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Abstract

We study correlation functions of local operator insertions on the 1/2-BPS Wilson line in N = 4 super 
Yang–Mills theory. These correlation functions are constrained by the 1d superconformal symmetry pre-
served by the 1/2-BPS Wilson line and define a defect CFT1 living on the line. At strong coupling, a set 
of elementary operator insertions with protected scaling dimensions correspond to fluctuations of the dual 
fundamental string in AdS5 × S5 ending on the line at the boundary and can be thought of as light fields 
propagating on the AdS2 worldsheet. We use AdS/CFT techniques to compute the tree-level AdS2 Witten 
diagrams describing the strong coupling limit of the four-point functions of the dual operator insertions. 
Using the OPE, we also extract the leading strong coupling corrections to the anomalous dimensions of 
the “two-particle” operators built out of elementary excitations. In the case of the circular Wilson loop, 
we match our results for the 4-point functions of a special type of scalar insertions to the prediction of 
localization to 2d Yang–Mills theory.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In the N = 4 supersymmetric Yang–Mills theory, it is natural to consider Wilson loop opera-
tors that include couplings to the six scalars �I in the theory [1,2]
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W = trPe
∮

dt
(
iẋμAμ+|ẋ|θI �I

)
, (1.1)

where xμ(t) is a closed loop, and θI (t) is a unit 6-vector. For generic contour and scalar cou-
plings, these operators are only locally supersymmetric, but special choices of xμ and θI lead to 
Wilson loops preserving various fractions of the superconformal symmetry of the N = 4 SYM 
theory [3,4]. The most supersymmetric operator is obtained by taking the contour to be an infi-
nite straight line (or circle), and θI a constant 6-vector, corresponding to a fixed direction in the 
scalar space: in this case the Wilson loop is 1/2-BPS, i.e. it preserves 16 of the 32 supercharges 
of the superconformal group PSU(2, 2|4). Making the choice θI�I = �6, this 1/2-BPS straight 
line operator is given by

W = trPe
∫

dt
(
iAt+�6)

(1.2)

where we have identified the Euclidean time x0 = t ∈ (−∞, ∞) to be the line that defines the 
operator.

In this paper we will be interested in the computation of correlation functions of local opera-
tors inserted along the straight Wilson line, defined as follows. Given some local operators Oi(ti)

transforming in the adjoint representation of the gauge group, one can define the gauge invariant 
correlator [5]

〈〈O1(t1)O2(t2) · · ·On(tn)〉〉
≡ 〈trP [

O1(t1) e
∫

dt (iAt+�6) O2(t2) e
∫

dt (iAt+�6) · · · On(tn) e
∫

dt (iAt+�6)
]〉

≡ 〈trP [
O1(t1)O2(t2) · · ·On(tn)e

∫
dt (iAt+�6)

]〉 . (1.3)

The SU(N) indices are contracted with the Wilson lines joining the various points, making this a 
gauge invariant observable. Since the expectation value of the straight Wilson line is trivial, this 
definition satisfies 〈 〈1〉 〉 = 〈W 〉 = 1. More generally, one should normalize the correlator on the 
right-hand side by the expectation value of the Wilson loop without insertions (this is relevant in 
the case of the 1/2-BPS circular loop, which has a non-trivial expectation value [6–8]). Note that, 
since operator insertions are equivalent to deformations of the Wilson line [5,9], the complete 
knowledge of the correlators (1.3) would, at least in principle, allow to compute the expectation 
value of general Wilson loops which are deformations of the line or circle.

To understand the structure of the correlators (1.3), it is useful to recall the symmetries pre-
served by the 1/2-BPS Wilson line. First, it is clear that it preserves an SO(5) subgroup of the 
SO(6)R R-symmetry that rotates the 5 scalars �a , a = 1, . . . , 5 that do not couple to the Wil-
son loop. In addition, it preserves an SO(2, 1) × SO(3) subgroup of the 4d conformal group 
SO(2, 4), where the SO(3) corresponds to rotations around the line, and the generators of 
SO(2, 1) correspond to dilatations, translation and special conformal transformation along the 
line. This SO(2, 1) is the d = 1 conformal group. Together with the 16 supercharges preserved 
by the loop, the symmetries of 1/2-BPS Wilson lines form the d = 1, N = 8 superconformal 
group OSp(4∗|4).

It follows that operator insertions along the Wilson line are classified by their representations 
under the OSp(4∗|4) symmetry. In particular, they are labeled by their scaling dimension �, 
corresponding to a representation of SO(2, 1), and by a representation of the “internal” (from 
the point of view of the line) symmetry group SO(3) × SO(5). The set of correlators (1.3) are 
then constrained by the d = 1 conformal symmetry in a way analogous to higher dimensional 
CFTs. They can be interpreted as characterizing a defect CFT1 living on the Wilson line [5,10,
9]. This CFT1 should then be fully determined by its spectrum of scaling dimensions and OPE 
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coefficients. Because the “double-bracket” correlators (1.3) satisfy all the usual properties of 
CFT correlation functions, we may often talk about the Oi(ti) as operators in a 1d CFT, without 
referring to their (non-local) origin in SYM theory.

Among the possible operator insertions, a special role is played by a set of “elementary ex-
citations” that fall into a short representation of the OSp(4∗|4) symmetry with 8 bosonic plus 
8 fermionic operators, and have protected scaling dimensions. The bosonic operators are the 5 
scalars �a (with dimension � = 1) that do not couple to the Wilson line, which have � = 1, 
and the components of the field strength Ft i ≡ iFti + Di�

6 (with dimension � = 2) along the 
directions i = 1, 2, 3 transverse to the line. Ft i is also known as the displacement operator, which 
measures the change of the Wilson loop under deformations orthogonal to the contour (this can 
be defined for any defect in a CFT).2

The fact that these operators have protected scaling dimensions implies that their 2-point 
functions (in the sense of (1.3)) computed in planar SYM theory take the exact form

〈〈�a(t1)�
b(t2)〉〉 = δab C�(λ)

t2
12

, 〈〈Ft i (t1)Ftj (t2)〉〉 = δij

CF(λ)

t4
12

, (1.4)

where the ’t Hooft coupling λ dependence appears only in the normalization factors. These are 
proportional to the so-called Bremsstrahlung function B(λ) defined in [14]

C�(λ) = 2B(λ) , CF(λ) = 12B(λ) , B(λ) =
√

λI2(
√

λ)

4π2 I1(
√

λ)
. (1.5)

The three-point functions of these elementary bosonic excitations vanish by the SO(3) ×SO(5)

symmetry. The four-point functions are expected to be non-trivial functions of the positions tr
(constrained by the 1d conformal symmetry as reviewed in Section 3 below) and of the coupling 
constant λ. Little is known about their structure apart from the leading perturbative term in the 
four-point of Ft i computed in [9].

In this paper, we will compute these four-point functions at strong coupling using the string 
theory in AdS5 ×S5 dual to planar N = 4 SYM. At strong coupling, Wilson loops are related by 
duality to open string minimal surfaces in AdS5 ending on the contour defining the loop operator 
at the boundary. In the case of the 1/2-BPS Wilson line (or circle), the relevant minimal surface 
is an AdS2 embedded in AdS5 (and sitting at a point on the S5). The fundamental open string 
stretched in AdS preserves the same OSp(4∗|4) as the 1/2-BPS Wilson line (see e.g. [15]). In 
particular, the 1d conformal group SO(2, 1) is realized as the isometry of AdS2.

As we will review in Section 2, expanding the string action in static gauge around the minimal 
surface solution, one finds [16] that the AdS2 multiplet of fluctuations transverse to the string 
includes 5 massless scalars ya corresponding to the S5 directions, three massive scalars xi with 
m2 = 2 corresponding to AdS5 fluctuations, and 8 fermionic modes with m2 = 1. It is then 
natural to identify these 8 + 8 excitations, which may be thought as fields living in AdS2, with 
the elementary CFT1 insertions described above [10,17,18]. Indeed, the standard relation m2 =
�(� − d) between AdSd+1 scalar masses and the corresponding CFTd operator dimensions in 
the present case implies that the massless ya fields should be dual to � = 1 operators in CFT1, 

2 The fact that the displacement operator has protected dimension � = 2 for a line defect in a 4d CFT is a general 
result, and follows from a Ward identity for the breaking of translations in the directions orthogonal to the defect, see e.g. 
[11–13].
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Fig. 1. Four-point function of local operators inserted on the Wilson line from a Witten diagram on the AdS2 worldsheet.

namely the scalars �a , while the three AdS5 fluctuations xi with m2 = 2 should be dual to the 
field strength operators Ft i with � = 2.3

In general, in AdS/CFT the closed superstring vertex operators are mapped to single-trace 
gauge invariant local operators in the SYM theory. Including the open-string sector (with open 
strings ending at the boundary) one should be able to describe the gauge-invariant operators (1.3)
that correspond to insertions of general local operators along the Wilson loop. In this paper we 
will limit our considerations only to insertions corresponding to the operators with protected 
scaling dimensions, that should be dual to “light” fields on the AdS2 string world-sheet as de-
scribed above. It would be of course interesting to work out the strong coupling description of 
insertions that develop large anomalous dimensions at strong coupling, such as, for instance, the 
insertion of �6 [21]. It is natural to expect that the dual of this type of “heavy” insertions have 
m2 ∼ 1/α′ ∼ √

λ, corresponding to massive states of the open string. In terms of CFT1 scaling 
dimensions, this implies that at strong coupling the spectrum of operators on the Wilson line has 
a large gap �gap ∼ λ1/4, similarly to what happens for the closed string states.

The expansion of the Nambu action around the classical solution yields the interaction vertices 
between the light fields. We will use these vertices to compute the corresponding tree-level Witten 
diagrams in AdS2 and extract the strong coupling prediction for the four-point functions of the 
protected insertions on the Wilson line. This is depicted schematically in Fig. 1. The calculation 
is similar to those in [22,23], however, we emphasize that the interpretation is different. In the 
supergravity calculations of [22,23], one computes correlation functions of single-trace local 
operators, dual to closed string states, and the expansion parameter is 1/N2. In our case, we 
compute the correlators (1.3) of insertions on the Wilson line, and the expansion parameter for 
the AdS2 Witten diagrams is the inverse string tension, or 1√

λ
. Note that the 2d theory defined by 

the fundamental string action is expected to be UV finite, and thus the duality with the 1d CFT 
at the boundary should hold for any value of the coupling. In particular, the calculation of AdS2
Witten diagrams involving loops should be well defined here.4

Note also that the AdS2 worldsheet is not decoupled from the rest of the AdS5 × S5 bulk. For 
instance, one can consider processes where the worldsheet interacts with closed string modes 

3 The spectrum of quadratic superstring fluctuations is the same as in the case of “non-relativistic limit” of AdS5 × S5

superstring [19] and was suggested [10] to be related via AdS2/CFT1 to the OSp(4∗|4) invariant N = 8 superconformal 
quantum mechanics of [20].

4 For instance, by computing loop corrections to the boundary-to-boundary propagator one can verify that the elemen-
tary excitations are protected, as well as check the strong coupling expansion of the function B(λ).
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propagating from the worldsheet to a point on the boundary away from the line (note, how-
ever, that these processes are suppressed in the large N limit). This corresponds to correlation 
functions such as 〈W trZJ 〉 [24–26] (and more generally one may consider mixed correlators of 
defect operators and operators inserted away from the defect). The picture is similar to the one 
discussed in [27–29] (see also, e.g., [11–13,30,31] for recent related work) where one considers 
an AdSd brane inside AdSd+1, and there is a defect CFT living at the boundary of AdSd . In our 
case, we have an AdS2 worldsheet inside AdS5, and a codimension 3 defect in CFT4 (the Wilson 
line) at the boundary of AdS2.5

Using the OPE expansion, we can also extract from the tree-level four-point functions the 
leading strong coupling corrections to the scaling dimensions of the “two-particle” operators 
built of products of two of the protected insertions (with an arbitrary number of t -derivatives in 
between). For instance, we find that the SO(3) ×SO(5) singlet operator with no derivatives built 
of scalar insertions has the dimension

��a�a = 2 − 5√
λ

+ . . . . (1.6)

Let us again emphasize that these are not scaling dimensions of gauge invariant local operators 
in the N = 4 SYM theory but are scaling dimensions of operator insertions on the Wilson line, 
defined as in (1.3), (1.4)

〈〈O(t1)O(t2)〉〉 = 〈trP [O(t1)O(t2) e
∫

dt (iA+�6)]〉 = COO

t
2�O

12

, (1.7)

with O(t) = �a�a(t) in the present case. In principle, the spectrum of dimensions of operators 
inserted on the Wilson line should be accessible from the TBA approach of [35,36], and it would 
be interesting to reproduce our results in this integrability-based framework.6 More broadly, it 
would be important to see how integrability is reflected in the structure of the Witten diagrams 
one computes in the AdS2 worldsheet theory, perhaps uncovering an analog of the factorization 
of the S-matrix in integrable theories in flat space.

While we focus on the straight line for most of the paper, our results can be also mapped to 
the circle by a (large) conformal transformation, as explained in Section 6. For a particular class 
of S5 insertions on the circular loop that are expected to be captured by localization [37–40], we 
show in Section 6 that the result of the Witten diagram calculation in AdS2 precisely matches the 
exact prediction derived from localization to 2d YM theory.

As was appreciated in recent discussions of AdS2/CFT1 in the context of dilaton-gravity 
models [41–45] one can think of a system in AdS2 as having asymptotic 1d reparametrization 
symmetry that is spontaneously broken down to SO(2, 1), which is the isometry of AdS2 metric. 
In our present case the original definition of the Wilson loop (1.1) has a reparametrization invari-
ance which is fixed by the identification x0 = t in (1.2), and the remaining conformal symmetry 
is the SO(2, 1) subgroup of the 4d conformal group that preserves the line. It is important to 

5 One may also consider the D3 and D5 branes dual to 1/2-BPS Wilson loops in higher-rank symmetric and antisym-

metric representations [32,33,15,34]: these branes have AdS2 × S2 or AdS2 × S4 worldvolumes, and preserve the same 
OSp(4∗|4) symmetry as the fundamental string. Computing AdS2 Witten diagrams in this case (after KK reduction on 
the sphere factors) should yield the correlators (1.3) where the trace is taken to be in the symmetric or antisymmetric 
representations of rank k ∼ N .

6 It would also be interesting to use integrability to reproduce a weak coupling Feynman graph approach to dimensions 
of operator insertions on the Wilson line.
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stress that compared to the gravitational AdS2 models in [41–45] our bulk action (2.4) is defined 
in fixed AdS2 background, i.e. does not contain gravity: before fixing the static gauge7 the string 
action (2.1) is reparametrization invariant, but gravity never becomes dynamical in critical super-
string theory. In line with this, the boundary theory has no analog of the pseudo-Goldstone mode 
[42] related to the (spontaneously broken) reparametrizations.

2. AdS5 × S5 string action in static gauge as AdS2 bulk theory action

The bosonic part of the superstring action in AdS5 × S5 has the standard form

SB = 1

2
T

∫
d2σ

√
hhμν

[ 1

z2

(
∂μxr∂νx

r + ∂μz∂νz
) + ∂μya∂νy

a

(1 + 1
4y2)2

]
, T =

√
λ

2π
, (2.1)

where σμ = (t, s) are Euclidean world-sheet coordinates, r = (0, i) = (0, 1, 2, 3) label coordi-
nates of the Euclidean 4-boundary and a = 1, ..., 5 are S5 labels. The minimal surface corre-
sponding to the straight Wilson line at the boundary is described by

z = s , x0 = t , xi = 0 , ya = 0 . (2.2)

The corresponding induced metric is that of AdS2, i.e. gμνdσμdσν = 1
s2 (dt2 + ds2).

We will study correlators of small fluctuations of “transverse” string coordinates (xi, ya) near 
this minimal surface that will thus propagate in the induced AdS2 metric. The resulting global 
symmetry of the bosonic action will thus be SO(2, 1) ×[SO(3) ×SO(6)]. To make the SO(2, 1)

symmetry (which will be the conformal symmetry at the corresponding 1d boundary theory) 
manifest it is useful to choose the AdS2 adapted coordinates and fix the static gauge in which 
z and x0 do not fluctuate. The relevant embedding of AdS2 into AdS5 is described by (x2 ≡
xixi, i = 1, 2, 3)

ds2
5 = (1 + 1

4x2)2

(1 − 1
4x2)2

ds2
2 + dxidxi

(1 − 1
4x2)2

, ds2
2 = 1

z2
(dx2

0 + dz2) . (2.3)

Starting with the Nambu action and fixing the static gauge by the conditions on x0 and z as in 
(2.2) we get

SB = T

∫
d2σ

√√√√det
[ (1 + 1

4x2)2

(1 − 1
4x2)2

gμν(σ ) + ∂μxi∂νxi

(1 − 1
4x2)2

+ ∂μya∂νya

(1 + 1
4y2)2

]

≡ T

∫
d2σ

√
g LB , (2.4)

where gμν = 1
s2 δμν is the background AdS2 metric. This action can be interpreted as that of a 

straight fundamental string in AdS5 × S5 stretched along z, i.e. from the boundary towards the 
center of AdS5. It may be also viewed as a 2d field theory of 3 + 5 scalars in AdS2 geometry 
with manifest symmetry SO(2, 1) × [SO(3) × SO(6)]. Interpreted as a 2d bulk AdS2 theory, it 

7 Defining the Wilson loop expectation value in string theory in conformal gauge where one has two more (compared 
to physical static gauge) dynamical coordinates and ghosts one would end effectively with an integral over boundary 
reparametrizations (see [46–48]). In this case the identification between the operators on the Wilson line on the gauge 
theory side and the string excitations appears to become more intricate. This question deserves further study.
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should thus have a CFT1 dual living at the z = s = 0 boundary. As explained in the Introduction, 
this CFT1 can be viewed as the defect CFT defined by operator insertions on the straight Wilson 
line.

Expanding this action in powers of xi and ya we get

LB = L2 + L4x + L2x,2y + L4y + ... , (2.5)

L2 = 1
2gμν∂μxi∂νx

i + xixi + 1
2gμν∂μya∂νy

a , (2.6)

L4x = 1
8 (gμν∂μxi∂νx

i)2 − 1
4 (gμν∂μxi∂νx

j ) (gρκ∂ρxi∂κxj )

+ 1
4xixi(gμν∂μxj ∂νx

j ) + 1
2xixi xj xj , (2.7)

L2x,2y = 1
4 (gμν∂μxi∂νx

i) (gρκ∂ρya∂κya) − 1
2 (gμν∂μxi∂νy

a) (gρκ∂ρxi∂κya) , (2.8)

L4y =− 1
4 (ybyb)(gμν∂μya∂νy

a) + 1
8 (gμν∂μya∂νy

a)2

− 1

4
(gμν∂μya∂νy

b) (gρκ∂ρya∂κyb) . (2.9)

Thus xi are 3 massive (m2 = 2) and ya are 5 massless scalars propagating in AdS2.
One may also include the fermionic terms coming from the corresponding AdS5 × S5 super-

string action as in [16] (there will also be eight 2d fermions with mass 1). The resulting 2d theory 
should be UV finite and thus should be dual to a quantum 1d CFT at the boundary for any value 
of the coupling T =

√
λ

2π
. The coefficients in the correlation functions computed in perturbation 

theory will be given by power series in 1√
λ

.
At strong coupling (λ � 1) the correlators (1.3) are expected to be reproduced by the AdS2

amplitudes in the (super) string sigma model theory (2.4), with the operators O corresponding to 
particular string coordinates X, i.e.

〈〈O(t1)O(t2)...O(tn)〉〉 = 〈X(t1)X(t2)....X(tn)〉AdS2
, (2.10)

where 〈...〉AdS2 is the expectation value in the 2d theory (2.4) corresponding to Witten diagrams 
with bulk-to-boundary propagators attached to the points t1, ..., tn at the boundary. As discussed 
in the Introduction, the X ∼ ya in (2.4) will correspond to the scalar operators O ∼ �a (a =
1, ..., 5) of dimension � = 1 while X ∼ xi will correspond to the generalized field strength 
components O ∼ Fit with � = 2.

The relation (2.10) can be understood as follows. The correlators 〈 〈O(t1)O(t2)...O(tn)〉 〉 in 
(1.3) can be found by first computing a wavy-line Wilson loop expectation value 〈W(C)〉, taking 
functional derivatives over the contour function C(t) and then setting it to be a straight line. At 
weak coupling this procedure was followed in [9]. At strong coupling 〈W(C)〉 is assumed to be 
given by the AdS5 × S5 open string path integral with Dirichlet boundary conditions (implying 
that disc-like or half-plane like world-surface ends on a contour at the boundary of AdS5×S5). To 
leading order in large 

√
λ expansion that means computing the minimal area of the correspond-

ing surface, i.e. the value of the (Euclidean) string action on the classical solution of the Dirichlet 
problem. In the present case of the string action in the static gauge (2.4) interpreted as a 2d field 
theory in AdS2 this is equivalent to the standard AdS/CFT procedure of computing the gener-
ating functional for the corresponding CFT1 boundary correlators or 〈X(t1)X(t2)....X(tn)〉AdS2

. 
Expanding the resulting on-shell value of the string action in powers of small deviations of the 
boundary curve from the straight line will then give the correlators that can be equivalently 
found by computing the bulk Green’s functions connected to the boundary points by the bulk-
to-boundary propagators. One can check the relation (2.10) explicitly at the 2-point level using 
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the wavy-line solution of [49] (see also [50]), reproducing the string tree-level [49,51] and the 
1-loop [52] corrections in the strong-coupling expansion of the B(λ) function in (1.4), (1.5).

The Lagrangian (2.5) has no cubic terms, so the contribution to the simplest 4-point tree-level 
correlation functions of xi and ya will be given just by the contact 4-point vertices in (2.7)–(2.9). 
Below we will compute the corresponding Witten diagrams in AdS2 connecting the 4-vertices to 
the boundary points by bulk-to-boundary propagators as in, e.g., [22,23]. As we will be interested 
only in leading large λ (tree-level) bosonic field correlators we will ignore the fermions.

Note that while we have made a particular choice of AdS5 coordinates in (2.3) the result for 
the on-shell AdS2 amplitudes (i.e. boundary operator correlation functions) should be invariant 
under local field redefinitions (at least in the case of separated boundary points controlled by 
conformal invariance).

After including fermions and fixing kappa-symmetry gauge the superstring action (generaliz-
ing (2.1), (2.4)) expanded near the 1/2 BPS straight line minimal surface should be describing 
a globally supersymmetric field theory [16] for the OSp(4∗|4) multiplet of 8 + 8 bosons and 
fermions in AdS2. Same symmetry appears on the dual gauge theory side. While in this paper 
we will discuss only 4-point correlators of bosonic coordinates, this supersymmetry should allow 
also to determine the correlators involving fermionic excitations.

3. Four-point functions and conformal blocks in CFT1

Before proceeding to computation of correlators of 2d fields in the AdS2 theory (2.4), (2.5)
let us make some general remarks about the structure of four-point functions in CFT1.

Local operators in a d = 1 CFT defined on a line R = {t} which are covariant under the 
conformal group SO(2, 1) are labeled just by their scaling dimension � (and possibly by some 
representation of an internal symmetry group which we suppress in this section). Let us consider 
the 4-point function of an operator O�(t). The SO(2, 1) symmetry restricts the 4-point function 
to take the form

〈O�(t1)O�(t2)O�(t3)O�(t4)〉 = 1

(t12t34)2�
G(χ) , (3.1)

where χ ∈ (−∞, ∞) is a conformally invariant cross ratio

χ = t12t34

t13t24
. (3.2)

Note that the usual cross ratios u, v are not independent in d = 1, i.e.

u ≡ t2
12t

2
34

t2
13t

2
24

= χ2 , v ≡ t2
14t

2
23

t2
13t

2
24

= (1 − χ)2 . (3.3)

This is because the SO(2, 1) symmetry allows one to fix three points on the line, leaving a single 
free real parameter as the position of the fourth point. For example, if we set t1 = 0, t3 = 1, 
t4 = ∞, then χ corresponds to the position t2 of the second operator.

3.1. OPE expansion

As in the case of higher dimensional CFT, the function G(χ) in (3.1) has an OPE expansion

G(χ) =
∑

c�,�;h χh
2F1(h,h,2h,χ) , (3.4)
h
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where h is the scaling dimension of the exchanged operator, c�,�;h = C2
O�O�Oh

/(C2
O�O�

COhOh
)

are normalized OPE coefficients, and χh
2F1(h, h, 2h, χ) is the exact conformal block in d = 1

[53].
We will also need the case of correlator of operators with pairwise equal dimensions

〈O�1(t1)O�2(t2)O�1(t3)O�2(t4)〉 = 1

(t12t34)�1+�2

∣∣∣ t24

t13

∣∣∣�12
G(χ) , �12 ≡ �1 − �2 .

(3.5)

Here the conformal block expansion reads [53]

G(χ) =
∑
h

c�1,�2;h χh
2F1(h + �12, h − �12,2h,χ) . (3.6)

Note that in (3.5) we have written the result by choosing the 12 → 34 channel (corresponding 
to χ → 0), which will be more convenient below. Of course, one may also write the 4-point 
function in the form

〈O�1(t1)O�1(t2)O�2(t3)O�2(t4)〉 = 1

t
2�1
12 t

2�2
34

G̃(χ) , (3.7)

where G̃(χ) is related to G(χ) in (3.5) by G̃(χ) = χ3 G(χ−1).

3.2. Generalized free field OPE coefficients

It will be useful for what follows to collect some results for the OPE coefficients of generalized 
free fields (see, e.g., [54–57,12]). In the case of the 4-point function of identical operators of 
dimension �, the generalized free field 4-point function has G(u, v) = 1 + u� + (u/v)�, i.e. in 
d = 1 (3.3) is given by

〈O�(t1)O�(t2)O�(t3)O�(t4)〉 = 1

(t12t34)2�

[
1 + χ2� + χ2�

(1 − χ)2�

]
, (3.8)

where we assumed unit normalization of the 2-point function. The operators exchanged in the 
OPE are just the identity and the tower of “two-particle” operators[

O�O�

]
2n

∼ O�∂2n
t O� (3.9)

of dimension 2� + 2n, n = 0, 1, . . . . The corresponding OPE coefficients are given explicitly 
by

c�,�;2�+2n = 2
[
�(2n + 2�)

]2
�(2n + 4� − 1)[

�(2�)
]2

�(2n + 1)�(4n + 4� − 1)
, (3.10)

as one can verify from the identity

∞∑
n=0

c�,�;2�+2n χ2�+2n
2F1(2�+ 2n,2�+ 2n,4�+ 4n,χ) = χ2� + χ2�

(1 − χ)2�
. (3.11)

While operators with odd number of derivatives do not appear in the OPE of identical O�’s, it 
will be useful for the case of operators carrying a flavor index (where odd n can appear in the 
antisymmetric channel) to note the following result for the sum over odd n:
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∞∑
n=0

c�,�;2�+2n+1 χ2�+2n+1
2F1(2� + 2n + 1,2� + 2n + 1,4� + 4n + 2, χ)

= −χ2� + χ2�

(1 − χ)2�
. (3.12)

In the case of pairwise identical operators, we have (cf. (3.5))

〈O�1(t1)O�2(t2)O�1(t3)O�2(t4)〉 = 1

t
2�1
13 t

2�2
24

= 1

(t12t34)�1+�2

∣∣∣∣ t24

t13

∣∣∣∣
�12

χ�1+�2 . (3.13)

Here the operators exchanged in the small χ expansion are [O�1O�2 ]n ∼ O�1∂
n
t O�2 for all 

integer n (both even and odd). The corresponding OPE coefficients are found to be

c�1,�2;�1+�2+n = (−1)n� (n + 2�1)� (n + 2�2) � (n + 2�1 + 2�2 − 1)

� (2�1)� (2�2) �(n + 1)� (2n + 2�1 + 2�2 − 1)
. (3.14)

Indeed, one may verify that this agrees with the OPE expansion in (3.6) by checking that

∞∑
n=0

c�1,�2;�1+�2+n χ�1+�2+n
2F1(�1 + n,�2 + n,2�1 + 2�2 + 2n,χ) = χ�1+�2 .

(3.15)

4. Four-point function of S5 fluctuations

In this section we compute the tree-level 4-point Witten diagram of the S5 fluctuations ya in 
the AdS2 action in (2.5). As reviewed above, these are dual to the 5 SYM scalars �a , a = 1, . . . , 5
(that do not appear in the exponent of the half-BPS Wilson line operator) inserted along the line. 
The strong-coupling limit of the SYM correlator 1.3 should be given by the tree-level string 
coordinate amplitude as in (2.10).

By conformal symmetry, the 4-point function should take the form (3.1), i.e.

〈ya1(t1)y
a2(t2)y

a3(t3)y
a4(t4)〉AdS2 = 〈〈�a1(t1)�

a2(t2)�
a3(t3)�

a4(t4)〉〉

=
[
C�(λ)

]2

t2
12t

2
34

Ga1a2a3a4(χ) , (4.1)

where χ is the conformally invariant cross ratio (3.2). In writing (4.1), we used the fact that the 
operators �a have protected dimension � = 1, i.e. that their exact two-point function is8

〈ya1(t1)y
a2(t2)〉AdS2 = 〈〈�a1(t1)�

a2(t2)〉〉 = δa1a2
C�(λ)

t2
12

. (4.2)

In (4.1) we factored out 
[
C�(λ)

]2 so that in the OPE limit χ → 0 we have Ga1a2a3a4(χ) =
δa1a2δa3a4 + O(χ). The two-point normalization factor C�(λ) is related to the Bremsstrahlung 
function defined in [14,36]. We can always absorb this factor in the normalization of the opera-
tors, and we will do so in the following by choosing a canonical form of the bulk-to-boundary 
propagators.

8 Once again, when referring to operators of 1d CFT we understand them as insertions on the Wilson line.
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Fig. 2. The disconnected and connected contributions to the 4-point function.

The function Ga1a2a3a4(χ) (which is also a non-trivial function of the coupling λ) can be 
decomposed into its SO(5) singlet, symmetric traceless and antisymmetric parts,

Ga1a2a3a4(χ) = GS(χ)δa1a2δa3a4 + GT (χ)
(
δa1a3δa2a4 + δa2a3δa1a4 − 2

5δa1a2δa3a4

)

+ GA(χ)
(
δa1a3δa2a4 − δa2a3δa1a4

)
.

(4.3)

At strong coupling, these functions are expected to have the expansion (working in perturbation 
theory)

GS,T ,A(χ) = G
(0)
S,T ,A(χ) + 1√

λ
G

(1)
S,T ,A(χ) + . . . . (4.4)

The leading terms here correspond to the disconnected contribution to the 4-point function, 
namely diagrams with two “boundary-to-boundary” propagators, (see Fig. 2), and are given by 
the generalized free field expression (cf. (3.8))9

〈〈�a1(t1)�
a2(t2)�

a3(t3)�
a4(t4)〉〉disconn.

=
[
C�(λ)

]2

t2
12t

2
34

[
δa1a2δa3a4 + χ2δa1a3δa2a4 + χ2

(1 − χ)2
δa1a4δa2a3

]
(4.5)

which yields

G
(0)
S (χ) =1 + 2

5G
(0)
T (χ) , G

(0)
T (χ) = 1

2

[
χ2 + χ2

(1 − χ)2

]
,

G
(0)
A (χ) = 1

2

[
χ2 − χ2

(1 − χ)2

]
.

(4.6)

The functions appearing at order 1√
λ

in (4.4) correspond to the leading contribution to the 
connected 4-point function at strong coupling, which comes from tree-level connected Witten 
diagrams. These are given by the 4-vertices in (2.9) with four bulk-to-boundary propagators at-
tached.

9 Note that the separation between a connected and a disconnected contribution defined in (4.5) is natural from the 
point of view of the AdS2 worldsheet perturbation theory, to all orders in 1/

√
λ: in general, the disconnected contri-

bution is given by a pair of loop-corrected boundary-to-boundary propagators. In the weak coupling limit, on the other 
hand, it is straightforward to see that the leading contribution in the planar limit is 〈 〈�a1 (t1)�a2 (t2)�a3 (t3)�a4 (t4)〉 〉 ∼

λ2

t2
12t2

34

(
δa1a2δa3a4 + χ2

(1−χ)2 δa1a4δa2a3

)
, which is not exactly of the form (4.5), indicating that the connected contri-

bution, defined from the point of view of the AdS2 perturbation theory, should, in fact, contribute at leading order at 
small λ.
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We will adopt the following normalization of the bulk-to-boundary propagator (in general 
dimension d)

K�(z, x;x′) =C�

[ z

z2 + (x − x′)2

]� ≡ C� K̃�(z, x;x′) ,

C� = � (�)

2π
d
2 �

(
� + 1 − d

2

) .
(4.7)

In this normalization [58,59], the tree level two-point function of the dual boundary operator is 
〈O�(x1)O�(x2)〉 = C�

x2�
12

.10 In the present case of d = 1 and � = 1, we then have (t ≡ x0)

K�=1(z, t; t ′) = 1

π

z

z2 + (t − t ′)2
, C�=1 = 1

π
. (4.8)

When one has only quartic contact diagrams (as in our present case), all tree-level 4-point func-
tions can be written in terms of the D-functions [22,61,62] defined in the general case of AdSd+1

as

D�1�2�3�4(x1, x2, x3, x4)

=
∫

dzddx

zd+1
K̃�1(z, x;x1)K̃�2(z, x;x2) K̃�3(z, x;x3)K̃�4(z, x;x4) . (4.9)

Note that derivatives in the vertices can be dealt with by using the identity (here ∂μ = (∂z, ∂r ), 
r = 0, 1, 2, ..., d − 1 and gμν = z2δμν )

gμν∂μK̃�1(z, x;x1) ∂νK̃�2(z, x;x2)

= �1�2

[
K̃�1(z, x;x1)K̃�2(z, x;x2) − 2x2

12K̃�1+1(z, x;x1)K̃�2+1(z, x;x2)
]
.

(4.10)

4.1. Connected part of the four-point function

Returning to our case of d = 1, let us write the tree-level connected 4-point function (4.1) of 
ya coordinates in (2.5) as

〈〈�a1(t1)�
a2(t2)�

a3(t3)�
a4(t4)〉〉conn = 2π√

λ
(C�=1)

4 Q
a1a2a3a4
4y , (4.11)

where Q4y is obtained from the vertex L4y in (2.9). Explicitly, we find

10 Note that this differs from the normalization adopted in [60], where C� = �(�)

πd/2�(�−d/2)
was used. In that normal-

ization, the two-point function of the dual operator is 〈O�(x1)O�(x2)〉 = (2�−d)C�
2� .
x12



S. Giombi et al. / Nuclear Physics B 922 (2017) 499–527 511
Q
a1a2a3a4
4y =

[
3D1111 − 2t2

13D2121 − 2t2
14D2112 − 2t2

23D1221 − 2t2
24D1212

+ 4(t2
13t

2
24 + t2

14t
2
23 − t2

12t
2
34)D2222

]
δa1a2δa3a4

+
[
3D1111 − 2t2

12D2211 − 2t2
14D2112 − 2t2

23D1221 − 2t2
34D1122

+ 4(t2
12t

2
34 + t2

14t
2
23 − t2

13t
2
24)D2222

]
δa1a3δa2a4

+
[
3D1111 − 2t2

12D2211 − 2t2
13D2121 − 2t2

24D1212 − 2t2
34D1122

+ 4(t2
12t

2
34 + t2

13t
2
24 − t2

14t
2
23)D2222

]
δa1a4δa2a3 .

(4.12)

To write the result in a manifestly conformally invariant form, it is convenient to introduce the 
“reduced” D̄-functions that are functions of cross-ratios only. In general d , they are defined in 
terms of (4.9) as [62] (� ≡ 1

2

∑
i �i )

D�1�2�3�4

= π
d
2 �

(
� − d

2

)
2� (�1)� (�2)� (�3)� (�4)

x
2(�−�1−�4)
14 x

2(�−�3−�4)
34

x
2(�−�4)
13 x

2�2
24

D̄�1�2�3�4(u, v) . (4.13)

D̄�1�2�3�4 can be written explicitly as the following Feynman parameter integral

D̄�1�2�3�4(u, v)

=
∫

dαdβdγ δ(α + β + γ − 1) α�1−1β�2−1γ �3−1 � (� − �4)� (�4)(
αγ + αβ u + βγ v

)�−�4
.

(4.14)

In d = 1 where u = χ2, v = (1 − χ)2 we get D̄�1�2�3�4 as a function of a single variable 
χ . When the indices �i are integers, the integral (4.14) can be evaluated explicitly. The basic 
example appearing in our calculations is

D̄1111(χ) = 1

χ − 1
log

(
χ2

)
− 1

χ
log

[
(1 − χ)2] . (4.15)

One can check that this agrees with the d = 1 limit of the well-known result in general d

D̄1111(u, v) = 1

z − z̄

[
log(zz̄) log(

1 − z

1 − z̄
) + 2Li2(z) − 2Li2(z̄)

]
,

u = zz̄ , v = (1 − z)(1 − z̄)

(4.16)

after we set z = z̄ = χ (cf. (3.3)). The D̄-functions with higher integer indices can be either 
evaluated directly using (4.14), or expressed in terms of derivatives of D̄1111 using the identities 
listed in [62].

Evaluating all the relevant integrals, the final result for (4.11) takes the form

〈〈�a1(t1)�
a2(t2)�

a3(t3)�
a4(t4)〉〉conn = (C�=1)

2

t2
12t

2
34

G
a1a2a3a4
(1) (χ) , (4.17)

where we factored out (C�=1)
2 so that Ga1a2a3a4

(1) (χ) corresponds to a canonical unit normaliza-
tion. Separating out the singlet (S), symmetric traceless (T ) and antisymmetric (A) channels as 
in (4.3), (4.4)
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G
a1a2a3a4
(1) (χ)

= 1√
λ

[
G

(1)
S (χ) δa1a2δa3a4 + G

(1)
T (χ)

(
δa1a3δa2a4 + δa2a3δa1a4 − 2

5δa1a2δa3a4

)

+ G
(1)
A (χ)

(
δa1a3δa2a4 − δa2a3δa1a4

) ]
,

(4.18)

we find

G
(1)
S (χ) =−2

(
χ4 − 4χ3 + 9χ2 − 10χ + 5

)
5(χ − 1)2

+ χ2
(
2χ4 − 11χ3 + 21χ2 − 20χ + 10

)
5(χ − 1)3

log |χ |

− 2χ4 − 5χ3 − 5χ + 10

5χ
log |1 − χ | ,

G
(1)
T (χ) =−χ2

(
2χ2 − 3χ + 3

)
2(χ − 1)2

+ χ4
(
χ2 − 3χ + 3

)
(χ − 1)3

log |χ | − χ3 log |1 − χ | , (4.19)

G
(1)
A (χ) = χ

(−2χ3 + 5χ2 − 3χ + 2
)

2(χ − 1)2
+ χ3

(
χ3 − 4χ2 + 6χ − 4

)
(χ − 1)3

log |χ |
− (χ3 − χ2 − 1) log |1 − χ |

Here and in what follows log |χ | ≡ 1
2 log(χ2) and log |1 − χ | ≡ 1

2 log
[
(1 − χ)2] where χ ∈

(−∞, ∞). Alternatively, we may assume that χ ∈ (0, 1) (which, in particular, is sufficient for 
considerations of the OPE below) and thus omit the absolute values, log |χ | → logχ and log |1 −
χ | → log(1 − χ). This is sufficient for obtaining the expressions on the entire real line using 
analytic continuation in χ (and crossing symmetry).

We can expand the above functions in the OPE limit χ → 0 as

G
(1)
S (χ) = 1

30
χ2(−60 log |χ | − 43

) + 1

30
χ3(−60 log |χ | − 73

)

+ 1

60
χ4(−252 log |χ | − 117

) + . . . , (4.20)

G
(1)
T (χ) = −3

2
χ2 − 3

2
χ3 + 1

12
χ4(−36 log |χ | − 18

) + . . . , (4.21)

G
(1)
A (χ) = 1

6
χ3(24 log |χ | + 7

) + 3

4
χ4(8 log |χ | + 5

) + . . . . (4.22)

Since the term of order χ2 log |χ | is absent from G(1)
T (χ), this result implies that the symmetric 

traceless “two-particle” operators �(a�b) do not have an anomalous dimension. This is as ex-
pected since these operators, such as ZJ with Z = �1 + i�2 (inserted into the Wilson line) are 
BPS and hence protected [5,36].

On the other hand, the singlet �a�a acquires an anomalous dimension due to the presence 
of the χ2 log |χ | term in (4.20). The same is true for other two-particle operators encoded in the 
higher powers χ2+n log |χ |. We will extract their scaling dimensions systematically in the next 
subsection. Note that in the antisymmetric channel there is no operator of dimension 2 +O( 1√

λ
). 

While one can consider the insertion of the operator [�a, �b] on the Wilson line, this operator sits 
in the same supersymmetry multiplet as �6 [9] and thus is expected to acquire a large anomalous 
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dimension at strong coupling (presumably of order λ1/4 [21] at large λ). Thus, it is expected to 
decouple from our perturbative calculations.

4.2. Scaling dimensions of two-particle operators from OPE

Each of the functions GS(χ), GT (χ) and GA(χ) in (4.18) is expected to have an OPE expan-
sion of the form (3.4). To the leading order, where the 4-point function is given by the generalized 
free field expressions, the exchanged operators entering this expansion are the “two-particle” op-
erators of the form ∼ �a∂n

t �b (as always understood as attached to the Wilson line), as reviewed 
in Section 3.2. These can be decomposed in the irreducible representations of SO(5)

[��]S2n ∼ �a∂2n
t �a , [��]T2n ∼ �(a∂2n

t �b) , [��]A2n+1 ∼ �[a∂2n+1
t �b] .

(4.23)

The connected 4-point functions computed in the previous subsection encode the 1√
λ

correc-
tions to the scaling dimension of these operators, as well as the correction to the correspond-
ing OPE coefficients. However, a difficulty arises in directly extracting this CFT data from 
the 4-point functions because of operator mixing.11 Due to degeneracies in the leading order 
two-particle spectrum, at the interacting level some of the operators in (4.23) can mix with two-
particle operators with the appropriate quantum numbers built out of generalized gauge field 
strength Ft i or fermions (recall that the 8 fermions transform in the (2, 4) representation of 
SU(2) × Sp(4) 
 SO(3) × SO(5)). The singlet operators [��]S2n with n > 0 can mix with FF
and two-fermion states, while the antisymmetric [��]A2n+1 can mix with two-fermion states in 
the (1, 10) of SU(2) × Sp(4).

Let us start our analysis with the symmetric traceless channel. In this case, we expect that the 
corresponding operators [��]T2n should not be affected by mixing because there are no other 
two-particle operators with the same quantum numbers. We can write

GT (χ) =
∑
h

ch χh Fh(χ) = G
(0)
T (χ) + 1√

λ
G

(1)
T (χ) + . . . , (4.24)

Fh(χ) ≡ 2F1(h,h,2h,χ) , (4.25)

where the sum is over the primaries [��]T2n appearing in the OPE. At large λ, we can write their 
dimension and the OPE coefficient as

h = 2 + 2n + 1√
λ

γ
(1)

[��]T2n

+ . . . , ch = c
(0)

��[��]T2n

+ 1√
λ

c
(1)

��[��]T2n

+ . . . . (4.26)

Plugging the expansion (4.26) into (4.24), we get (see (4.6))
∞∑

n=0

c
(0)

��[��]T2n

χ2+2nF2+2n(χ) = G
(0)
T (χ) = 1

2

[
χ2 + χ2

(1 − χ)2

]
. (4.27)

Comparing this with the generalized free field result in (3.10), the leading OPE coefficients are 
found to be

c
(0)

��[��]T2n

=
[
�(2n + 2)

]2
�(2n + 3)

�(2n + 1) �(4n + 3)
. (4.28)

11 We thank Marco Meineri and Carlo Meneghelli for useful discussions on these issues.
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From the terms of order 1√
λ

in the expansions (4.26), (4.24) we find the anomalous dimensions 
and corrections to the OPE coefficients. Expanding

χh = χ
2+2n+ 1√

λ
γ (1)+... = χ2+2n

(
1 + 1√

λ
γ (1) log |χ | + . . .

)
, (4.29)

we see that the anomalous dimensions are determined by the log |χ | terms in G(1)
T (χ), via

∞∑
n=0

c
(0)

��[��]T2n

γ
(1)

[��]T2n

χ2+2nF2+2n(χ) = [
G

(1)
T (χ)

]
log |χ | , (4.30)

where 
[
G

(1)
T (χ)

]
log |χ | is the function multiplying log |χ | in (4.19). This equation can be solved 

for any n with the help of the orthogonality relation [54]12

∮
dz

2πi

1

z2
z�+n F�+n(z) z1−�−n′

F1−�−n′(z) = δn,n′ , (4.31)

where the integral is over a contour around the origin in the complex plane. This result is valid 
for any �, and can be verified, for instance, by using the series expansion of the hypergeometric 
function in (4.25). Using (4.31), we get from (4.30)

γ
(1)

[��]T2n

= 1

c
(0)

��[��]T2n

∮
dχ

2πi
χ−3−2nF−1−2n(χ)

[
G

(1)
T (χ)

]
log |χ | . (4.32)

Evaluating the residue, we find that the result takes the remarkably simple form

γ
(1)

[��]T2n

= −2n2 − 3n . (4.33)

Thus the strong-coupling expansion of the scaling dimension of the operator O(t) = [��]T2n ∼
�(a∂2n

t �b) inserted in the Wilson line as in (1.3) is given by

�[��]T2n
= 2 + 2n − 2n2 + 3n√

λ
+ O(

1

λ
) . (4.34)

The vanishing of the anomalous dimension for n = 0 reflects the fact that the operator �(a�b)

is protected. The operators with n > 0 are unprotected and belong to a long superconformal 
multiplet. Note that the anomalous dimension is negative for all n > 0, indicating an effective 
attractive interaction between single-particle states.

Plugging the expansion (4.26) into (4.24) results also in the following equation which deter-
mines the leading strong-coupling correction to the OPE coefficients

∞∑
n=0

χ2+2n

[
c
(1)

��[��]T2n

F2+2n(χ) + 1

2
c
(0)

��[��]T2n

γ
(1)

[��]T2n

∂nF2+2n(χ)

]
= [

G
(1)
T (χ)

]
no−log |χ | ,

(4.35)

12 SG is grateful to Vladimir Kirilin and Eric Perlmutter for many related discussions and collaboration on technically 
similar CFT calculations.
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where 
[
G

(1)
T (χ)

]
no−log |χ | denotes the part of (4.19) which does not involve the log |χ | term. It 

is straightforward to use this to extract c(1)

��[��]T2n

for any given n. For example, the results for 

n = 0, 1, 2 including both order zero (4.28) and 1√
λ

correction are

c��[��]T0 = 1 − 3

2
√

λ
+ . . . , c��[��]T2 = 3

5
− 3

20
√

λ
+ . . . ,

c��[��]T4 = 5

42
+ 335

378
√

λ
+ . . .

(4.36)

For general n, we observe that the O( 1√
λ
) correction to the OPE coefficients in (4.26) is given 

by the simple formula

c
(1)

��[��]T2n

= 1

2

∂

∂n

(
c
(0)

��[��]T2n

γ
(1)

[��]T2n

)
. (4.37)

A relation of this type was found empirically in [54] and proved in [55] (see also [63]). Explicitly, 
we get

c
(1)

��[��]T2n

= [�(2n + 2)]2

�(4n + 3)

[ − (3 + 34n + 56n2 + 24n3)

+ 4n(n + 1)(2n + 1)(2n + 3)(H4n+3 − H2n)
]
, (4.38)

where Hn = ∑n
k=1

1
k

is the harmonic number.
In the singlet and antisymmetric channels, the leading order OPE coefficients are determined 

by

1 +
∞∑

n=0

c
(0)

��[��]S2n

χ2+2nF2+2n(χ) = G
(0)
S (χ) = 1 + 1

5

[
χ2 + χ2

(1 − χ)2

]
,

∞∑
n=0

c
(0)

��[��]A2n+1
χ3+2nF3+2n(χ) = G

(0)
A (χ) = 1

2

[
χ2 − χ2

(1 − χ)2

]
,

(4.39)

and using the results in Section 3.2 are found to be

c
(0)

��[��]S2n

= 2
[
�(2n + 2)

]2
�(2n + 3)

5�(2n + 1) �(4n + 3)
,

c
(0)

��[��]A2n+1
= −

[
�(2n + 3)

]2
�(2n + 4)

�(2n + 2) �(4n + 2 + 3)
.

(4.40)

In view of the orthogonality relation (4.31), we can extract the anomalous dimensions as

γ
(1)

[��]S2n

= 1

c
(0)

��[��]S2n

∮
dχ

2πi
χ−3−2nF−1−2n(χ)

[
G

(1)
S (χ)

]
log |χ | ,

γ
(1)

[��]A2n+1
= 1

c
(0)

��[��]A2n+1

∮
dχ

2πi
χ−4−2nF−2−2n(χ)

[
G

(1)
A (χ)

]
log |χ | .

(4.41)

Evaluating the residues we find, as in (4.33), simple quadratic polynomials in n
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γ
(1)

[��]S2n

= −2n2 − 3n − 5 , γ
(1)

[��]A2n+1
= −2n2 − 5n − 4 . (4.42)

However, due to the mixing issues described above, these expressions should be viewed as “av-
erages” of the anomalous dimensions over the operators appearing in the mixing (weighted by 
the corresponding OPE coefficients).13 The exception is the singlet operator �a�a with n = 0, 
which cannot mix with any other operator. In this case, (4.42) yields

��a�a = 2 − 5√
λ

+ O(
1

λ
) . (4.43)

Following similar approach as used above in the [��]T2n case, we can also extract the corre-
sponding OPE coefficient

c��[��]S0 = 2

5
− 43

30
√

λ
+ . . . . (4.44)

It is interesting to notice that in all of the above expressions (4.34), (4.42) the large n limit of 
the scaling dimensions has the same asymptotic form

�n�1 = 2n − 2n2

√
λ

+ . . . . (4.45)

We will find below that (4.45) is true also for the scaling dimensions extracted from the mixed 
x2y2-correlators and x4-correlators. Note that this implies that the perturbative result should not 
be trusted when n becomes of order 

√
λ, because then the leading term is comparable to the 

first perturbative correction (also, in such regime, contributions of massive string states should 
be already important, presumably corresponding to non-perturbative corrections to the 4-point 
function). Nevertheless, the form (4.45) is suggestive of a semiclassical limit with n, 

√
λ � 1 and 

ν ≡ n√
λ

fixed. Our results then suggest that in this limit the dimensions of such “two-particle” 
operators have a universal strong-coupling form

�n = √
λf (ν) , f (ν) = 2ν − 2ν2 + O(ν3) . (4.46)

This behavior may be captured by a semiclassical string calculation, analogous to the one in 
[5,65,66] where the insertions carried large R-charge, while here we just need large SO(2, 1)

quantum number and no R-charge.

5. Four-point functions with AdS5 fluctuations

Starting with the AdS2 Lagrangian (2.5)–(2.9) we may also compute other four-point correla-
tors involving AdS5 coordinates xi which are dual to the dimension � = 2 operator Fit inserted 
on the Wilson line. Explicitly, below we will compute (cf. (2.10))

〈xi1(t1)x
i2(t2)y

a1(t3)y
a2(t4)〉AdS2

= 〈〈Fi1
t (t1)F

i2
t (t2)�a1(t3)�a2(t4) 〉〉 = δi1i2δa1a2

G(χ)

t4
12t

2
34

, (5.1)

13 See [64] for a similar discussion in the context of 1/N corrections to 4-point functions of single trace operators in 
N = 4 SYM theory at strong coupling.
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〈xi1(t1)x
i2(t2)x

i3(t3)x
i4(t4)〉AdS2

= 〈〈Fi1
t (t1)F

i2
t (t2)F

i3
t (t3)F

i4
t (t4) 〉〉 = Gi1i2i3i4(χ)

t4
12t

4
34

. (5.2)

Since the Wilson line is 1/2-BPS these two correlators should be related to the correlation func-
tion of four S5 fluctuations by supersymmetry transformations.

5.1. Two AdS5 and two S5 fluctuations

The leading-order contribution to the connected part of the correlator (5.1) may be written as 
(cf. (4.7), (4.8))

Gconn(χ)

t4
12t

2
34

= 2π√
λ

(C�=1C�=2)
2Qxy , Gconn(χ) ≡ C�=1C�=2 G(1)(χ) , (5.3)

where

Qxy = −
∫

dtds

s2

[
gμν∂μK̃2(t1)∂νK̃2(t2)g

ρσ ∂ρK̃1(t3)∂σ K̃1(t4)

− gμν∂μK̃2(t1)∂νK̃1(t3)g
ρσ ∂ρK̃2(t2)∂σ K̃1(t4)

− gμν∂μK̃2(t1)∂νK̃1(t4)g
ρσ ∂ρK̃2(t2)∂σ K̃1(t3)

]

= 4
(
D2211 + 2t2

12D3311 − 2t2
13D3221 − 2t2

23D2321 − 2t2
14D3212 − 2t2

24D2312

+ 2t2
34D2222 + 4t2

14t
2
23D3322 + 4t2

13t
2
24D3322 − 4t2

12t
2
34D3322

)
. (5.4)

As a result, the function G(1)(χ) in (5.3)

G(1)(χ) = − 4√
λ

[
1 − ( 1

2 − χ−1) ln |1 − χ |
]

. (5.5)

Similarly to the discussion in Section 4.2, we may also extract the scaling dimensions of 
two-particle operators appearing in the OPE. In this case the relevant operators are

[�a
Fit ]n ∼ �a∂n

t Fit (5.6)

that have dimension 3 + n + O( 1√
λ
) and correspond to mixed xy two-particle states. Let us first 

rewrite the 4-point function (5.1), (5.3) by relabeling t2 ↔ t3

〈〈Fit (t1)�
a(t2)Fj t (t3)�

b(t4)〉〉conn = δabδij

C�=1C�=2

(t2
12t

2
34)

3/2

( t2
24

t2
13

)1/2
G(1)

xy (χ) , (5.7)

where from (5.5) we get

G(1)
xy (χ) = χ3G(1)(χ

−1) = −4χ3

√
λ

[
1 + ( 1

2 − χ) log
|χ |

|1 − χ |
]
. (5.8)

The corresponding disconnected contribution appearing at leading order is (see (3.13))

G(0)(χ) = 1

(t2
12t

2
34)

3/2

( t2
24

t2
13

)1/2
χ3 . (5.9)

Using (3.14), this determines the leading order OPE coefficients appearing in the expansion (3.6)
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c
(0)
�F[�F]n = �(n + 2)�(n + 4)�(n + 5)

6�(n + 1)�(2n + 5)
. (5.10)

To extract the anomalous dimensions, we can use the following generalization of the orthogonal-
ity relation (4.31)∮

dz

2πi

1

z2
z�+nF�+n,a(z)z

1−�−n′
F1−�−n′,a(z) = δn,n′ , (5.11)

Fh,a(z) ≡ 2F1(h + a,h − a,2h, z) .

In our case, we need � = 3 and a = 1, see (3.6). Then the anomalous dimensions are given by

γ
(1)
[�F]n = 1

c
(0)
�F[�F]n

∮
dχ

2πi
χ−n−4F−n−2,1(χ) 2χ3(2χ − 1) , (5.12)

where we have used that 
[
G

(1)
xy (χ)

]
log |χ | = 2χ3(2χ − 1). Evaluating the residue, we find

γ
(1)
[�F]n = −n2

2
− 5n

2
− 2 . (5.13)

Let us separate the cases of even and odd n. For even n we expect that the operators [�F]2n can 
mix with two-fermion states in the same representation.14 For odd n, on the other hand, we do 
not expect mixing with two fermion states, and from (5.13) we get

�[�F]2n+1 = 4 + 2n − 2n2 + 7n + 5√
λ

+ O(
1

λ
) . (5.14)

For large n, we recover the universal form (4.45), (4.46) found from the analysis of the 
y-correlators. Note that the dimension �[�F]2n+1 in (5.14) is the same as �[��]T

2n′ in (4.34) for 

n′ = n + 1. This is consistent with the fact that these operators should belong to the same long 
supermultiplet.

5.2. Four AdS5 fluctuations

Finally, let us compute the four-point function of the three AdS fluctuations xi (5.2) using 
similar normalization for the connected part as in (5.3)

Gi1i2i3i4
conn (χ) = (C�=2)

2 G
i1i2i3i4
(1) (χ) , (5.15)

with (cf. (4.18))

G
i1i2i3i4
(1)

(χ) = δi1i2δi3i4G
(1)
S (χ) + G

(1)
A (δi1i3δi2i4 − δi1i4δi2i3)

+ G
(1)
T (δi1i3δi2i4 + δi1i4δi2i3 − 2

3δi1i2δi3i4) . (5.16)

The irreducible SO(3) singlet, symmetric traceless and antisymmetric parts are found to be

14 The product of two (2, 4) representations of SU(2) × Sp(4) contains the (3, 5) of SO(3) × SO(5). The vector of 
SO(5) corresponds to the antisymmetric symplectic-traceless representation of Sp(4).
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G
(1)
S (χ) = −

(
24χ8 − 90χ7 + 125χ6 − 76χ5 + 125χ4 − 306χ3 + 438χ2 − 288χ + 72

)
9(χ − 1)4

− 2
(
4χ6 − χ5 − 6χ + 12

)
3χ

log |1 − χ |

+ 2χ4
(
4χ6 − 21χ5 + 45χ4 − 50χ3 + 30χ2 − 6χ + 2

)
3(χ − 1)5

log |χ | , (5.17)

G
(1)
T (χ) = −

(
48χ4 − 198χ3 + 313χ2 − 230χ + 115

)
χ4

12(χ − 1)4
− 1

2
(8χ − 5)χ4 log |1 − χ |

+ 4
(
8χ6 − 45χ5 + 105χ4 − 130χ3 + 90χ2 − 30χ + 10

)
χ4

9(χ − 1)5
log |χ | , (5.18)

G
(1)
A (χ) = − (χ − 2)

(
48χ6 − 90χ5 + 91χ4 + 4χ3 − 17χ2 + 18χ − 6

)
χ

12(χ − 1)4

− 1

4

(
4χ5 − 3χ4 + 2

)
log |1 − χ |

+ (χ − 2)
(
8χ4 − 27χ3 + 41χ2 − 28χ + 14

)
χ5

2(χ − 1)5
log |χ | . (5.19)

The two-particle states encoded in the OPE of the 4-point function of x fluctuations are

[FF]S2n ∼ Ft i∂
2n
t Fit , [FF]T2n ∼ Ft (i∂

2n
t Fj)t , [FF]A2n+1 ∼ Ft[i∂2n+1

t Fj ]t . (5.20)

The calculation of their anomalous dimensions follows the same steps as outlined in the previous 
sections. The disconnected contributions to the 4-point function are (cf. (4.6))

G
(0)
S (χ) = 1 + 2

3G
(0)
T (χ) , G

(0)
T (χ) = 1

2

[
χ4 + χ4

(1 − χ)4

]
,

G
(0)
A (χ) = 1

2

[
χ4 − χ4

(1 − χ)4

]
,

(5.21)

from which, using (3.10), we find the leading OPE coefficients

c
(0)

FF[FF]S2n

=
[
�(2n + 4)

]2
�(2n + 7)

54�(2n + 1) �(4n + 7)
,

c
(0)

FF[FF]T2n

=
[
�(2n + 4)

]2
�(2n + 7)

36�(2n + 1) �(4n + 7)
, c

(0)

FF[FF]A2n+1
= −

[
�(2n + 5)

]2
�(2n + 8)

36�(2n + 2) �(4n + 9)
.

(5.22)

Then starting with the OPE (3.4), expanding in powers of 1√
λ

and using the orthogonality relation 
(4.31), we find



520 S. Giombi et al. / Nuclear Physics B 922 (2017) 499–527
γ
(1)

[FF]S2n

= 1

c
(0)

FF[FF]S2n

∮
dχ

2πi
χ−5−2nF−3−2n(χ)

[
G

(1)
S (χ)|log |χ | = −2n2 − 7n − 2

γ
(1)

[FF]T2n

= 1

c
(0)

FF[FF]T2n

∮
dχ

2πi
χ−5−2nF−3−2n(χ)

[
G

(1)
T (χ)

]
log |χ | = −2n2 − 7n − 5

γ
(1)

[FF]A2n+1
= 1

c
(0)

FF[FF]A2n

∮
dχ

2πi
χ−6−2nF−4−2n(χ)

[
G

(1)
A (χ)

]
log |χ | = −2n2 − 9n − 7 .

(5.23)

As explained in Section 4.2, the singlet operators [FF]S2n can mix with �� and two-fermion 
operators, and also [FF]A2n+1 can mix with two-fermion states in the same representation. There-
fore, the corresponding anomalous dimensions above should be viewed as averages and more 
work would be needed to disentangle the mixing. The symmetric traceless operators [FF]T2n are 
not expected to mix, and from (5.23) we hence get their dimensions to be

�[FF]T2n
= 4 + 2n − 2n2 + 7n + 5√

λ
+ O(

1

λ
) . (5.24)

Note that �[FF]T2n
is the same as �[�F]2n+1 in (5.14) and also �[��]T2n+2

in (4.34), indicating that 
these operators belong to the same supermultiplet.

6. Circular Wilson loop: comparison to localization

In the above calculations we assumed the straight Wilson line at the boundary. However, 
one can map the straight line to the circle by a conformal transformation, which allows then to 
translate correlators of operator insertions on the line to those on the circle. Explicitly, we can 
perform the transformation t → tan(τ/2), where −π < τ < π is the coordinate along the circle. 
Under this transformation, the two-point function of an operator O� inserted in the Wilson loop 
changes as

〈〈O�(t1)O�(t2)〉〉line = CO

t2�
12

→ 〈〈O�(τ1)O�(τ2)〉〉circle = CO(
2 sin τ12

2

)2�
. (6.1)

Note that the expectation value of the circular half-BPS Wilson loop is not trivial and given at 
large N by the well-known expression [6–8]

〈Wcircle〉 = 2√
λ

I1(
√

λ) , (6.2)

and hence the double-bracket correlator in (6.1) requires a normalization factor given by this 
expectation value.

On the string theory side, the transformation from boundary line to circle simply amounts to 
changing coordinates on the Euclidean AdS2 worldsheet from the Poincare metric we have been 
assuming above to the hyperbolic disk metric

ds2
2 = dρ2 + sinh2 ρ dτ 2 . (6.3)

All of our results for the four-point functions of insertions on the line can be then translated to 
the circle by simply replacing the coordinate-dependent prefactors as
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1

t
2�1
12 t

2�2
34

→ 1

(2 sin τ1−τ2
2 )2�1 (2 sin τ3−τ4

2 )2�2
, (6.4)

and the conformally invariant cross ratio χ in (3.2) is mapped to

χ = sin τ1−τ2
2 sin τ3−τ4

2

sin τ1−τ3
2 sin τ2−τ4

2

. (6.5)

In the case of the four-point function of S5 fluctuations, it appears to be possible to compare 
our results to some localization prediction. In a series of papers [4,37–39,67] it was proposed 
that correlation functions in a subsector of supersymmetric Wilson loops and local operators in 
N = 4 SYM can be computed via localization in terms of 2d YM theory. The relevant Wilson 
loops, first introduced in [68], are defined on generic contours on an S2 subspace of R4 (or S4), 
and couple to three of the scalar fields in the SYM theory, say �1, �2, �3, in a way prescribed 
by supersymmetry:

W(C) = trPe
∮
C

(
iAj +εklj xk�l

)
dxj

, (6.6)

where xi parametrize a unit two-sphere x2
1 + x2

2 + x2
3 = 1. With such couplings to scalars �i , 

the Wilson loops (6.6) are 1/8-BPS for generic contour C. These operators are mapped under 
localization15 to usual Wilson loops in 2d YM on S2. The 1/2-BPS circular Wilson loop is a 
special case obtained by choosing the contour to be a great circle on S2. For instance, taking the 
equator x1 = cos(τ ), x2 = sin(τ ) gives the 1/2-BPS operator which couples to �3 only. In this 
section, we will use this convention for the scalar that couples to the 1/2-BPS Wilson loop, to 
adhere with the definition (6.6) used in the original papers.

The relevant local operators appearing in the localization setup are chiral primaries with spe-
cific position-dependent combination of scalars, which were first studied in [69]. Recall that a 
convenient way to write a chiral primary is in terms of an auxiliary null 6-vector ε

(ε · �)J , ε2 = 0 . (6.7)

The local operators that are captured by localization are inserted on the S2 and have the form

(x1�1 + x2�2 + x3�3 + i�4)
J , x2

1 + x2
2 + x2

3 = 1 , (6.8)

where x1, x2, x3 is the point on S2 where the operator is inserted. This means that the null 
6-vector is position-dependent and given by ε(x) = (x1, x2, x3, i, 0, 0). These operators are 
mapped by localization [39,38] to powers of the Hodge dual (i ∗F)J of the 2d YM field strength, 
and one can then compute general mixed correlation functions of Wilson loops and local opera-
tors using the 2d YM theory.

A crucial property of the operators (6.8) is that their correlation functions are position inde-
pendent, at any coupling [69]. From the point of view of localization to 2d YM theory, this can be 
understood as the fact that correlation functions of the field strength dual ∗F are position inde-
pendent.16 In addition to considering correlation functions of Wilson loops with local operators 
inserted away from the loop, as in [25], one can also insert the local operators (6.8) along the 
Wilson loop, which is our main interest here. A calculation of this type was carried out in [70], 

15 To be precise, this has not yet been proven completely rigorously, as the calculation of the determinant for the 
fluctuations around the localization locus was not computed in [39].
16 This is because the 2d YM equation of motion is d ∗ F = 0, and ∗F is a scalar.
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where the calculation in the 2d theory (to the leading order considered there) was found to be in 
agreement with the integrability-based results of [71].

To make contact with the calculation in Section 4, we should consider the 4-point function of 
the operators (6.8) inserted along the circular loop

〈〈 ε(τ1) · �(τ1) ε(τ2) · �(τ2) ε(τ3) · �(τ3) ε(τ4) · �(τ4) 〉〉circle , (6.9)

where, since the operators are inserted on the great circle in the (12)-plane, the null 6-vectors are 
given by17

ε(τk) = (
cos τk, sin τk, 0, i, 0,0

) ≡ εk , k = 1, . . . ,4 . (6.10)

Let us first check that the two-point function of such operators along the circle is indeed position 
independent. We have

〈〈ε(τ1) · �(τ1) ε(τ2) · �(τ2)〉〉circle = C�(λ)
ε(τ1) · ε(τ2)(

2 sin τ12
2

)2
= −1

2
C�(λ) . (6.11)

As expected, the factor in the numerator coming from the τ -dependent null vector cancels the 
position dependence of the denominator.

To find (6.9), we just have to contract the SO(5) index structures in the result in Section 4
with the vectors εk . Note that

ε1 · ε2 ε3 · ε4 = (
2 sin τ1−τ2

2 2 sin τ3−τ4
2

)2
,

ε1 · ε2 ε3 · ε4

ε1 · ε3 ε2 · ε4
= χ2 ,

ε1 · ε2 ε3 · ε4

ε1 · ε4 ε2 · ε3
= χ2

(1 − χ)2
.

(6.12)

Using these relations and the decomposition in (4.18), we find for the unit-normalized connected 
part of the 4-point function

〈〈ε1 · �(τ1) ε2 · �(τ2) ε3 · �(τ3) ε4 · �(τ4)〉〉conn
circle

〈〈ε · �ε · �〉〉2
circle

= 1√
λ

[
G

(1)
S (χ) − 2

5
G

(1)
T (χ) + 1

χ2

(
G

(1)
T (χ) + G

(1)
A (χ)

)

+ (1 − χ)2

χ2

(
G

(1)
T (χ) − G

(1)
A (χ)

)]
.

(6.13)

Plugging in the explicit functions of cross-ratio from (4.19), one can verify that the position 
dependence completely cancels out and we end up with

〈〈ε1 · �(τ1) ε2 · �(τ2) ε3 · �(τ3) ε4 · �(τ4)〉〉conn
circle

〈〈ε · � ε · �〉〉2
circle

= − 3√
λ

+ O(
1

λ
) . (6.14)

Let us now compare this result with the prediction of localization. One should compute the 
4-point function 〈 〈F̃ (τ1)F̃ (τ2)F̃ (τ3)F̃ (τ4)〉 〉YM2 in 2d YM, where we introduced for convenience 
the shorthand F̃ ≡ i ∗ F for the dual of the field strength, which is inserted four times along the 
circular Wilson loop. A shortcut to this calculation may be obtained by starting from a more 

17 Recall that in this section we are assuming that �3 is the scalar that couples to the Wilson loop, so the S5 fluctuations 
ya are dual to �1, �2, �4, �5, �6.
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general contour C and noticing that insertions of i ∗ F are equivalent to taking derivatives of 
the Wilson loop expectation value with respect to the area.18 For a general contour C singling 
out areas A1, A2 on S2, with A1 + A2 = 4π (we take unit radius), the invariance under area 
preserving diffeomorphisms of 2d YM implies that the expectation value is given by the same 
expression (6.2) up to an area-dependent rescaling of the coupling

〈WA1〉 = 2√
λ′ I1(

√
λ′) , λ′ ≡ A1A2

4π2
λ = A1(4π − A1)

4π2
λ . (6.15)

This is the expectation value of the general 1/8-BPS operator (6.6). The 1/2-BPS circle corre-
sponds to the special case A1 = 2π when λ′ = λ. Then, taking derivatives of log〈WA1〉 with 
respect to A1 and setting A1 = 2π after that yields the connected correlators of i ∗ F inserted 
along the circle.

For instance, the two-point function is given by

〈〈F̃ (τ1)F̃ (τ2)〉〉YM2 = ∂2

∂A2
1

log〈WA1〉
∣∣∣
A1=2π

= −
√

λI2(
√

λ)

4π2I1(
√

λ)
. (6.16)

This implies that in (6.11) C�(λ) =
√

λI2(
√

λ)

2π2I1(
√

λ)
, in agreement with the Bremsstrahlung function 

of [14].
For the connected 4-point function, we get

〈〈F̃ (τ1)F̃ (τ2)F̃ (τ3)F̃ (τ4)〉〉conn
YM2

〈〈F̃ F̃ 〉〉2
YM2

=
∂4

∂A4
1

log〈WA1〉
∣∣
A1=2π(

∂2

∂A2
1

log〈WA1〉
∣∣
A1=2π

)2

= 3(λ + 4)
[
I1(

√
λ)

]2 − 3λ
[
I0(

√
λ)

]2

λ
[
I2(

√
λ)

]2
. (6.17)

Expanding at large λ, this gives

3(λ + 4)
[
I1(

√
λ)

]2 − 3λ
[
I0(

√
λ)

]2

λ
[
I2(

√
λ)

]2
= − 3√

λ
+ 45

8λ3/2
+ . . . , (6.18)

and we see that the leading term agrees with our result (6.14) coming from tree-level connected 
diagrams in AdS2.
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Appendix A. Toy model: scalar in AdS2 with ϕ4 interaction

As a simple toy model, let us consider a scalar in AdS2 with a simple quartic self-interaction

S =
∫

d2x
√

g
(1

2
gμν∂μϕ∂νϕ + 1

2
m2ϕ2 + g

4!ϕ
4
)

, (A.1)

where we assume the Poincare metric ds2 = 1
z2 (dz2 + dt2). Tree level Witten diagrams obtained 

from this model yield conformally invariant correlation functions of an operator O(t) at the 
boundary with scaling dimension given by �(� − 1) = m2. The tree-level 4-point function is 
straightforward to compute

〈O(t1)O(t2)O(t2)O(t3)〉 = −gC4
�D����(t1, t2, t3, t4)

= −g
C4

�

√
π�(2� − 1

2 )

2[�(�)]4

1

t2�
12 t2�

34

χ2�D̄����(χ) (A.2)

Specializing to the case of a massless scalar, so that � = 1, this may be written as (cf. (4.8))

〈O(t1)O(t2)O(t2)O(t3)〉 = − g

4π

(C�=1)
2

t2
12t

2
34

χ2D̄1111(χ) , (A.3)

with D̄1111(χ) given in (4.15). From this result we can extract the anomalous dimension of the 
[OO]2n ∼ O∂2n

t O operators as explained in the main text. The leading order OPE coefficients 
are given by (3.10) with � = 1

c
(0)
OO[OO]2n

= 2
[
�(2n + 2)

]2
�(2n + 3)

�(2n + 1)�(4n + 3)
, (A.4)

and extracting the coefficient of log(χ) in D̄1111(χ), the anomalous dimensions are given by

γ
(1)
[OO]2n

= 1

c
(0)
OO[OO]2n

∮
dχ

2πi
χ−3−2nF−1−2n(χ)

gχ2

2π(1 − χ)
, (A.5)

which yields

�[OO]2n
= 2 + 2n + g

4π

1

(2n + 1)(n + 1)
+ O(g2) . (A.6)

Note that unlike the results we obtained above from the worldsheet model (2.4), the anomalous 
dimensions in (A.6)are positive and also they go to zero at large n.

One can similarly consider the case of a m2 = 2 scalar, i.e. � = 2. Then we get

〈O(t1)O(t2)O(t2)O(t3)〉 = − 5g

12π

(C�=2)
2

t4
12t

4
34

χ4D̄2222(χ) ,

D̄2222(χ) = χ(2χ − 5) + 5

30(χ − 1)3
log(χ2) − 2χ2 + χ + 2

30χ3
log

(
(1 − χ)2) − 2((χ − 1)χ + 1)

15(χ − 1)2χ2
.

(A.7)
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The leading OPE coefficients are obtained from (3.10) with � = 2

c
(0)
OO[OO]2n

=
[
�(2n + 4)

]2
�(2n + 7)

18�(2n + 1) �(4n + 7)
, (A.8)

and the anomalous dimensions are then given by

γ
(1)
[OO]2n

= 1

c
(0)
OO[OO]2n

∮
dχ

2πi
χ−5−2nF−3−2n(χ)

gχ4((5 − 2χ)χ − 5)

36π(χ − 1)3
. (A.9)

This yields the result

�[OO]2n
= 4 + 2n + g

4π

(n + 1)(2n + 5)

(n + 2)(n + 3)(2n + 1)(2n + 3)
+ O(g2) . (A.10)
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