv v
[

tanh(πv)− coth(πv)
]

= − log(R `−1) . (3.6)

The dependence on ` illustrates the fact that as long as ζtot(0) 6= 0, the one-loop contri-

bution, even if defined to be UV finite by the spectral representation (or some analytic

regularization like the ζ-function one [42]), is still scheme (or measure) dependent. Choos-

ing ` ∼
√
α′, which is here an obvious choice in the absence of any other available scales

(and which is also suggested by the T0 dependence in (3.3)), we again end up with the

required result (3.5).

We shall discuss some other approaches to the derivation of the dependence of the

one-loop correction on T in the next section and appendices A.1 and (A.2).

4 Dilaton insertion and derivative over gauge coupling

As another check of consistency and universality of the expression (1.4) for the 1-loop string

partition function for a minimal surface with disk topology, let us consider a closely related

object — the insertion of the dilaton operator in the expectation value or the dilaton

tadpole on the disk with WL boundary conditions. Here we shall explicitly consider the

SYM case but a similar discussion should apply also to the ABJM case.

Let us first recall the zero-momentum dilaton insertion relation, or the familiar “soft

dilaton theorem” in flat space. The dilaton φ couples to the string as [43]

I =

∫
d2σ
√
g

[
1

2
T0Gmn(x)∂axm∂ax

n +
1

4π
R(2)φ(x)

]
, (4.1)

where T0 = 1
2πα′ . The string-frame metric Gmn expressed in terms of the Einstein-frame

metric in D dimensions is Gmn = e
4

D−2
φḠmn, Ḡmn = δmn + hmn and thus the (zero-

momentum) dilaton vertex operator in flat space is (cf. [45, 46])7

I = I0 − V0φ+ . . . ,

V0 = − 4

D − 2

∫
d2σ
√
g

[
1

2
T0∂

axm∂axm +
D − 2

4

1

4π
R(2)

]
= − 4

D − 2
I0 − χ , (4.2)

where I0 = 1
2T0

∫
d2σ
√
g ∂axm∂axm and χ = 1

4π

∫
d2σ
√
gR(2). Since the expectation value

of the action I0 may be obtained by applying −T0
∂
∂T0

to the string path integral (cf. (A.2)),

7The canonically normalized dilaton field φ̄ that appears in the generating functional for scattering

amplitudes, i.e. having the same kinetic term as the graviton in the effective action, S ∼
∫
dDx
√
Ḡ[−2R̄+

1
2
(∂φ̄)2 + . . .], is related to φ as φ̄ = 4√

D−2
φ so that I = I0 − V̄0φ̄+ . . . , V̄0 = − 1√

D−2
(I0 + D−2

4
χ). Note

also that in (4.2) we ignored possible boundary term as its role usually is only to ensure the coupling to

the correct value of the Euler number.
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the insertion of the zero-momentum dilaton into the generating functional for scattering

amplitudes Z =
∫

[dx]e−I0+V0φ+Vhh+... is then given by (here 〈1〉=1)

∂

∂φ
logZ = 〈V0〉 = − 4

D − 2
〈I0〉 − χ =

4

D − 2
T0

∂

∂T0
logZ − χ . (4.3)

In the standard cases of a bosonic closed string or open string with Neumann boundary

conditions there are D constant 0-modes, so one finds Z ∼ TD/20 and 〈I0〉 = −1
2D (assuming

“covariant” regularization in which δ(2)(σ, σ) = 0, see [44]). The same relation is true also

for the fermionic string as the number of bosonic translational 0-modes remains the same.

In the superstring case (D = 10) for the tree-level topology of a disk (χ = 1)

eq. (4.3) reads

∂

∂φ
logZ = 〈V0〉 = −1

2
〈I0〉 − χ =

1

2
T0

∂

∂T0
lnZ − 1 . (4.4)

Adapting this relation to our present case of fixed contour boundary conditions with

the expectation value of the action given by 〈I〉 = −1
2 (see (A.6)) the analog of (4.4)

becomes (including in 〈I〉 also the classical contribution of an AdS2 minimal surface

〈I〉cl = T (−2π) = −
√
λ)

∂

∂φ
logZ = 〈V0〉 = −1

2
〈I〉 − 1 =

1

2

(√
λ+

1

2
− 2

)
=

1

2

√
λ− 3

4
. (4.5)

Since the constant part of the dilaton is related to the string coupling which itself is related

to the SYM coupling as in (1.2), i.e. g2
YM = 4πgstr = 4πeφ, we may compare (4.5) to the

derivative of the circular WL expectation value with respect to the coupling constant on

the gauge theory side. The normalized gauge theory path integral is defined by 〈. . .〉SYM ∼∫
[dA . . .]e−SSYM . . ., 〈1〉SYM = 1 where

SYM =

∫
d4xLSYM , LSYM =

1

4g2
YM

tr (F 2
mn + . . .) . (4.6)

We assume that the metric is Euclidean and the SU(N) generators are normalized as

tr (TiTj) = δij . Since the factor in front of the action is

e−φ = g−1
str =

4π

g2
YM

=
4πN

λ
, (4.7)

the derivative over the constant part of the dilaton φ corresponds on the gauge-theory side

to the insertion of the SYM action into a correlator. In particular, in the case of the WL

expectation value (here and below 〈W〉 ≡ 〈W〉SYM)

∂

∂φ
log〈W〉 =

〈SSYMW 〉
〈W 〉

= λ
∂

∂λ
log〈W〉 . (4.8)

Since the gauge-theory result at strong coupling is 〈W〉 = Nλ−3/4
√

2
π e
√
λ + . . . we con-

clude that

∂

∂φ
log〈W〉 = λ

∂

∂λ
log〈W〉 =

1

2

√
λ− 3

4
+ . . . , (4.9)

which is in agreement with the string theory expression (4.5).
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Note that while in the string theory relation (4.5) we used that the insertion of the

string action is given by derivative over the tension, on the gauge theory side a similar

relation (4.8) involves differentiation over the gauge coupling. The two are in agreement

because on the string side the dependence on λ comes from both the dependence on the

tension and also dependence on the string coupling (the −χ = −1 term in (4.4), (4.5)).

Thus, once again, one needs the independent 1
gstr

and
√
T factors in the string theory disk

partition function (1.4) in order to have the consistency between the dilaton derivatives,

or equality of the dilaton insertions on the string and gauge theory sides.

The above discussion has a natural generalization to the string partition function on

a disk with handles or 1/N corrections on the gauge theory side. For a surface of Euler

number χ, using (A.8) we get the following analog of (4.3) generalizing (4.5)

∂

∂φ
logZ = 〈V0〉 = −1

2
〈I〉 − χ =

1

2
T
∂

∂T
logZ − χ =

1

2

√
λ− 3

4
χ . (4.10)

The subleading term −3
4χ is consistent with the general form of the prefactor Z ∼ (

√
T

gstr
)χ

in (1.7). Indeed, note that gstr = eφ and that switching to the Einstein-frame metric

(cf. (4.2)) corresponds to T → e
1
2
φT (cf. (4.2)), so that

√
T

gstr
∼ e−

3
4
φ. This is in agreement

with the gauge-theory side since the dependence on the dilaton is directly correlated as

in (4.7), (4.8) with the dependence on λ (which appears only as a factor in front of the

SYM action), while the dependence on N may come not only from the factor (4.7) in the

action but also from traces in higher order gauge-theory correlators. Indeed, according to

the gauge-theory result (see (5.1)) the genus p term in 〈W〉 depends on λ as λ
6p−3

4 = λ−
3
4
χ.

One can also perform a further consistency check by considering a direct generalization

of the above relations to the case of the local (i.e. “non zero-momentum”) dilaton operator

insertion. On the gauge theory side the derivative over a local coupling or local dilaton is

essentially the Lagrangian in (4.6) and one finds [50–52]8

δ

δφ(x)
log〈W〉 =

〈LSYM(x)W〉
〈W〉

= − 1

8π2 d4
⊥
f(λ) , (4.11)

f(λ) = λ
∂

∂λ
log〈W〉 =

1

2

√
λ
I2(
√
λ)

I1(
√
λ)

=
1

2

√
λ− 3

4
+ . . . . (4.12)

In (4.11) we assume that dependence on the local dilaton is introduced by LSYM →
e−φ(x)LSYM and φ is set to be constant as in (4.7) after the differentiation. In (4.12)

we used that 〈W〉 = 2√
λ
I1(
√
λ), i.e. f(λ) is the same function that appeared also in (4.9).

For a WL defined by a circle of unit radius on the (x1, x2)-plane centered at the origin, the

8Eq. (4.11) is a direct counterpart of the exact form of the correlation function of the 1
2

BPS Wilson

loop with the ∆ = 2 chiral primary operator which is a special case of the correlator of the Wilson loop

and the ∆ = J CPO first obtained in [53]. The function f(λ) also appears in the so-called Bremsstrahlung

function [54]. The dilaton operator O4 is a descendant of the ∆ = 2 chiral primary, i.e. O4 ∼ tr (F 2 +

ΦD2Φ + . . .) and is different from the canonical form of the SYM Lagrangian LSYM in (4.6) by a total

derivative term (in conformal correlators one may further drop the terms proportional to the scalar and

spinor equations of motion as they produce only contact terms [47–49]). Note that we use Euclidean

notation (as, e.g., in [52]) and in our normalization [49] 〈LSYM(x)LSYM(x′)〉 = 3N2

π4(x−x′)8 .
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position dependent factor d⊥ in (4.11) is given explicitly by (see, e.g., [4, 55, 56])

d⊥ =
1

2

√
(r2 + h2 − 1)2 + 4h2 , r2 = x2

1 + x2
2 , h2 = x2

3 + x2
4 . (4.13)

One can verify that integrating (4.11) over the position x = (x1, x2, x3, x4) of the operator

insertion, using the regularized expression for the integral9∫
d4x

1

d4
⊥

= (2π)2

∫ ∞
0

dr r

∫ ∞
0

dhh
16[

(r2 + h2 − 1)2 + 4h2
]2 = −8π2 , (4.14)

one recovers the relation (4.8).

On the string theory side, the corresponding local dilaton operator is (cf. (4.2); here

D = 10 and Lstr = 1
2z
−2∂ax′m∂ax

′m + . . . is the AdS5 × S5 superstring Lagrangian)

V (x) = −
∫
d2σ
√
g

(
1

2
TLstr +

1

4π
R(2)

)
K(x− x′; z) , (4.15)

K(x− x′; z) = c4
z4

[z2 + (x− x′)2]4
, c4 =

Γ(∆)

π
d
2 Γ(∆− d

2)

∣∣∣
d=4,∆=4

=
6

π2
. (4.16)

K in (4.16) is the bulk-to-boundary propagator of the massless dilaton in AdS5 (∆ =

4). Integrating over the 4-dimensional boundary coordinates gives back V0 that appeared

in (4.5) (indeed,
∫
d4xK(x − x′; z) = 2π2 1

12c4 = 1). Note that the correlator in (4.11) is

to be compared to the string theory dilaton insertion on the disc with the dilaton vertex

operator defined relative to the Einstein-frame metric so that the 2-point functions of the

graviton and dilaton (and the corresponding dual operators) are decoupled.

Note that the normalized correlator (4.11) for the case of the WL corresponding to a

straight line is related to the one for the circle by a conformal transformation, and it takes

the same form as (4.11), with the same function f(λ), and d⊥ being simply the distance from

the straight line (i.e., for a straight line along the x1 direction, d⊥ =
√
x2

2 + x2
3 + x2

4) [4].

Using the AdS2 surface in the straight line case (z = σ, x0 = τ, xi = 0) we get for the

contribution of the leading classical term and the R(2) = −2 term in V in (4.15):

〈Vcl+R(2)(x)〉 = −
∫
d2σ
√
g

(
1

2
T +

1

4π
R(2)

)
K(x− x′; z) (4.17)

= −c4
1

4π
(
√
λ− 2)

∫ ∞
−∞

dτ

∫ ∞
0

dσ

σ2

σ4

(σ2 + τ2 + d2
⊥)4

= − 1

16π2 d4
⊥

(
√
λ− 2) .

Then the string theory expectation value δ
δφ(x) logZ = 〈V (x)〉 indeed matches (4.11) if one

adds in the last bracket in (4.17) an extra +1
2 coming from the 1-loop quantum fluctuations

of the bosonic and fermionic string coordinates in 〈Lstr〉, in parallel to what happened

in (4.5).

9To evaluate this integral, one may, for instance, first integrate over r, then integrate over h and finally

remove the power divergence at h = ε→ 0, i.e.
∫
d4x 1

d4⊥
= 2π3

ε
− 8π2 +O(ε)→ −8π2.
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5 Universal form of higher genus corrections

An important feature of the
√
T

gstr
prefactor in (1.4) is that it has a natural generalization

(
√
T

gstr
)χ to contributions from higher genera (1.7) (cf. also (4.10), (A.8)). Let us recall that

in the case of the SU(N) N = 4 SYM theory the exact expression for the expectation value

of the 1
2 BPS circular WL W = trPe

∫
(iA+Φ) expanded at large N and then at large λ

is [2, 3] (L1
N−1 is the Laguerre polynomial)10

〈W〉 = e
λ

8N L1
N−1(− λ

4N
) = N

∞∑
p=0

√
2

96p
√
π p!

λ
6p−3

4

N2p
e
√
λ

[
1 +O

(
1√
λ

)]
. (5.1)

It was suggested in [2] that the sum over p may be interpreted as a genus expansion on the

string side. Remarkably, we observe that once the overall factor of N is included, i.e. one

considers the expectation value of tr (. . .) rather that 1
N tr (. . .), the full dependence on N

and λ in the prefactor of e
√
λ in (5.1) combines just into (Nλ−3/4)1−2p. Rewriting (5.1) in

terms of the string tension T =
√
λ

2π and string coupling gstr = λ
4πN as defined in (1.2) we

then get

〈W〉 =

∞∑
p=0

cp

(√
T

gstr

)1−2p

e2πT
[
1 +O(T−1)

]
, cp =

1

2π p!

(
π

12

)p
, (5.2)

which is the same as (1.7) where χ = 1− 2p is the Euler number of a disk with p handles.

Furthermore, the sum that represents the coefficient of the leading large T term in (5.2)

has a simple closed expression: since
∑∞

p=0 cp z
p = 1

2π exp( π12z) we find as in ref. [2]

〈W〉 = eHW1

[
1 +O(T−1)

]
, W1 =

√
T

2πgstr
e2πT , H ≡ π

12

g2
str

T
. (5.3)

Here W1 is the leading large N or disk contribution in the SYM theory given by (1.4) (with

e−Γ̄1 =
√

2π according to (1.5)). H may be interpreted as representing a handle insertion

operator, i.e. higher order string loop corrections here simply exponentiate. Such exponen-

tiation is expected in the “dilute handle gas” approximation of thin far-separated handles

which should be relevant to the leading order in the large tension expansion considered

in (5.1), (5.2) (cf. [57–63]).

It has another interesting interpretation suggested in [64]. If one considers a circu-

lar Wilson loop in the totally symmetric rank k representation of SU(N) then for large

k, N and λ with κ = k
√
λ

4N =fixed its expectation value should be given by the exponent

exp(−SD3) of the action of the classical D3-brane solution. In the limit of 1 � k � N this

description should apply also to the case of the WL in the k-fundamental representation

described by minimal surface ending on multiply wrapped circle and here one finds [64]

10Let us note that this expression applies to the SYM theory with the U(N) gauge group; the result in

the SU(N) case is obtained by multiplying (5.1) by exp(− λ
8N2 ) [2]. This factor expressed in terms of gstr

and T in (1.2) is exp(− g2str
2T2 ) and thus is subleading compared to H in (5.3) at large T ; we therefore ignore

it here.
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that SD3 = Nf(κ) = −k
√
λ − k3λ3/2

96N2 + O(k
5λ5/2

N4 ). If one formally extrapolates this ex-

pression to k = 1, i.e. a single circle case discussed above, then one finds that it becomes

SD3 = −2πT + π
12

g2
str
T +O(

g4
str
T 3 ), i.e. exp(−SD3) reproduces precisely the exponential factor

e2πT+H in (5.3).

A similar structure (5.2) of the topological expansion should appear in the case of the
1
2 BPS circular WL in the ABJM theory which was computed from localization in [22].

According to (1.3), in that case we have
√
T

gstr
= N√

8π λ
= k√

8π
where k is the CS level so that

〈W〉 should be a series in (
√
T

gstr
)χ ∼ kχ ∼ ( 1

g
CS

)χ (cf. footnote 1). Translating the leading

and the first subleading 1/N corrections to the WL expectation value found explicitly

in [22] into our notation we get11

〈W〉 =

(
N

4πλ
+
πλ

6N
+ . . .

)
eπ
√

2λ =

(
1+

π

12

g2
str

T
+ . . .

)
W1 , W1 =

√
T√

2π gstr

e2πT . (5.4)

Here W1 is the leading disk term in 〈W〉 in the ABJM theory given by (1.4) (with Γ̄1 = 0

according to (1.5)). Thus, to this order, the genus expansion in the ABJM case has the

same universal structure as (5.2), (5.3) in the SYM case. It would be interesting to check

if the prefactor in (5.4) exponentiates as in (5.3) (e.g. using the results of [65]) and also if

there is a D2-brane description of this similar to the one in the SYM case discussed above

(cf. [66–68]).

6 Concluding remarks

As was noted below (2.8), the coefficient of the UV divergent term in (3.4) is, in fact, the

same for all minimal surfaces with disk topology, and thus the dependence of the string

partition function on the scale R or effective tension T through the
√
T factor in (3.5)

should be universal.

A check of the universality of the prefactor in (1.4) is that it applies also to the circular

WL in the k-fundamental representation dual to a minimal surface ending on k-wrapped

circle at the boundary of AdS5. In this case the classical action is Icl = −k
√
λ but the

Euler number of the minimal surface is still equal to 1 [12] so that the coefficient ζtot(0)

in (3.4), (3.5) is also 1 and thus the disk partition function is 〈W〉 ∼
√
T

gstr
e2πkT . This is

consistent with the SYM (localization) result in the k-fundamental case [3, 64, 69] given by

the k = 1 expression with
√
λ→ k

√
λ. The overall k-dependent constant that should come

from Γ̄1 in (1.4) still remains to be explained, despite several earlier attempts in [7, 9, 12, 70].

The universality of (1.4) implies, in particular, that the prefactor
√
T
gs

should cancel in

the ratio of expectation values of similar Wilson loops. In particular, this applies to the

case of 1
4 BPS latitude WL parametrized by an angle θ0. Matching with the gauge theory

11Note that we use the notation gCS ≡ 2πi
k

for what was called gs in [22] in order not to confuse it with the

type IIA string theory coupling gstr in (1.3). The leading correction in eq. (8.19) in [22] is to be multiplied

by g2
CS

according to the definition of the topological expansion in (8.1) there. Also, as already mentioned in

footnote (1), with our definition of the WL expectation value 〈W〉 = 〈tr (. . .)〉 = 1
g
CS
〈W〉loc , where 〈W〉loc

is the gauge theory localization expression of [22].
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prediction for the ratio of the latitude WL and simple circular WL was checked in the SYM

case in [13–15] and in the ABJM case in [16, 17].

Let us note that (1.4) actually requires a generalization in special cases when there are

0-modes in the internal (non-AdS) directions of AdSn×M10−n space, each producing extra

factor of
√
T (cf. (A.10)). This is what happens in the case of the 1

4 supersymmetric (θ0 =
π
2 ) latitude WL discussed in [14, 15, 71] where we then get for the disk partition function

〈W 1
4
〉 ∼
√
T

gstr
(
√
T )3 ∼ N . (6.1)

Here all λ-dependence cancels out and the finite proportionality constant should be equal

to 1, i.e. N−1〈W 1
4
〉 = 1, in agreement with [71].

A similar remark applies to the case of the 1
6 (bosonic) BPS WL [66, 67] in the ABJM

theory. According to [22] here we get instead of 〈W〉 for the 1
2 BPS WL in (1.3) (cf.

footnotes 1, 11 and eq. (5.4))

〈W 1
6
〉 =

1

gCS

〈W 1
6
〉

loc
= ieiπλ

N

4πλ

1

2

√
2λ eπ

√
2λ + . . . . (6.2)

As was argued in [66, 67] (see also [72, 73]), here the minimal surface solution is smeared

over S2 = CP 1 in CP 3 so there are two scalar 0-modes. This explains the extra factor
1
2

√
2λ = (

√
T )2 in (6.2) compared to 〈W〉 in (1.3) [22]. More generally, for contributions

from each genus p one finds [21, 22, 65] that the ratio of the 1
6 and 1

2 BPS WL’s is given

by this universal (
√
T )2 term (ignoring phase factors)

〈W 1
6
〉p

〈W〉p
= (
√
T )2 +O(T−1) . (6.3)

It would be interesting to match the precise numerical coefficient in the ratio between the
1
6 BPS and 1

2 BPS Wilson loops by carefully fixing the normalization of the two zero modes

on the string side.

Finally, let us note that while in this paper we focused on the case of 4d and 3d gauge

theories, as explained in section 2 our results also apply to string theory in AdS3×S3×T 4

with RR flux. This case corresponds to n = 3 in (1.6) (cf. (1.4), (2.21)), i.e. 〈W〉 = Zstr =
1
gstr

√
T e2πT + . . .. It would be interesting to see if this string-theory prediction can be

matched to localization calculations for Wilson loops in 2d supersymmetric gauge theory

(cf. [74, 75]).
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A Comments on tension dependence of the string partition function

In section 3 we discussed how to explain the prefactor
√
T in the one-loop string partition

function (1.4) starting with the string action (3.1) and using the static gauge expres-

sion (2.3). We emphasized that the result is sensitive to the choice of the path integral

measure, i.e. the definition of the quantum theory (which, in general, is not unique, un-

less completely fixed by symmetry requirements or extra consistency conditions). In the

appendices below we shall discuss some other approaches to derive this prefactor, which

again involve certain assumptions about the measure or regularization procedure.

A.1 T -derivative of the partition function in static gauge

Suppose we start with the string action (3.2) in terms of the rescaled (dimensionless)

coordinates so that there is an explicit factor of the effective string tension T in front of

the action with the induced AdS2 metric having radius 1. Then we would get the same

result as in (3.5) if we assume that the norm or the measure is defined so that the resulting

one-loop correction from a single scalar has the form Γ1 = 1
2 log det ∆̂ where ∆̂ = T−1∆.12

Indeed, using the ζ-function regularization with ζ(0) being the regularized total number of

eigenvalues we get 1
2 log det(T−1∆) = 1

2ζ(0) log(T−1)+ . . . = −ζ(0) log
√
T + . . .. This leads

again to (3.5) once we use that the total value of ζ(0) corresponding to the static-gauge

partition function (2.4) is ζtot(0) = 1 (see (2.8), (2.13)).

Another way to obtain the same result (which will be again based on a particular

choice of a regularization prescription) is to find the dependence of the string partition

function on the tension by first computing its derivative over T . This is closely related to

the argument appearing in the context of the “soft dilaton theorem” [44], see section 4.

Let us assume that the tension dependence of the string partition function may come

only from the factor of T in the string action (3.2) in the static gauge (i.e. in the action

for the “physical” fluctuations whose determinants are present in (2.3)), i.e. the measure

is defined so that it does not depend on T . For example, for a single scalar field

Z =

∫
[dx] exp(−I), I =

1

2
T

∫
d2σ
√
g x∆(m2)x , ∆(m2) = −∇2 +m2 ,

(A.1)

T
∂

∂T
logZ = −〈I〉 , 〈I〉 =

∫
d2σ
√
g [∆G(m2)(σ, σ

′)]σ=σ′

=

∫
d2σ
√
g δ(m2)(σ, σ), (A.2)

where 〈I〉 = Z−1
∫

[dx] I exp(−I), G(m2)(σ, σ
′) = 〈σ|∆−1

(m2)
|σ′〉 is the Green’s function and

δ(m2)(σ, σ) is a regularized value of the bosonic delta-function at the coinciding points. Let

12Explicitly, (x, ∆̂x) = T
∫
d2σ
√
g x∆̂x =

∫
d2σ
√
g x∆x, where x are rescaled fluctuations. In general, one

can of course move T -dependence from the action to the measure by a field redefinition (taking into account

the resulting regularized Jacobian of the transformation). If the path integral measure is
∏
σ

µ√
2π
dx(σ) and

the action is simply 1
2

∫
d2σ
√
g x∆x then Z = (

∏
n
λn
µ2 )−1/2 ∼ µζ(0) where λn are the eigenvalues of ∆ [42].

If ζ(0) is non-zero the result is thus sensitive to the definition of the measure.
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us use the heat-kernel cutoff, i.e. assume that

δ(m2)(σ, σ) = 〈σ|e−ε∆−1

(m2) |σ〉 =
1

4π

[
Λ2 +

1

6
R(2) −m2

]
, ε ≡ Λ−2 → 0 . (A.3)

The expectation value of the action corresponding to the full static-gauge expression (2.3)

is then

〈I〉 =
1

2

∫
d2σ
√
g
{

(n− 2)[∆(2)G(2)(σ, σ
′)]σ=σ′ + (10− n)[∆(0)G(0)(σ, σ

′)]σ=σ′

− (2n− 2)[Df
(1)G

f
(1)(σ, σ

′)]σ=σ′ − (10− 2n)[Df
(0)G

f
(0)(σ, σ

′)]σ=σ′

}
,

=
1

2

∫
d2σ
√
g
{

(n− 2)δ(2)(σ, σ) + (10− n)δ(0)(σ, σ) (A.4)

− (2n− 2)δf(1)(σ, σ)− (10− 2n)δf(0)(σ, σ)
}
,

where Df is the fermionic 1st order operator and Gf and δf stand for the corresponding

Green’s function and δ-function.

A key next step is to assume a special “2d supersymmetric” regularization in which

the bosonic and fermionic Green’s functions and thus the corresponding regularized delta-

functions are related to each other as13

δf(m)(σ, σ) =
1

2

[
δ(m2−m)(σ, σ) + δ(m2+m)(σ, σ)

]
. (A.5)

Then (A.4) reduces simply to

〈I〉 =
1

2

∫
d2σ
√
g
[
δ(0)(σ, σ)− δ(2)(σ, σ)

]
=

1

2
× 1

2π
× VAdS2 = −1

2
, (A.6)

where we used (A.3).14

The relation T ∂
∂T logZ = −〈I〉 in (A.2) implies once again that

Z ∼
√
T . (A.7)

Let us note that the result for the expectation value of the action (A.6) should be more

universal than a particular prescription used above. The integrand in (A.6) should be in

13This is an effective consequence of the fact that the 2d supersymmetric Ward identity (cf. [76, 77])

relates a fermion of mass m > 0 to a boson of mass m2−m (e.g. in a special regularization the trace of the

Green’s function for a single 2d fermion Gf
(m) is related to 2mG(m2−m) [77]). In the present case we have

half of the massive fermions with mass m = 1 and the other half — with mass m = −1. Alternatively, one

may use a particular representation for Gf
(m) (for m > 0) as Gf

(m)(σ, σ
′) = [(iγa∂a + m)G(m2−m)]S(σ, σ′)

implying that one has Df
(m)G

f
(1)(σ, σ

′) = δ(m2−m)(σ, σ
′)S(σ, σ′).

14Let us note that the use of (A.5) may be interpreted as a specific regularization prescription for the

fermions which is different from the heat-kernel or ζ-function one applied to the squared fermionic operator

∆f

(m2)
= (Df

(m))
2 = −∇2 + 1

4
R(2) + m2 in (2.3), (2.7). Indeed, if we assume that δf(m)(σ, σ) in (A.5) is

defined as in (A.3), i.e. δf(m)(σ, σ) = 〈σ|e−ε∆f |σ〉 = 1
4π

(
Λ2 + 1

6
R(2)− 1

4
R(2)−m2

)
then we find that 〈I〉 = + 1

2

which is consistent with the ζtot(0) = 1 value in (2.8), (2.13), i.e. Z ∼
∏

[det(T∆)]−1/2 ∼ T−1/2. In this

regularization the l.h.s. of (A.5) is 2(Λ2+ 1
6
R(2))− 1

2
R(2)−2m2 while the r.h.s. is 2(Λ2+ 1

6
R(2))− 1

2
R(2)−2m2

so the difference − 1
2
R(2) may be attributed to the presence of − 1

4
R(2) term in the squared fermionic operator

which is thus effectively omitted in the prescription (A.5).
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general δ(0)(σ, σ)− δ(2)(σ, σ)→ − 1
4πR

(2). In the case of a more general topology of a disk

with p handles with the Euler number χ = 1− 2p we should then find that

〈I〉 = −1

2
χ , Z ∼ (

√
T )χ , (A.8)

which is in agreement with (1.7), (5.2).

A.2 T -dependence from zero modes in conformal gauge

The conformal gauge expression for the string partition function contains, in addition to

the ratio of determinants in Z = e−Γ1 in (2.3), also an extra factor [6, 28]

Zc = Ω−1

[
det′∆gh

det ∆long

]1/2

. (A.9)

Here Ω is the SL(2, R) Mobius group volume. The 2-derivative ghost operator ∆gh ab

and the operator on the two “longitudinal” fluctuations ∆long ab = −(∇2)ab − 1
2R

(2)gab
have the same structure (and the same “mixed” boundary conditions) so their non-zero-

mode contributions should effectively cancel each other. The integral over the collective

coordinates of the three 0-modes of ∆long (or conformal Killing vectors) which is implicit

in (A.9) should cancel against the Mobius volume factor. As a result, one may assume that

Zc in (A.9) is effectively equal to 1, thus getting back to the static gauge partition function

expression (2.3).

However, this depends on the definition of path integral measure. An alternative pos-

sibility compared to the one in the static gauge discussed in the main text and section A.1

is to assume that in the conformal gauge the measure is defined so that the path integral

over all non-zero modes does not produce any T -dependent factor, while the presence of

the
√
T factor is (1.4) is due to the normalization of the 0-modes, i.e. of the collective co-

ordinate integral implicit in (A.9).15 Each bosonic 0-mode absent in the fluctuation action

then contributes a measure factor ∼ ( T2π )1/2, leading to

Z ∼ (
√
T )n0 , (A.10)

where n0 is the total number of the 0-modes.

Equivalently, this result will follow assuming that one uses a regularization (e.g., di-

mensional one) in which the delta-functions at coinciding points vanish, δ(2)(σ, σ) = 0 and

thus the factors of T in the measure and in front of the action do not contribute, cf. (A.2),

apart from the 0-mode contribution.

It is useful to recall that in the familiar case of the open strings with free ends where the

bosonic coordinates xm (m = 1, . . . , D) are subject to the Neumann boundary conditions

one finds D constant zero modes and thus an overall factor of TD/2 in the disk path integral.

The same result can be found also using T ∂
∂T argument by using that the delta-function

15As was already mentioned above, this corresponds to a specific choice of the measure factors implying

that the normalization of the gaussian path integral is 1, i.e.
∫

[dx] exp[− 1
2~ (x, x)] = 1, with [dx] =

∏
σ
dx(σ)√

2π~ .

Then the factor of string tension T = ~−1 should appear not only in the action but also in the measure so

that it cancels out in the integrals for all modes with non-zero eigenvalues.
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appearing in (A.2) is the “projected” one, i.e. δ(2)(σ, σ) (set to 0) minus the trace of the

projector to the 0-mode subspace (see, e.g., [44, 78]).

In the present WL case of path integral with the Dirichlet-type (or fixed-contour)

boundary conditions one could expect to have no 0-modes. However, as the two “longi-

tudinal” string coordinates are subject to “mixed” Dirichlet/Neumann b.c. [28, 36, 79–81]

(motivated by the requirement of preservation of the reparametrization invariance of the

boundary contour) there is, in particular, a special 0-mode corresponding to a constant

shift of a point on the boundary circle. There are, in fact, two more 0-modes of the

longitudinal operator (see appendix B). As already mentioned above, these three bosonic

0-modes are direct counterparts of the conformal Killing vectors associated to the SL(2, R)

Mobius symmetry on the disk surviving in the conformal gauge.

Thus if the path integral measure is normalized so that the integral over non-zero

modes does not produce any T -dependence we then get a factor Z ∼ (
√
T )3 associated to

the n0 = 3 “longitudinal” 0-modes on the disk. To reduce the effective number of 0-modes

to n0 = 1 (required to match the
√
T factor in (1.4)) one may contemplate the following

possibilities:

(i) assume that 2 longitudinal 0-modes are lifted due to some boundary contributions to

the string action leaving only one translational mode (corresponding to a constant

shift on the boundary circle);16

(ii) assume that the GS fermion contribution effectively conspires to mimic the NSR

contribution on the disk with nf = 2 fermionic super-Mobius 0-modes,17 producing

the effective number n0 = nb−nf = 3−2 = 1. A relation to the NSR formulation with

manifest 2d supersymmetry may of course be expected and was mentioned already in

the discussion of the static gauge approach above. Note also that the super-Mobius

volume is finite [86] so it is not necessary to cancel it explicitly.

B Conformal Killing vectors as longitudinal zero modes

Here we shall record the expressions for the conformal gauge ghost zero-modes or conformal

Killing vectors (CKV) on a flat disk D2 and on a euclidean hyperbolic space H2 = AdS2

16This, at first, may look unnatural as then we would not have a cancellation between the integral over

the corresponding collective coordinates and the Mobius volume factor in the path integral. Yet, that may

not be a problem as the Mobius volume on the disk may be regularized to a finite value [82, 83] (similarly

to how this is done for the AdS2 volume).
17To compare, in the case of the one-loop instanton partition function in super YM theory (see [84, 85])

the contributions of all non-zero modes cancel (i.e. ζtot(0) = 0) and as a result the UV cutoff dependence

(and thus one-loop beta function) is controlled just by the 0-modes — the total Seeley coefficient is B4 =

ζtot(0) +ntot = nb− 1
2
nf . At the same time, the dependence on the inverse gauge coupling 1/g2

YM
(which is

the analog of string tension T in our case) is controlled by the coefficient nb − nf . Note, however, that the

prescription for gYM dependence becomes unambiguous only in physical correlation functions with external

fermionic legs saturating the fermionic 0-mode integral [85].
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with the metric18

ds2 = e2ρ(dr2 + r2dφ2) , (e2ρ)D2 = 1 , (e2ρ)H2 =
4

(1− r2)2
. (B.1)

The CKV are also the zero-modes of the longitudinal Laplacian in (A.9) which is equivalent

to the 2nd derivative conformal ghost operator [28]. The defining relation ∇aξb +∇bξa −
gab∇cξc = 0 does not depend on the conformal factor ρ when written in terms of the

contravariant components ξa: ∂aξ
b + ∂bξ

b − δab∂cξc = 0. The expressions for the three

Killing vectors ξa corresponding to the SL(2, R) transformations on the plane are (here

a, b1, b2 are real parameters)

z′ = eia
z + b

1 + b∗z
, b = b1 + ib2,

δz = ξ1 + iξ2 = b + ia z − b∗z2, z = reiφ , (B.2)

ξ1 = b1 − a r sinφ− r2(b1 cos 2φ+ b2 sin 2φ) ,

ξ2 = b2 + a r cosφ− r2(−b2 cos 2φ+ b1 sin 2φ)

ξr = cosφ ξ1 + sinφ ξ2,

ξφ = r−1(− sinφ ξ1 + cosφ ξ2)

ξr = (1− r2)(b1 cosφ+ b2 sinφ) ,

ξφ = a + (r + r−1)(b2 cosφ− b1 sinφ) . (B.3)

Then the standard conformal Killing vectors on the disk satisfy mixed boundary conditions:

ξr = 0 (normal component) and ∂rξ
φ = 0 (normal derivative of tangential component)

vanish at the r = 1 boundary. Once we consider a metric with a non-trivial conformal

factor these conditions are modified to:

gab = nanb + tatb , ξn
∣∣
∂

= 0, (∂n −K)ξt
∣∣
∂

= 0 , K = ∇ana . (B.4)

The mixed boundary conditions were discussed in [79, 80] and [28]. The condition (∂n −
K)ξt

∣∣
∂

= 0 was used in [81] (and implicitly in [36]).

The r, φ components of na and ta are: na = eρ{1, 0}, ta = eρ{0, r} so that

ξn = naξ
a = eρξr , ξt = taξ

a = reρξφ , (B.5)

∂n = e−ρ∂r , K = e−2ρr−1∂r(re
ρ) , (∂n −K)ξt = r∂rξ

φ . (B.6)

Note that for a flat disk K = r−1 and χ = 1
4π (
∫
R+ 2

∫
∂ K) = 1.

Thus ξφ in (B.3) satisfies (∂n − K)ξt
∣∣
∂

= 0 at r = 1 but there is an issue with

ξn
∣∣
∂

= 0: eρξr = 2
1−r2 × (1 − r2)(b1 cosφ + b2 sinφ) so ξn is a non-zero function at the

boundary. This suggests that either we should set b1, b2 = 0 or the boundary condition

ξn
∣∣
∂

= 0 is to be modified. One option is to define it with the flat metric as in (2.15)

18Alternatively, for the AdS2 metric we have ds2 = (sinh2 s)−1(ds2 + dφ2), r = e−s. Another form

of the AdS2 metric that follows from AdS3 metric ds2 = z−2(dr2 + r2dφ2 + dz2) with z =
√

1− r2 is

ds2 = dr2

(1−r2)2
+ r2dφ2

1−r2
is related to the above one via r = 1

cosh s
= 2r

1+r2
.
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in [28]: ñaξ
a|∂ = 0 where ña is the normal in flat metric. This condition just says that

the boundary condition xm|∂ = cm(φ) should be preserved under diffeomorphisms up to a

boundary reparametrization, so δxm = ξa∂ax
m should vanish at the boundary for ξa along

the normal direction (the definition of normal formally depends on the metric, but here all

we need is ξr
∣∣
∂

= 0).

The norms of CKV depend on the conformal factor:19

|ξ|2 =

∫
d2z
√
g gab ξ

aξb =

∫ 2π

0
dφ

∫ 1

0
dr r e4ρ ξaξa . (B.7)

For the three CKV proportional to a, b1, b2 in (B.3) we have (ξ = {ξr, ξφ}): ξ(a) = a
{

0, 1
}
,

ξ(b1) = b1

{
(1 − r2) cosφ, −(r + r−1) sinφ

}
, ξ(b2) = b2

{
(1 − r2) sinφ, (r + r−1) cosφ

}
.

Thus for ξaξa in (B.7) we get: ξ(a) · ξ(a) = a2r2, ξ(b1) · ξ(b1) = b2
1[2(1 + r4) − 2r2 cos 2φ],

ξ(b2) · ξ(b2) = b2
1[2(1 + r4) + 2r2 cos 2φ], so that these vectors have a finite norm for a flat

disk (e2ρ = 1) or half-sphere (e2ρ = 4(1 + r2)−2) but their norm formally diverges for H2

(e2ρ = 4(1 − r2)−2). One option then is to regularize the norms in the same way as we

do for the H2 volume — introduce a cutoff and drop power divergences. We find (with a

cutoff at r = e−ε) that for the H2 volume
∫ e−ε

0 dr 4r
(1−r2)2 = 1

ε − 1 + . . . while for the norms∫ e−ε
0 dr 42r3

(1−r2)4 = 4
3ε3
− 8

3ε + 8
3 + . . .,

∫ e−ε
0 dr 422r(1+r4)

(1−r2)4 = 16
3ε3

+ 64
3ε −

64
3 + . . ..

As a side remark, let us comment on the possibility of having zero modes for the

transverse m2 = 2 fluctuation operator in the AdS directions in (2.2), (2.4). If we focus

on just a single transverse fluctuation within AdS3, then one can formally find 3 zero

modes related to the fact that the string solution breaks the SO(3, 1) isometries of AdS3

down to SO(2, 1). Explicitly, taking the Poincaré coordinates on AdS3 with metric ds2 =
1
z2 (dz2 + dr2 + r2dφ2), the general AdS2 string solution ending on a circle (of radius α and

center at (β1, β2)) at the boundary can be written as

z2 + (r cosφ− β1)2 + (r cosφ− β2)2 = α2 . (B.8)

The parameters β1, β2 and α correspond to broken translations and dilatation. The zero

modes of the transverse fluctuation operator can be obtained as usual by taking derivatives

of the classical solution with respect to these parameters. Expressing the result in the

coordinates where the induced worldsheet metric is ds2 = 1
sinh2 σ

(dσ2 + dτ2) (0 < τ < 2π,

σ > 0), the 3 zero modes are found to be

ψ(α) = cothσ , ψ(β1) =
cos τ

sinhσ
, ψ(β2) =

sin τ

sinhσ
. (B.9)

One can verify that these indeed satisfy(
∂2

∂σ2
+

∂2

∂τ2
− 2

sinh2 σ

)
ψ(α,β1,β2) = 0 . (B.10)

19The definition of the norm for the diffeomorphism vectors via |ξ|2 =
∫
d2z
√
g gab ξ

aξb is a natural one;

while it involves the conformal factor it is conformal factor dependence in the corresponding determinants

that should cancel in the critical dimension. This definition is different from the one used in [36] but agrees

with the one of [81, 87].
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However, these zero modes are not normalizable. Moreover, they do not satisfy the Dirich-

let boundary conditions at σ = 0, as required for the transverse fluctuations, so they should

not be relevant for our problem. Note also that, when considering all of the n − 2 trans-

verse directions in AdSn, there would be, in fact, 3(n − 2) such zero modes (i.e., 9 in the

AdS5 case).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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