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Abstract—Sybil attacks are a fundamental threat to the secu-
rity of distributed systems. Recently, there has been a growing
interest in leveraging social networks to mitigate Sybil attacks.
However, the existing approaches suffer from one or more
drawbacks, including bootstrapping from either only known
benign or known Sybil nodes, failing to tolerate noise in their
prior knowledge about known benign or Sybil nodes, and not
being scalable.

In this work, we aim to overcome these drawbacks. Towards
this goal, we introduce SybilBelief, a semi-supervised learning
framework, to detect Sybil nodes. SybilBelief takes a social
network of the nodes in the system, a small set of known benign
nodes, and, optionally, a small set of known Sybils as input. Then
SybilBelief propagates the label information from the known
benign and/or Sybil nodes to the remaining nodes in the system.

We evaluate SybilBelief using both synthetic and real world
social network topologies. We show that SybilBelief is able to
accurately identify Sybil nodes with low false positive rates
and low false negative rates. SybilBelief is resilient to noise
in our prior knowledge about known benign and Sybil nodes.
Moreover, SybilBelief performs orders of magnitudes better than
existing Sybil classification mechanisms and significantly better
than existing Sybil ranking mechanisms.

Index Terms—Sybil detection, Semi-supervised Learning,
Markov Random Fields, Belief Propagation.

I. INTRODUCTION

Sybil attacks, where a single entity emulates the behavior
of multiple users, form a fundamental threat to the security
of distributed systems [1]. Example systems include peer-to-
peer networks, email, reputation systems, and online social
networks. For instance, in 2012 it was reported that 83 million
out of 900 million Facebook accounts are Sybils [2]. Sybil
accounts in online social networks are used for criminal
activities such as spreading spam or malware [3], stealing
other users’ private information [4], [5], and manipulating web
search results via “+1” or “like” clicks [6].

Traditionally, Sybil defenses require users to present trusted
identities issued by certification authorities. However, such
approaches violate the open nature that underlies the success
of these distributed systems [7]. Recently, there has been a
growing interest in leveraging social networks to mitigate
Sybil attacks [7]–[15]. These schemes are based on the ob-
servation that, although an attacker can create arbitrary Sybil
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users and social connections among themselves, he or she
can only establish a limited number of social connections to
benign users. As a result, Sybil users tend to form a community
structure among themselves, which enables a large number of
Sybil users to integrate into the system. Note that it is crucial
to obtain social connections that represent trust relationships
between users, otherwise the structure-based Sybil detection
mechanisms have limited detection accuracy. See Section II-A
for more discussions.

However, existing structure-based approaches suffer from
one or more of the following drawbacks: (1) they can bootstrap
from either only known benign [8]–[10], [12] or known Sybil
nodes [14], limiting their detection accuracy (see Section VI),
(2) they cannot tolerate noise in their prior knowledge about
known benign [13] or Sybil nodes [14], and (3) they are not
scalable [7]–[12].

To overcome these drawbacks, we recast the problem of
finding Sybil users as a semi-supervised learning problem,
where the goal is to propagate reputations from a small set
of known benign and/or Sybil users to other users along
the social connections between them. More specifically, we
first associate a binary random variable with each user in the
system; such random variable represents the label (i.e., benign
or Sybil) of the user. Second, we model the social network
between users in the system as a pairwise Markov Random
Field, which defines a joint probability distribution for these
binary random variables. Third, given a set of known benign
and/or Sybil users, we infer the posterior probability of a user
being benign, which is treated as the reputation of the user. For
efficient inference of the posterior probability, we couple our
framework with Loopy Belief Propagation [16], an iterative
algorithm for inference on probabilistic graphical models.

We extensively evaluate the influence of various factors
including parameter settings in the SybilBelief, the number
of labels, and label noises on the performance of SybilBelief.
For instance, we find that SybilBelief is relatively robust to
parameter settings, SybilBelief requires one label per commu-
nity, and SybilBelief can tolerate 49% of labels to be incorrect
in some cases. In addition, we compare SybilBelief with state-
of-the-art Sybil classification and ranking approaches on real-
world social network topologies. Our results demonstrate that
SybilBelief performs orders of magnitude better than previ-
ous Sybil classification mechanisms and significantly better
than previous Sybil ranking mechanisms. Finally, SybilBelief
proves to be more resilient to noise in our prior knowledge
about known benign users and known Sybil users.

In summary, our work makes the following contributions:
• We propose SybilBelief, a semi-supervised learning
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Fig. 1: The propagation in SybilBelief. Given a set of labeled nodes,
we want to infer the labels of the remaining nodes. SybilBelief
iteratively propagates the label information from the labeled nodes
to their neighbors.

framework, to perform both Sybil classification and Sybil
ranking. SybilBelief overcomes a number of drawbacks
of previous work.

• We extensively evaluate the impact of various factors
including parameter settings in SybilBelief, the number of
labels, and label noise on the performance of SybilBelief
using synthetic social networks. For instance, we find
that SybilBelief is relatively robust to parameter settings,
SybilBelief requires one label per community, and Sybil-
Belief can tolerate 49% of labels to be incorrect in some
cases.

• We demonstrate, via evaluations on real-world social
networks, that SybilBelief performs orders of magnitude
better than previous Sybil classification mechanisms and
significantly better than previous Sybil ranking mecha-
nisms. Moreover, SybilBelief is more resilient to label
noise, i.e., partially corrupted prior knowledge about
known benign users and known Sybil users.

II. PROBLEM DEFINITION

We formally define the Sybil detection problem. Specifi-
cally, we first introduce the social network model. Then we
introduce a few design goals.

A. Social Network Model

Let us consider an undirected social network G = (V,E),
where a node v ∈ V represents a user in the system and an
edge (u, v) ∈ E indicates that the users u ∈ V and v ∈ V are
socially connected. In an ideal setting, G represents a weighted
network of trust relationships between users, where the edge
weights represent the levels of trust between users [17]. Each
node is either benign or Sybil.

Figure 1 illustrates a Sybil attack. We denote the subnetwork
including the benign nodes and the edges between them as
the benign region, denote the subnetwork including the Sybils
and edges between them as the Sybil region, and denote the
edges between the two regions as attack edges. Note that the
benign region could consist of multiple communities and we
will evaluate their impact on Sybil detections in Section V.

An attacker could obtain attack edges via spoofing benign
nodes to link to Sybils or compromising benign nodes, which
turns the edges between the compromised benign nodes and
other benign nodes to attack edges. Compromised benign

nodes are treated as Sybils, and they could be those whose
credentials are available to the attacker or front peers [18]
who collude with Sybils.

One fundamental assumption underlying the structure-based
Sybil detections is that the benign region and the Sybil region
are sparsely connected (i.e., the number of attack edges is
small), compared to the connections among themselves. We
notice that this assumption is equivalent to assuming that the
social networks follow homophily, i.e., two linked nodes tend
to have the same label. For an extreme example, if the benign
region and the Sybil region are isolated from each other, then
the network has perfect homophily, i.e., every two linked
nodes have the same label. As we will see in Section III,
the concept of homophily can better help us incorporate both
known benign and Sybil nodes because it explicitly models
labels of nodes.

Note that, it is crucial to obtain social networks that satisfy
the homophily assumption. Otherwise the detection accuracies
of structure-based approaches are limited. For instance, Yang
et al. [19] showed that the friendship network in RenRen, the
largest online social networking site in China, does not satisfy
this assumption, and thus structure-based approaches should
not be applied to such friendship networks. However, Cao et
al. [13] found that the invitation-based friendship network in
Tuenti, the leading online social network in Spain, satisfies the
homophily assumption, and thus their Sybil ranking mecha-
nism achieves reasonably good performance. In general, online
social network operators can obtain social networks that satisfy
homophily via two methods. One method is to approximate
trust relationships between users through looking into user
interactions [20], inferring tie strengths [21], and asking users
to rate their social contacts [22]. The other method is to
preprocess the networks so that they are suitable for structure-
based approaches. In particular, operators could first detect
and remove compromised benign nodes (e.g., front peers) [18],
[23], which decreases the number of attack edges and increases
the homophily. Moreover, Alvisi et al. [15] showed that some
simple detectors might enforce the social networks to be
suitable for structure-based Sybil defenses if the attack edges
are established randomly [15].

B. Design Goals

Our goal is to detect Sybils in a system via taking a social
network between the nodes in the system, a small set of known
benign nodes, and (optionally) a small set of known Sybils as
input. Specifically, we have the following design goals.

1. Sybil classification/ranking: Our goal is to design a
mechanism that can either classify nodes into benign and Sybil
or that can rank all nodes in descending order of being benign.

2. Incorporating known labels: In many settings, we already
know that some users are benign and that some users are Sybil.
For instance, in Twitter, verified users can be treated as known
benign labels and users spreading spam or malware can be
treated as known Sybil labels. To improve overall accuracy
of the system, the mechanism should have the ability to
incorporate information about both known benign and known
Sybil labels. It is important that the mechanism should not
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require information about known Sybil labels, but if such
information is available, then it should have the ability to use
it. This is because in some scenarios, for example when none
of the Sybils have performed an attack yet, we might not have
known information about any Sybil node.

3. Tolerating label noise: While incorporating information
about known benign or known Sybil labels, it is important
that the mechanism is resilient to noise in our prior knowledge
about these labels. For example, an adversary could compro-
mise the account of a known benign user, or could get a Sybil
user whitelisted. We target a mechanism that is resilient when
a minority fraction of known labels are incorrect.

4. Scalability: Many distributed systems (e.g., online social
networks, reputation systems) have hundreds of millions of
users and billions of edges. Thus, for real world applicability,
the computational complexity of the mechanism should be low,
and the mechanism should also be parallelizable.

Requirements 2, 3, and 4 distinguish our framework from
prior work. Sybil classification approaches such as Sybil-
Limit [9] and SybilInfer [10] do not incorporate information
about known Sybil labels (limiting detection accuracy, as
shown in Section VI), are not resilient to label noise1, and are
not scalable. Sybil ranking approaches such as SybilRank [13]
and CIA [14] incorporate information about either known
benign or known Sybil labels, but not both. They are also
not resilient to label noise.

III. SYBILBELIEF MODEL

We introduce our approach SybilBelief, which is scalable,
tolerant to label noise, and able to incorporate both known
benign labels and Sybil labels.

A. Model Overview

To quantify the homophily in social networks, we first
propose a new probabilistic local rule which determines the
reputation score for a node v via aggregating its neighbors’
label information. Then, we demonstrate that this local rule
can be captured by modeling social networks as Markov
Random Fields (MRFs). Specifically, each node in the network
is associated with a binary random variable whose state could
either be benign or Sybil, and MRFs define a joint probability
distribution over all such random variables. Given a set of
known benign labels and/or known Sybil labels, the posterior
probabilities that nodes are benign are used to classify or
rank them. We adopt Loopy Belief Propagation [16], [24]
to approximate the posterior probabilities. Figure 1 illustrates
how SybilBelief iteratively propagates the beliefs/reputations
from the labeled nodes to the remaining ones.

B. Our Probabilistic Local Rule

Recall that we have a social network G = (V,E) of the
nodes in the system. Each node can have two states, i.e.,
benign or Sybil. Thus, we associate a binary random variable
xv ∈ {−1, 1} with each node. xv = +1 means that node v is a

1These Sybil classification mechanisms only incorporate one labeled benign
node, which makes them not resilient to label noise.

benign node and xv = −1 indicates that node v is Sybil. In the
following, we use xA to represent the set of random variables
associated with the nodes in the set A. Moreover, we use x̄A
to denote the observed values of these random variables.

There might exist some prior information about a node
v independently from all other nodes in the system. Such
prior information could be the content generated by v or its
behavior. We model the prior belief of v being benign as
follows:

P (xv = +1) =
1

1 + exp(−hv)
, (1)

where hv quantifies the prior information about v. More
specifically, hv > 0 encodes the scenario in which v is more
likely to be benign; hv < 0 encodes the opposite scenario;
hv = 0 means prior information is not helpful to determine
v’s state.

We now introduce Γv = {u|(u, v) ∈ E}, the set of v’s
neighbors in the social network, and their respective states
x̄Γv

. When these states are known, the probability of v to be
benign is modeled as

P (xv = +1|x̄Γv
) =

1

1 + exp(−
∑

u∈Γv
Juvx̄u − hv)

, (2)

where Juv is the coupling strength between u and v. Specif-
ically, Juv > 0 means u and v tend to have the same state;
Juv < 0 indicates u and v tend to have opposite states; and
Juv = 0 indicates that there is no coupling between them.
In practice, these coupling strengths can encode trust levels
between nodes.

Note that our local rule in Equation 2 incorporates the
homophily assumption via setting Juv > 0.

C. A Pairwise Markov Random Field

We find that the probabilistic local rule introduced in the
previous section can be applied by modeling the social network
as a pairwise Markov Random Field (MRF). A MRF defines
a joint probability distribution for binary random variables
associated with all the nodes in the network. Specifically,
a MRF is specified with a node potential for each node v,
which incorporates prior knowledge about v, and with an edge
potential for each edge (u, v), which represents correlations
between u and v. In the context of Sybil detection, we define
a node potential φv(xv) for the node v as

φv(xv) :=

{
θv if xv = 1

1− θv if xv = −1

and an edge potential ϕuv(xu, xv) for the edge (u, v) as

ϕuv(xu, xv) :=

{
wuv if xuxv = 1

1− wuv if xuxv = −1 ,

where θv :=(1+exp{−hv})−1 and wuv :=(1+exp{−Juv})−1.
Then, the following MRF satisfies the probabilistic local rule.

P (xV ) =
1

Z

∏
v∈V

φv(xv)
∏

(u,v)∈E

ϕuv(xu, xv) ,
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where Z =
∑

xV

∏
v∈V φv(xv)

∏
(u,v)∈E ϕuv(xu, xv) is

called the partition function and normalizes the probabilities.
The node potential φv(xv) incorporates our prior knowledge

about node v. Specifically, setting θv > 0.5 assigns a higher
probability to node v of being benign than Sybil. Setting
θv < 0.5 models the opposite and θv = 0.5 is indifferent
between the two states. This is the mechanism through which
our framework can incorporate given benign or Sybil labels.

The edge potential ϕuv(xu, xv) encodes the coupling
strength of two linked nodes u and v. The larger wuv is, the
stronger the model favors u and v to have the same state. More
precisely, wuv > 0.5 means connected nodes tend to have the
same state; wuv < 0.5 means connected nodes tend to have
opposite states; wuv = 0.5 encodes the scenario where there
is no coupling between u and v. Note that setting wuv > 0.5
encodes our homophily assumption.

D. Detecting Sybils

First, we modify the above MRF to incorporate known
labels. Then we use the modified model to perform both Sybil
classification and Sybil ranking.

Leveraging given labels: Suppose we observe states for a set
of nodes, and let us denote them as L ⊆ V . We use these labels
to set the corresponding parameters in the MRF as follows.
For any unlabeled node v, i.e., v /∈ L, we set θv = 0.5.
Moreover, our inference model (i.e., Equation 4) does not rely
on the prior beliefs of those labeled nodes. So we can set θv
to be any positive value, where v ∈ L. The coupling strength
parameter is set as wuv = w > 0.5 for any edge (u, v) to
model the homophily assumption2.

To be convenient in our later analysis, we define evidence
potentials using known labels as follows:

φLv (xv) =

{
φv(xv)δxvx̄v if v ∈ L
φv(xv) if v /∈ L ,

(3)

where x̄v is the known label of node v, and δxvx̄v
is the

Kronecker delta function, i.e., δxvx̄v
= 1 if xv = x̄v , otherwise

δxvx̄v
= 0.

In our modified model, given the labeled node set L, we can
compute the posterior distribution for each unlabeled node v.
Specifically, we have

P (xv|x̄L) =
∑
xV/v

P (xV |x̄L) (4)

=
1

ZL

∑
xV/v

∏
v∈V

φLv (xv)
∏

(u,v)∈E

ϕuv(xu, xv)

The posterior probabilities P (xv = +1|x̄L) that v is benign
given observed nodes L are used to classify or rank them.

Sybil classification: We map the Sybil classification problem
as the following inference problem.

yv = argmax
i∈{−1,1}

P (xv = i|x̄L)

2In principle, the coupling strength parameters can incorporate the trust
levels between nodes, and thus they can be different for different edges.

where yv is the inferred label of v, i.e., yv = 1 indicates that
v is benign, otherwise v is Sybil.

Sybil ranking: We use the posterior probabilities P (xv =
+1|x̄L) to rank all the unlabeled nodes.

Boosting: We use a boosting strategy for our algorithm if
either only labeled benign nodes or only labeled Sybil nodes
are given. Since both cases are algorithmically equivalent, we
take the first case as an example to illustrate our strategy.

We first sample some nodes uniformly at random from the
entire system, and we treat them as labeled Sybil nodes. Then
we compute the posterior distribution of every unlabeled node.
In each such process, we get a posterior distribution for every
node. Furthermore, we repeat this process K times. Thus, we
get K posterior distributions for every node, which are denoted
as Pi(xv|x̄Li), where i = 1, 2, · · · ,K. We aggregate the K
posterior distributions for every node as follows:

P (xv = −1|x̄L) = max
i
Pi(xv = −1|x̄Li)

P (xv = +1|x̄L) = 1− P (xv = −1|x̄L)

The aggregated posterior distributions are then used to
classify or rank nodes. This boosting strategy works because
our model can update prior beliefs and therefore is robust to
label noise (see Section VI and V). In each boosting trial, if
some of the sampled nodes are true Sybil nodes, then this trial
can detect a subset of Sybil nodes. Due to the robustness to
label noise, even if some sampled nodes are actually benign,
the propagation of Sybil beliefs among the benign region is
limited once the number of such sampled nodes is smaller than
the number of labeled benign nodes. Thus in our experiments,
we limit the number of sampled Sybil nodes in the boosting
process by the number of labeled benign nodes.

IV. SYBILBELIEF LEARNING ALGORITHM

Our Sybil classification and ranking mechanisms rely on the
computation of the posterior distributions given in Equation 4.
Generally, there are two major ways to infer such posterior
distributions: sampling and variational inference. We adopt
variational inference to learn the posterior distributions since
it is more scalable than sampling approaches such as Gibbs
sampling. Specifically, we adopt Loopy Belief Propagation
(LBP) to calculate the posterior distributions for each node.

Loopy Belief Propagation (LBP) [16]: The basic step in LBP
is to pass messages between neighboring nodes in the system.
Message m(t)

uv(xv) sent from u to v in the tth iteration is

m(t)
uv(xv) =

∑
xu

φLu (xu)ϕuv(xu, xv)
∏

k∈Γ(u)/v

m
(t−1)
ku (xu)

Here, Γ(u)/v is the set of all neighbors of u, except the
receiver node v. This encodes that each node forwards a
product over incoming messages of the last iteration and
adapts this message to the respective receiver based on the
coupling strength with the receiver.

For social networks without loops (i.e., for trees), LBP is
guaranteed to converge and to compute the exact posterior
distribution. For networks with loops, LBP approximates the
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posterior probability distribution without convergence guaran-
tees. However, in practical applications and benchmarks in the
machine learning literature [24], LBP has demonstrated good
results and is, today, a widely used technique.
Stopping condition: The message passing iterations stop
when the changes of messages become negligible (e.g., L1
distance of changes becomes smaller than 10−3) or the number
of iterations exceeds a predefined threshold. After stopping, we
estimate the posterior probability distribution P (xv|x̄L) by

P (xv|x̄L) ∝ φLv (xv)
∏

k∈Γ(v)

m
(t)
kv (xv)

Scalability: The complexity of one LBP iteration is O(m),
where m is the number of edges. So the total complexity is
O(m ∗ d), where d is the number of LBP iterations. Note that
social networks are often sparse graphs [25], [26]. Thus we
have O(m ∗ d) = O(n ∗ d), where n is the number of nodes.
Moreover, we find that setting d to be 10 already achieves
good results in our experiments. Furthermore, LBP can be
easily parallelized. Specifically, we can distribute nodes in
the system to multiple processors or computer nodes, each
of which collects messages for nodes assigned to them.

V. EVALUATING SYBILBELIEF

We evaluate the influence of various factors including
parameter settings in SybilBelief, the number of labels, label
sites, label noises, mixing time of the social networks, and sce-
narios where only labeled benign or Sybil nodes are observed,
on the performance of SybilBelief. Since these experiments
require social networks with various sizes, we will use well-
known network generators (e.g., Erdos-Renyi model (ER) [27]
and the Preferential Attachment (PA) model [28]) to synthesize
both the benign region and the Sybil region. We will also
study the impacts of different network generators. Further-
more, throughout these experiments, we view SybilBelief as
a classification mechanism.

In the basic experimental setup, we adopt the PA model
to generate both the benign region and the Sybil region with
an average degree of 10, add 500 attack edges between them
uniformly at random, and fix the benign region to have 1000
nodes; we set the SybilBelief model parameters as θv = 0.5
for any node v, and wuv = w = 0.9 for any edge (u, v); we
assume one labeled benign node and one labeled Sybil node;
the labeled benign (Sybil) nodes are uniformly sampled from
the benign (Sybil) network. When we study the impact of one
factor, we fix other factors to be the same as in the basic setup
and vary the studied one. Moreover, all of our results reported
in the following are averaged over 100 trials.
Impact of network generators: We first study the impacts
of network generators on the performances of SybilBelief. To
this end, we choose the ER network generator [27] and the
PA network generator [28].

For each triple (benign region, Sybil region, attack edges)
setting, we can compute the false negatives and false positives.
Figure 2 shows false negatives and positives as a function
of the Sybil region size. We find that both false negatives
and false positives first increase and then decrease as we

0 100 200 300 400 500 600
Sybil region size

0

20

40

60

80

100

120

140

160

N
u

m
be

r
of

n
od

es

false negatives
false positives

(a) ER-ER

0 100 200 300 400 500 600
Sybil region size

0

20

40

60

80

100

120

140

160

N
u

m
be

r
of

n
od

es

false negatives
false positives

(b) PA-PA

Fig. 2: The false negatives and false positives as a function of the
Sybil region size. (a) Networks are synthesized by the ER model. (b)
Networks are synthesized by the PA model. There exists an optimal
strategy for the attackers.
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Fig. 3: The accepted Sybil nodes as a function of the number of
attack edges. (a) Impact of different network generators. The notation
M1−M2 means we use M1 to produce the benign region and M2
to synthesize the Sybil region. We observe that the attackers should
design their Sybil regions to approach scale-free networks in order
to inject more Sybils. (b) Impact of different combinations of label
sites. Our algorithm SybilBelief is robust to label sites.

increase the Sybil region size. The reason for this sudden
decrease phenomenon is that when the Sybil region size is
bigger than some threshold, the homophily is strong enough so
that SybilBelief can easily distinguish between the benign and
Sybil regions. For a (benign region, attack edges) setting, we
can search for the maximum false negatives and false positives
via increasing the Sybil region size. We denote these maximum
false negatives as accepted Sybil nodes and maximum false
positives as rejected benign nodes, which will be used as the
metrics to evaluate Sybil classification systems.

Figure 3a shows the accepted Sybil nodes as a function of
the number of attack edges while fixing the benign region
to be the setting in the basic setup for different network
generator combinations. We find that PA-generated networks
have more accepted Sybil nodes than ER-generated networks.
Our findings imply that attackers should generate scale-free
networks in order to inject more Sybils to the benign region.
The rejected benign nodes are always less than 5 (i.e., the
false positive rates are smaller than 0.5% since we have 1000
benign nodes) in these experiments. We don’t show them due
to the limited space.

Impact of label sites: In practice, some known labeled nodes
might be end points of attack edges while others might be far
away from attack edges. So one natural question is which ones
to be selected as the input labels for SybilBelief. Specifically,
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Fig. 4: The number of accepted Sybil nodes and rejected benign nodes
as a function of the model parameters w and θl. (a) θl = 0.50 and we
vary w. (b) w = 0.90 and we vary θl. We observe that there exists
a phase transition point w0 (e.g., w0 ≈ 0.65 in our experiments) for
the parameter w. SybilBelief is robust for w > w0. Moreover, we
confirm that SybilBelief performance is independent with θl once it’s
bigger than 0.

we consider the following scenarios.

• SI: Labeled benign (Sybil) nodes are not end points of
attack edges.

• SII: Labeled benign (Sybil) nodes are end points of
attack edges. This could correspond to the scenario where
sophisticated attackers obtain knowledge about the labels
used in SybilBelief and establish targeted attacks.

Figure 3b shows the accepted Sybil nodes as a function of
the number of attack edges for the four combinations of the
label sites. We find that the label sites have no influence on the
number of accepted Sybil nodes. Again, the rejected benign
nodes are always less than 5 (i.e., the false positive rates are
smaller than 0.5%), which are not shown due to the limited
space. Our results imply that the administrator could simply
select benign/Sybil nodes uniformly at random as input labels
for SybilBelief.

Impact of the model parameters: In SybilBelief, there exists
one parameter wuv corresponding to the homophily strength
of the edge (u, v). We set wuv = w for all edges, and Figure 4
illustrates the impact of w on the performance of SybilBelief.
To demonstrate that our model is independent with θv for v ∈
L, Figure 4 also shows the case in which we vary θl, where
θl = θv for v ∈ L. We observe that there exists a phase
transition point w0 (e.g., w0 ≈ 0.65 in these experiments)
for w. When w > w0, SybilBelief achieves a good tradeoff
between accepted Sybil nodes and rejected benign nodes.

Impact of the number of labeled nodes: Figure 5 shows the
influence of various number of labels on the performance of
SybilBelief. We observe that the number of accepted Sybil
nodes increases dramatically when the labeled benign and
Sybil nodes are highly imbalanced, i.e., their ratio is bigger
than 10 or smaller than 0.1. Again, the rejected benign nodes
are always less than 5 (i.e., the false positive rates are smaller
than 0.5%), which we don’t show here due to the limited
space. When the ratio is between 0.1 and 10, the number
of accepted Sybil nodes is stable across various number of
labeled benign nodes. Having more labeled Sybil nodes helps
SybilBelief accept fewer Sybil nodes. However, these achieved
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Fig. 5: The number of accepted Sybil nodes as a function of the
number of labeled benign and Sybil nodes. (a) The number of Sybil
nodes is fixed while varying the number of benign labels. (b) The
number of labeled benign nodes is fixed while increasing the number
of Sybil labels. We observe that SybilBelief only requires one label
per community.
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Fig. 6: Impact of label noise and community structure of the benign
region on the number of accepted Sybil nodes. (a) We have 100
labeled benign and Sybil nodes. The x-axis is the percent of both
noisy benign and Sybil labels. We find that SybilBelief can tolerate
49% of labels to be incorrect. (b) The benign region consists of
multiple communities. We observe that SybilBelief is robust to
community structures.

margins are just the more labeled Sybils3. So we conclude that
SybilBelief only needs one label for each community.

Impact of label noise: In practice, we could use a machine
learning classifier or crowdsourcing system to obtain labels.
For instance, Thomas et al. [3] used a classifier to assign labels
for Twitter accounts. Wang et al. [29] proposed to label nodes
via a crowdsourcing platform such as Amazon Mechanical
Turk4. Unfortunately, labels obtained from these approaches
often have noise. For example, labels got from crowdsourcing
could have noise up to 35% [29]. Furthermore, an adversary
could compromise a known benign node, or could get a Sybil
node whitelisted. Thus, one natural question is how label noise
affects SybilBelief’s performance.

Figure 6a shows the influences of such label noise. Unsur-
prisingly, we find that SybilBelief accepts more Sybil nodes
and rejects more benign nodes when a larger fraction of labels
are incorrect. However, with even 49% noise5, SybilBelief
still performs very well, i.e., SybilBelief with 49% noise only
accepts three times more Sybil nodes than SybilBelief without
noise, and its rejected benign nodes are always less than 3 (i.e.,

3We will not accept these labeled Sybil nodes.
4https://www.mturk.com/mturk/welcome
5≥ 50% noise makes any algorithm accept infinite number of Sybils.

https://www.mturk.com/mturk/welcome
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Fig. 7: Boosting with only labeled benign nodes. The numbers in the
legend are the number of boosting trials. With only labeled benign
nodes, SybilBelief (SB) with boosting can achieve performances com-
parable to the case where both benign and Sybil labels are observed.
Furthermore, the number of boosting trials balances between the
accepted Sybil nodes and rejected benign nodes.

the false positive rates are smaller than 0.3%). Furthermore,
we find that our algorithm can detect the incorrect labels with
100% accuracy.

Impact of community structure: Most existing Sybil de-
tection mechanisms [7]–[14] rely on the assumption that the
benign region is fast mixing. However, Mohaisen [30] showed
that many real-world social networks may not be as fast-
mixing as was previously thought. Furthermore, Viswanath
et al. [7] showed that the performance of existing Sybil
detection methods decrease dramatically when the benign
region consists of more and more communities (i.e., the mixing
time is larger and larger).

Similar to the experiment done by Viswanath et al., we study
the impact of the community structure (i.e., the mixing time)
on the performance of SybilBelief. Specifically, for the benign
region, we use PA to generate k independent communities. For
the ith community, we link it to the previous i−1 communities
via 10 random edges. The Sybil region is one community
generated by PA. We randomly sample 1 Sybil label from the
Sybil region and 10 benign labels from the benign region such
that each community has at least 1 labeled node. Figure 6b
shows the number of accepted Sybil nodes as a function of the
number of communities in the benign region. The number of
rejected benign nodes is always close to 0 and not shown here
due to limited space. We conclude that SybilBelief is robust
to community structure in the benign region.

Boosting with only labeled benign or Sybil nodes: If we
only observe labeled benign or Sybil nodes, we can boost
our algorithm by sampling some nodes and treating them as
labeled Sybil or benign nodes. Since only observing labeled
benign nodes is symmetric to only observing labeled Sybil
nodes in the algorithmic perspective, we take the former case
as an example to illustrate our boosting strategy.

In these experiments, we assume 100 benign labels are
observed but no Sybil labels are obtained. So we sample 10
nodes uniformly at random, and treat them as the Sybil labels.
Other factors are fixed to be the natural settings. With a given
benign region, a Sybil region, attack edges between them and
the benign labels, we repeat this Sybil labels sampling process
for k times, and ensemble their results in the way described
in our algorithm section. We use SB-B-k to denote the case

TABLE I: Dataset statistics.

Metric Facebook Slashdot Email
Nodes 43,953 82,168 224,832
Edges 182,384 504, 230 339,925

Ave. degree 8.29 12.27 3.02

where we use boosting strategy and the number of boosting
trials is k. Figure 7 compares SB-B-1, SB-B-10 and SB. In
the setting of SybilBelief, we assume 100 benign labels and
10 Sybil labels. We conclude that with only partial labels, our
boosting strategy can still achieve performance comparable to
the scenario where both benign and Sybil labels are observed.
Furthermore, the number of boosting trials balances between
the accepted Sybil nodes and rejected benign nodes. More
specifically, boosting with more trials accepts fewer Sybil
nodes but rejects more benign nodes.
Summary: We have the following observations:
• SybilBelief accepts more Sybil nodes in the PA-generated

networks than in the ER-generated networks. This im-
plies that attackers should design their Sybil regions to
approach scale-free networks.

• SybilBelief is robust to label sites.
• There exists a phase transition point w0 (e.g., w0 ≈ 0.65

in our experiments) for the parameter w. SybilBelief
performance is robust for w > w0.

• SybilBelief only requires one label per community.
• SybilBelief can tolerate 49% of labels to be incorrect.

Moreover, SybilBelief can detect incorrect labels with
100% accuracy.

• SybilBelief is robust to community structures in the
benign region.

• With only benign or Sybil labels, our boosting strategy
can still achieve performances comparable to the case
where both benign and Sybil labels are observed. Further-
more, the number of boosting trials can be used to balance
between accepted Sybil nodes and rejected benign nodes.

VI. COMPARING SYBILBELIEF WITH PREVIOUS
APPROACHES

We compare our approach SybilBelief and its variants with
previous Sybil classification and Sybil ranking mechanisms.
The benign regions are real social networks while the Sybil
regions are either generated by network generators such as
Preferential Attachement [28] or duplicates of the benign
regions6. We find that SybilBelief and its variants perform
orders of magnitude better than previous Sybil classification
systems and significantly better than previous Sybil ranking
systems. Furthermore, in contrast to previous approaches,
SybilBelief is robust to label noise.

A. Experimental Setups

Dataset description: We use three social networks repre-
senting different application scenarios. These three datasets

6We acknowledge that one limitation of our work is that we didn’t evaluate
these approaches using real Sybil users. This is because it is hard for us to
obtain a social network which represents trust relationships between users and
which includes ground truth information about benign and Sybil users.
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Fig. 8: The number of accepted Sybil nodes and rejected benign nodes
as a function of the number of attack edges. The benign region is
the Facebook network, and the Sybil regions are synthesized by PA
model. We observe that SB, SB-N, and SB-B all work an order of
magnitude better than previous classification systems. Furthermore,
we find that incorporating both benign and Sybil labels increases the
performance of our algorithm.

are denoted as Facebook, Slashdot, and Email.
Facebook is an interaction graph from the New Orleans

regional network [31]. In this graph, nodes are Facebook users
and a link is added between two users if they comment on
each other’s wall posts at least once. The Email network was
generated using email data from a large European research
institution [32]. Nodes are email addresses and there exists a
link between two nodes if they communicate with each other
at least once. Slashdot is a technology-related news website,
which allows users to tag each other as friends or foes. The
Slashdot network thus contains friend/foe links between the
users. We choose the largest connected component from each
of them in our experiments. Table I summarizes the basic
dataset statistics.

We note that some previous work removes nodes with
degrees smaller than a threshold from the social networks. For
instance, SybilLimit [9] removes nodes with degree smaller
than 5 and SybilInfer [10] removes nodes with degree smaller
than 3. Mohaisen et al. [30] found that such preprocessing will
prune a large portion of nodes. Indeed, social networks often
have a long-tail degree distribution (e.g., power-law degree
distribution [33] and lognormal degree distribution [26]), in
which most nodes have very small degrees. Thus, a large
portion of nodes are pruned by such preprocessing.

Therefore, such preprocessing could result in high false
negative rates or high false positive rates depending on how we
treat the pruned nodes. If we treat all the pruned nodes whose
degrees are smaller than a threshold as benign nodes, then an
attacker can create many Sybil nodes with degree smaller than
the threshold, resulting in high false negative rates, otherwise a
large fraction of benign nodes will be treated as Sybil nodes,
resulting in high false positive rates. So we do not perform
such preprocessing to the three social networks.

Metrics: Following previous work [9]–[12], the metrics we
adopt for evaluating Sybil classification mechanisms are the
number of accepted Sybil nodes and the number of rejected
benign nodes, which are the maximum number of accepted
Sybils and the maximum number of rejected benign nodes
for a given number of attack edges. To evaluate the Sybil
ranking mechanisms, similar to previous work [7], [13], we

adopt AUC, Area Under the Receiver Operating Character-
istic (ROC) Curve. Given a ranking of a set of benign and
Sybil nodes, AUC is the probability that a randomly selected
benign node ranks before a randomly selected Sybil node. We
compute the AUC in the manner described in [34].
Parameter settings: We set θv = 0.5 for any unlabeled node,
which means we don’t distinguish a node between benign and
Sybil if no prior information is available. For those labeled
nodes, their states are fixed and thus their corresponding
parameters θv don’t influence our model. So we also set
them to be 0.5 by simplicity. Furthermore, as we find that
SybilBelief is robust to the parameter wuv when it is bigger
than the transition point, and thus we set wuv = w = 0.90
for any edge (u, v) in all experiments. In the experiments of
boosting our SybilBelief with only labeled benign nodes, the
number of boosting trials is set to be 10.

B. Compared Approaches

We compare SybilBelief with two classical Sybil classifica-
tion mechanisms, i.e., SybilLimit [9] and SybilInfer [10], and
two recent Sybil ranking mechanisms, i.e., SybilRank [13] and
Criminal account Inference Algorithm [14]. Table II summa-
rizes the notations of these algorithms. Note that Viswanath et
al. [7] showed that SybilLimit and SybilInfer are essentially
also ranking systems. However, Cao et al. [13] showed that
SybilRank outperforms them in terms of rankings. Thus, we
will compare SybilBelief with SybilLimit and SybilInfer via
treating them as Sybil classification mechanisms.
SybilLimit (SL): SL requires each node to run a few random
routes starting from themselves. For each pair of nodes u and
v, if v’s random routes have enough intersections with u’s and
these intersections satisfy a balance constraint, then u accepts
v as a benign node. In our experiments, we random sample
enough such pairs of nodes to estimate the number of accepted
Sybil nodes and the number of rejected benign nodes.
SybilInfer (SI): SI relies on a special random walk, i.e., the
stationary distribution of this random walk is uniform. Given
a set of random walk traces, SI infers the posterior probability
of any node being benign. Note that SI can only incorporate
one labeled benign node.
SybilRank (SR): SR performs random walks starting from a
set of benign users. Specifically, with h labeled benign nodes,
SR designs a special initial probability distribution over the
nodes, i.e., probability 1/h for each of the labeled benign
nodes and probability 0 for all other nodes, and SR iterates the
random walk from this initial distribution for log(n) iterations,
where n is the number of nodes in the system. It is well known
that this random walk is biased to high-degree nodes. Thus,
SybilRank normalizes the final probabilities of nodes by their
degrees and uses the normalized probabilities to rank nodes.
Note that SR can only incorporate benign labels.
SybilRank-Noise (SR-N): We use this abbreviation to denote
the case where the labels given to SybilRank are noisy, i.e.,
some of the labeled benign nodes are actually Sybils.
Criminal account Inference Algorithm (CIA): CIA is also
based on a random walk with a special initial probability
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TABLE II: Notations of algorithms.

Notation Description
SL SybilLimit [9]
SI SybilInfer [10]
SR SybilRank [13]

SR-N SybilRank [13] with label noise
CIA Criminal account Inference Algorithm [14]

CIA-N CIA with label noise
SB SybilBelief

SB-N SybilBelief with label noise
SB-B SybilBelief with only labeled benign nodes

Random Randomly assign a reputation score
between 0 and 1 to each node

distribution, but it differs from SR in two major aspects. First,
CIA starts the random walk from labeled Sybil nodes. Second,
in each iteration, CIA restarts the random walk from the
special initial probability distribution with probability 1 − α.
Since the random walk is started from Sybil nodes, 1 - pv
is treated as the reputation score of node v, where pv is the
stationary probability of v. Then those reputation scores are
used to rank nodes. As was proposed in the original paper [14],
we set the restart parameter α to 0.85. Note that CIA can only
incorporate labeled Sybil nodes.
Criminal account Inference Algorithm-Noise (CIA-
N): Analogous to SR-N, we use this abbreviation to denote
the case where the input labels are partially wrong.

We abbreviate variants of our method by SybilBelief (SB),
SybilBelief-Noise (SB-N) and SybilBelief-Boosting (SB-B). SB
incorporates both benign and Sybil labels; SB-N indicates the
scenario where some of the labeled benign and Sybil nodes
are noise; SB-B means only benign labels are observed, and
we sample some nodes uniformly at random from the entire
network and treat them as Sybil labels.

C. Comparing with Sybil Classification Mechanisms

In order to calculate the number of accepted Sybil nodes
and the number of rejected benign nodes, we need to evaluate
these algorithms on Sybil regions with various sizes. Thus,
we use a network generator to synthesize the Sybil region and
add attack edges between it and the benign region uniformly
at random. In our experiments, we adopt scale-free network
generator Preferential Attachment (PA) [28]. However, we still
use real social networks as the benign regions. We assume
100 labeled benign nodes, which are sampled from the benign
region uniformly at random. Since SybilLimit and SybilInfer
don’t incorporate labeled Sybil nodes, we assume only one
labeled Sybil node for our approaches, which is sampled from
the Sybil region uniformly at random. In the experiments with
label noise, we assume 10 out of the labeled benign nodes are
incorrect. In the boosting experiments, we randomly sample 10
nodes from the entire network and treat them as Sybil labels.

Figure 8 shows the comparison results on the Facebook
dataset. We only show results on the Facebook network
because SybilLimit and SybilInfer are not scalable to other
social networks we consider. We have several observations.
First, SybilBelief performs orders of magnitude better than
SybilLimit and SybilInfer in terms of both the number of

accepted Sybil nodes and the number of rejected benign nodes.
Second, unsurprisingly, SB-N and SB-B don’t work as well as
SB, but the margins are not significant. Since SybilLimit and
SybilInfer can only incorporate one labeled benign node, the
gains of SB and SB-B over them come from (a) incorporating
more labels and (b) the use of the Markov Random Fields and
the Belief Propagation algorithm.

D. Comparing with Sybil Ranking Mechanisms

Following previous work [7], [9], [10], [13], [15], we
synthesize networks as follows: we use each real-world social
networks as both the benign region and the Sybil region, and
then we add attack edges between them uniformly at random.

We assume that 100 labeled benign nodes and 100 labeled
Sybil nodes are given. For the experiments with label noise,
we assume 10 out of the 100 benign and Sybil labels are
wrong. For SB-B, we randomly sample 100 nodes from the
entire network including both benign and Sybil regions and
treat them as Sybil labels.

Figure 9 shows the AUC of the rankings obtained by various
approaches in the three different social networks. From these
figures, we can draw several conclusions.

First, SB and SB-B consistently outperform SR and CIA
across different social networks. Furthermore, the improve-
ments are more significant as the number of attack edges
becomes larger. This is because our proposal can incorporate
both benign and Sybil labels.

Second, with label noise, performances of both SR and CIA
degrade dramatically. However, SB’s performance is almost
unchanged. SB is robust to noise because SB incorporates la-
bels probabilistically. Specifically, a node receives beliefs from
all of its neighbors. Since the majority of labels are correct,
the beliefs from the wrongly labeled nodes are dominated by
those from the correctly labeled nodes.

Third, CIA consistently performs better than SR, which
can be explained by the fact that CIA restarts the random
walk from the special initial probability distribution with some
probability in each iteration.

E. Summary

We have performed extensive evaluations to compare our
approach SybilBelief and its variants with previous approaches
on graphs with synthetic Sybil nodes. From the comparison
results, we conclude that SybilBelief and its variants perform
orders of magnitude better than previous Sybil classification
systems and significantly better than previous Sybil ranking
systems. Furthermore, in contrast to previous approaches,
SybilBelief is robust to label noise.

VII. RELATED WORK

A. Structure-based Sybil Defenses

Most existing structure-based Sybil defenses are based
on either random walks or community detections. We refer
readers to a recent survey [15] for more details.
Random walk based Sybil classification: SybilGuard [8]
and SybilLimit [9] were the first schemes to propose Sybil
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Fig. 9: AUC as a function of the number of attack edges on different social networks. For each social network, we treat it as both the benign
and Sybil regions, and add attack edges between them uniformly at random. The AUCs are averaged over 10 trials for each number of attack
edges. We observe that both SB and SB-B outperform previous approaches. Furthermore, in contrast to previous approaches, SB is robust
to label noise.

detection using social network structure. SybilLimit relies on
the insight that social networks are relatively well connected,
and thus short random walks starting from benign users can
quickly reach all other benign users 7. Thus if two benign users
perform

√
m random walks (where m is the number of edges

between benign users), then they will have an intersection with
high probability, using the birthday paradox. The intersection
of random walks is used as a feature by the benign users to
validate each other. On the other hand, short random walks
from Sybil users do not reach all benign users (due to limited
number of attack edges), and thus do not intersect with the
random walks from benign users.

SybilInfer [10] aims to directly detect a bottleneck cut
between benign and Sybil users. SybilInfer relies on ran-
dom walks and uses a combination of Bayesian inference
and Monte-Carlo sampling techniques to estimate the set of
benign and Sybil users. Similar to SybilGuard, SybilLimit
and SybilInfer, Gatekeeper [12] and SybilDefender [22] also
leverage random walks. These mechanisms make additional
assumptions about the structure of benign and Sybil nodes,
and even the size of the Sybil population [22]. Moreover, they
also require the benign regions to be fast mixing, which was
shown to be unsatisfied by Mohaisen et al. [30].

In contrast to the above approaches, SybilBelief does not

7More precisely, SybilGuard and SybilLimit use a variant of random walks
called random routes. Please see [8], [9] for more detail.

use random walks, and relies instead on the Markov Random
Fields and Loopy Belief Propagation. SybilBelief is able
to incorporate information about known benign and known
Sybil nodes. Our experimental results show that SybilBelief
performs an order of magnitude better than SybilLimit and
SybilInfer. Moreover, SybilBelief is scalable to large scale
social networks, unlike above mechanisms.

Random walk based Sybil ranking: SybilRank [13] per-
forms random walks starting from a set of benign users.
Specifically, with h labeled benign nodes, SybilRank designs
a special initial probability distribution over the nodes, i.e.,
probability 1/h for each of the labeled benign nodes and
probability 0 for all other nodes, and iterates the random walk
from this initial distribution for log(n) iterations, where n is
the total number of nodes in the network. It is well known
that this random walk is biased to high-degree nodes. Thus,
SybilRank normalizes the final probabilities of nodes by their
degrees and uses the normalized probabilities to rank nodes.
SybilRank scales to very large social networks and has shown
good performance on the Tuenti network. However, SybilRank
has two major limitations: (a) it does not tolerate label noise,
and (b) it does not incorporate Sybil labels.

CIA is also based on a random walk with a special initial
probability distribution, but it differs from SybilRank in two
major aspects. First, CIA starts the random walk from labeled
malicious nodes. Second, in each iteration, CIA restarts the
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random walk from the special initial probability distribution
with some probability. Since the random walk is started from
malicious nodes, 1 - pv is treated as the reputation score of
node v, where pv is the stationary probability of v. Then those
reputation scores are used to rank nodes. CIA scales well to
large OSNs. However, CIA is unable to incorporate known
benign labels and thus is fundamentally inapplicable in settings
where a set of Sybil labels are unavailable. We found that CIA
is also not resilient to label noise.

Alvisi et al. [15] studied Personalized PageRank (PPP) as a
Sybil ranking mechanism. Unlike SybilRank, PPP incorporates
only one benign label by initiating a random walk from the
labeled benign node and returning back to it in each step
with some probability. Similar to SybilRank, the normalized
stationary probability distribution of PPP is used to rank all
the users. SybilRank is better than PPP because PPP only
incorporates one benign label.

These random walk based Sybil ranking approaches have
complexity of O(nlogn) [13], where n is the number of nodes
in the social network. Our SybilBelief has a complexity of
O(nd), where d is the number of iterations. In practice, logn
and d are very similar. In our experiments, we compared
SybilBelief with SybilRank and CIA. We found that their
computation times are similar.

Community detection based Sybil classification:
Viswanath et al. [7] showed that the Sybil detection problem
can be cast as a community detection problem. In their
experimental evaluation, the authors found that using a simple
local community detection algorithm proposed by Mislove et
al. [35] had equivalent results to using the state-of-art Sybil
detection approaches. However, their scheme has computa-
tional complexity as high as O(n2), and thus does not scale
to multi-million node social networks. Their approach is also
unable to simultaneously incorporate both known benign and
Sybil nodes. Moreover, Alvisi et al. [15] showed that their
local community detection algorithm is not robust to advanced
attacks by constructing such an attack.

Cai and Jermaine [36] proposed to detect Sybils using
a latent community detection algorithm. With a hierarchical
generative model for the observed social network, detecting
Sybils is mapped to an Bayesian inference problem. Cai and
Jermaine adopted Gibbs sampling, an instance of Markov
chain Monte Carlo (MCMC) method, to perform the inference.
However, it is well known in the machine learning community
that the MCMC method is not scalable.

B. Trust Propagation

Another line of research, which is closely related to Sybil
detection, is the trust propagation problem. Several approaches
have been proposed to propagate trust scores or reputation
scores in file-sharing networks or auction platforms (e.g., [37]–
[39]). Similar to SybilRank [13] and CIA [14], these ap-
proaches are variants of the PageRank algorithm [40]. In
principle, these approaches can be applied to detect Sybils.
Specifically, nodes with low trust scores could be classified as
Sybils [13].

C. Markov Random Fields and Belief Propagation

The Markov Random Fields (MRF) has many applica-
tions in electrical engineering and computer science such as
computer vision [41] and natural language processing [42].
However, the application of MRFs to the security and privacy
area is rather limited.

Computing posterior distributions in probabilistic graphical
models is a central problem in probabilistic reasoning. It was
shown that this problem is NP-hard on general graphs [43].
Pearl proposed belief propagation algorithm for exact infer-
ence on trees, and he also noted that, on graphs with loops, this
algorithm leads to oscillations that prohibit any convergence
guarantees [16]. Nevertheless, belief propagation on loopy
graphs has often been used in practical applications and has
demonstrated satisfying approximate performance [24].

VIII. CONCLUSION

In this paper, we propose SybilBelief, a semi-supervised
learning framework, to detect Sybil nodes in distributed sys-
tems. SybilBelief takes social networks among the nodes in the
system, a small set of known benign nodes, and, optionally, a
small set of known Sybil nodes as input, and then SybilBelief
propagates the label information from the known benign and/or
Sybil nodes to the remaining ones in the system.

We extensively evaluate the influence of various factors
including parameter settings in the SybilBelief, the number
of labels, and label noises on the performance of SybilBelief.
Moreover, we compare SybilBelief with state-of-the-art Sybil
classification and ranking approaches on real-world social
network topologies. Our results demonstrate that SybilBelief
performs orders of magnitude better than previous Sybil clas-
sification mechanisms and significantly better than previous
Sybil ranking mechanisms. Furthermore, SybilBelief is more
resilient to noise in our prior knowledge about known benign
nodes and known Sybils.

Interesting avenues for future work include evaluating Sybil-
Belief and previous approaches with datasets containing real
Sybils and applying our SybilBelief framework to other se-
curity and privacy problems such as graph based Botnet de-
tection [44], reputation systems [37], and private information
inference [45].
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